AI/ML-Enabled Internet of Medical Things (IoMT) for Personalized Cardiac Health Monitoring and Predictive Diagnostics †
Abstract
1. Introduction
2. System Design and Development
- Microcontroller and sensors-based IoMT prototype;
- A Flask-SQLite web application provides role-based doctor/patient access, and a chatbot offers personalized guidance;
- A machine learning pipeline trained on the Cleveland Heart Disease dataset.
- Figure 1 represents the design of the proposed IoMT system.
2.1. IoMT Prototype and System Design
2.2. Backend and Web Interface
2.3. Machine Learning Model Deployment
2.4. Chatbot Integration for Cardiovascular Diagnostic Support
- Model: Falcon-7B-Instruct (Hugging Face Transformer-based Large Language Model);
- Frameworks: PyTorch 2.1.0 (model inference), Hugging Face Transformers 4.36.2;
- Environment: Google Colab with GPU acceleration;
- APIs/Libraries: Requests (HTTP), web-based API for real-time data integration.
3. Results and Discussion
3.1. System Performance
3.2. Evaluation of Machine Learning Models
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Di Cesare, M.; Perel, P.; Taylor, S.; Kabudula, C.; Bixby, H.; Gaziano, T.A.; McGhie, D.V.; Mwangi, J.; Pervan, B.; Narula, J.; et al. The Heart of the World. Glob. Heart 2024, 19, 11. [Google Scholar] [CrossRef]
- Cardiovascular Diseases (CVDs). Available online: https://www.who.int/news-room/fact-sheets/detail/cardiovascular-diseases-(cvds) (accessed on 14 August 2025).
- Mensah, G.A.; Fuster, V.; Murray, C.J.L.; Roth, G.A. Global Burden of Cardiovascular Diseases and Risks, 1990–2022. J. Am. Coll. Cardiol. 2023, 82, 2350–2473. [Google Scholar] [CrossRef]
- Ndreas, S.; Bothner, U.; De La Hoz; Kloer, I.; Trampisch, M.; Alter, P. Post Hoc Holter ECG Analysis Olodaterol Formoterol Moderate-to-Very-Severe COPD. Int. J. Chronic Obstr. Pulm. Dis. 2020, 15, 1955–1965. [Google Scholar] [CrossRef]
- Aldahiri, A.; Alrashed, B.; Hussain, W. Trends in Using IoT with Machine Learning in Health Prediction System. Forecasting 2021, 3, 181–206. [Google Scholar] [CrossRef]
- Rodríguez-Rodríguez, I.; Campo-Valera, M.; Rodríguez, J.-V.; Lok Woo, W. IoMT Innovations in Diabetes Management: Predictive Models Using Wearable Data. Expert Syst. Appl. 2024, 238, 121994. [Google Scholar] [CrossRef]
- Huang, C.; Wang, J.; Wang, S.; Zhang, Y. Internet of Medical Things: A Systematic Review. Neurocomputing 2023, 557, 126719. [Google Scholar] [CrossRef]
- Rahman, M.A.; Li, Y.; Nabeed, T.; Rahman, M.T. Remote Monitoring of Heart Rate and ECG Signal Using ESP32. In Proceedings of the 2021 4th International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE), Changsha, China, 26–28 March 2021; IEEE: Piscataway, NJ, USA, 2021. [Google Scholar]
- Palamar, A.; Palamar, M.; Osukhivska, H. Real-Time Health Monitoring Computer System Based on Internet of Medical Things. In Proceedings of the ITTAP’2023: 3rd International Workshop on Information Technologies: Theoretical and Applied Problems, Ternopil, Ukraine, 22–24 November 2023; pp. 106–115. [Google Scholar]
- Pham, V.-N.; Coboi, A.; Nam, D.D.; Vien, L.G.; Thai, P.D. Design of ECG Circuit and Patient Remote Monitoring System Using MQTT Protocol for ECG Signals. J. Basic Appl. Res. Int. 2024, 30, 32–42. [Google Scholar] [CrossRef]
- Le, D.-A.T.; Vo, B.-T.; Pham, V.-N.; Ba, Q.-H.D.; Nguyen, T.-N.; Ha, M.-H.; Kim, D.-T. Patient Remote Monitoring System Using MQTT Protocol for ECG Signals. In Proceedings of the 2024 9th International Conference on Integrated Circuits, Design, and Verification (ICDV), Hanoi, Vietnam, 6–7 June 2024; IEEE: Piscataway, NJ, USA, 2024; pp. 114–118. [Google Scholar]
- Wan, J.; Al-awlaqi, A.A.H.M.; Li, M.; O’Grady, M.; Gu, X.; Wang, J.; Cao, N. Wearable IoT Enabled Real-Time Health Monitoring System. EURASIP J. Wirel. Commun. Netw. 2018, 2018, 298. [Google Scholar] [CrossRef]
- Li, C.; Hu, X.; Zhang, L. The IoT-Based Heart Disease Monitoring System for Pervasive Healthcare Service. Procedia Comput. Sci. 2017, 112, 2328–2334. [Google Scholar] [CrossRef]
- Rincon, J.A.; Guerra-Ojeda, S.; Carrascosa, C.; Julian, V. An IoT and Fog Computing-Based Monitoring System for Cardiovascular Patients with Automatic ECG Classification Using Deep Neural Networks. Sensors 2020, 20, 7353. [Google Scholar] [CrossRef] [PubMed]
- Hizem, M.; Bousbia, L.; Ben Dhiab, Y.; Aoueileyine, M.O.-E.; Bouallegue, R. Reliable ECG Anomaly Detection on Edge Devices for Internet of Medical Things Applications. Sensors 2025, 25, 2496. [Google Scholar] [CrossRef]
- Bhirud, N.; Tataale, S.; Randive, S.; Nahar, S. A Literature Review Chatbots Healthcare Domain. Int. J. Sci. Technol. Res. 2019, 8, 225–231. [Google Scholar]
- Hannan, A.; Cheema, S.M.; Pires, I.M. Machine Learning-Based Smart Wearable System for Cardiac Arrest Monitoring Using Hybrid Computing. Biomed. Signal Process. Control 2024, 87, 105519. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, J.-W.; Zang, G.-Y.; Pu, J. The Primary Use of Artificial Intelligence in Cardiovascular Diseases: What Kind of Potential Role Does Artificial Intelligence Play in Future Medicine? J. Geriatr. Cardiol. 2019, 16, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Yin, Y.; Yang, Q.; Huo, T. Artificial Intelligence in Cardiovascular Diseases: Diagnostic and Therapeutic Perspectives. Eur. J. Med. Res. 2023, 28, 242. [Google Scholar] [CrossRef]
- Rani, P.; Kumar, R.; Ahmed, N.M.O.S.; Jain, A. A Decision Support System for Heart Disease Prediction Based upon Machine Learning. J. Reliab. Intell. Environ. 2021, 7, 263–275. [Google Scholar] [CrossRef]
- Kishor, A.; Jeberson, W. Diagnosis of Heart Disease Using Internet of Things and Machine Learning Algorithms. In Lecture Notes in Networks and Systems, Proceedings of the Second International Conference on Computing, Communications, and Cyber-Security, Gujarat, India, 6–7 February 2021; Springer: Singapore, 2021; pp. 691–702. ISBN 9789811607325. [Google Scholar]
- Habib, F.A.; Shakil, G.S.; Iqbal, S.S.M.; Sajid, S.T.A. Self-Diagnosis Medical Chatbot Using Artificial Intelligence. In Algorithms for Intelligent Systems; Springer: Singapore, 2021; pp. 587–593. ISBN 9789811567063. [Google Scholar]
- Sadad, T.; Bukhari, S.A.C.; Munir, A.; Ghani, A.; El-Sherbeeny, A.M.; Rauf, H.T. Detection of Cardiovascular Disease Based on PPG Signals Using Machine Learning with Cloud Computing. Comput. Intell. Neurosci. 2022, 2022, 1672677. [Google Scholar] [CrossRef] [PubMed]
- Miranda, G.M. Photoplethysmography (PPG) for Heart Disease. Available online: https://www.news-medical.net/health/Photoplethysmography-(PPG)-for-Heart-Disease.aspx (accessed on 15 August 2025).
- Lee, H.Y.; Kim, Y.J.; Lee, K.H.; Lee, J.H.; Cho, S.P.; Park, J.; Park, I.H.; Youk, H. Substantiation and Effectiveness of Remote Monitoring System Based on IoMT Using Portable ECG Device. Bioengineering 2024, 11, 836. [Google Scholar] [CrossRef]
- Georgieva-Tsaneva, G.; Cheshmedzhiev, K.; Tsanev, Y.-A.; Dechev, M.; Popovska, E. Healthcare Monitoring Using an Internet of Things-Based Cardio System. IoT 2025, 6, 10. [Google Scholar] [CrossRef]
- UCI Machine Learning Repository. Available online: https://archive.ics.uci.edu/dataset/45/heart+disease (accessed on 15 August 2025).
- Srinivasan, S.; Gunasekaran, S.; Mathivanan, S.K.; Malar M.B., B.A.; Jayagopal, P.; Dalu, G.T. An Active Learning Machine Technique Based Prediction of Cardiovascular Heart Disease from UCI-Repository Database. Sci. Rep. 2023, 13, 13588. [Google Scholar] [CrossRef]
- Rohan, D.; Reddy, G.P.; Kumar, Y.V.P.; Prakash, K.P.; Reddy, C.P. An Extensive Experimental Analysis for Heart Disease Prediction Using Artificial Intelligence Techniques. Sci. Rep. 2025, 15, 6132. [Google Scholar] [CrossRef] [PubMed]






| Literature | Sensors Module Features | Contribution | Limitations |
|---|---|---|---|
| Lee HY et al., [25] | ECG, heart rate and activity, respiratory, temperature | Portable ECG patch system, real-time detection of abnormal ECG events, Remote CVD monitoring during daily activity | Motion artifacts; single-lead |
| Georgieva-Tsaneva, G. et al., [26] | ECG, PPG/SpO2, temperature, accelerometer, gyroscope with Wi-Fi | Wearable multi-sensor cardiac monitor (armband/vest), real-time (heart rate variability analysis and emergency alerts | Complex integration; increased power consumption |
| Rahman et al., [8] | ECG, heart rate using ESP32 and Wi-Fi | Real-time ECG and heart rate monitoring | Single-lead heart rate sensor; no predictive analytics |
| Rincon et al., [14] | ECG monitoring using Fog computing and LoRA protocol | Fog-based ECG classification, real-time processing | High latency, lacks personalization |
| Hannan et al. [17], | ECG + SpO2 using Bluetooth | Cloud-integrated portable system to continuously monitor and predict heart pattern abnormalities | Dependent on wearable only |
| Hizem et al., [15] | ECG using Edge AI | Real-time ECG monitoring and edge-based anomaly detection | Limited interaction with patient–doctor platforms |
| Our Proposed System | MAX30102 (HR, SpO2), AD8232 (ECG), ESP8266 (Wi-Fi, local Flask server) | ML-enhanced real-time, edge-enabled portable device, NLP chatbot, role-based dashboards | Integration of low-cost stationary sensors, predictive ML, and chatbot for continuous CVD monitoring, with scalable design with secure edge processing |
| Model | Precision | Recall | F1-Score | Accuracy |
|---|---|---|---|---|
| Logistic regression | 0.81 | 0.75 | 0.78 | 0.7683 |
| Random forest | 0.75 | 0.69 | 0.72 | 0.8293 |
| Support Vector Machine | 0.85 | 0.95 | 0.89 | 0.7439 |
| K-Nearest neighbors | 0.81 | 0.79 | 0.80 | 0.7439 |
| XGBoost | 0.91 | 0.97 | 0.94 | 0.8170 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mariam, H.; Khan, A.; Nadeem, H.; Khan, B. AI/ML-Enabled Internet of Medical Things (IoMT) for Personalized Cardiac Health Monitoring and Predictive Diagnostics. Eng. Proc. 2025, 118, 85. https://doi.org/10.3390/ECSA-12-26520
Mariam H, Khan A, Nadeem H, Khan B. AI/ML-Enabled Internet of Medical Things (IoMT) for Personalized Cardiac Health Monitoring and Predictive Diagnostics. Engineering Proceedings. 2025; 118(1):85. https://doi.org/10.3390/ECSA-12-26520
Chicago/Turabian StyleMariam, Hira, Anushay Khan, Humna Nadeem, and Barirah Khan. 2025. "AI/ML-Enabled Internet of Medical Things (IoMT) for Personalized Cardiac Health Monitoring and Predictive Diagnostics" Engineering Proceedings 118, no. 1: 85. https://doi.org/10.3390/ECSA-12-26520
APA StyleMariam, H., Khan, A., Nadeem, H., & Khan, B. (2025). AI/ML-Enabled Internet of Medical Things (IoMT) for Personalized Cardiac Health Monitoring and Predictive Diagnostics. Engineering Proceedings, 118(1), 85. https://doi.org/10.3390/ECSA-12-26520

