Abstract
1,3-dimercaptopropan-2-ol, a symmetrical di-thiol, has been synthesized and applied as a new type of anchor molecule to prepare a self-assembled monolayer (SAM) on a gold surface. The formed monolayers were studied by cyclic voltammetry, impedance spectroscopy, X-ray photoelectron spectroscopy, kinetic capacitance, and contact angle measurements. The SAM structure depends on the adsorption conditions. A short incubation time of the electrode at high concentration of this di-thiol leads to the predominating binding through one thiol group of the adsorbate to the gold surface, while a long incubation at low concentration leads to the predominating binding by both thiol groups. A comparative study of the desorption and replacement of SAMs indicates a strong stability increase when the SAM molecules bond gold surfaces by two bonds mainly. This monolayer was used to immobilize electrochemically active p-benzoquinone moiety. The surface concentration of p-benzoquinone obtained from cyclic voltammetry is 2.5 ± 0.2 × 10−10 mol cm−2, which corresponds to the functionalization of 65 ± 5% of SAM molecules. The obtained highly stable SAM with redox-active terminal group can be applied for different tasks of chemical sensing and biosensing. As an example, an application of this system for electrocatalytical oxidation of dihydronicotinamide adenosine dinucleotide (NADH) was tested.
Supplementary Materials
The supplementary are available online at https://www.mdpi.com/article/10.3390/I3S2021Dresden-10112/s1.
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).