Integrating Model-Driven Engineering with Machine Learning for Intelligent Systems: Literature Review †
Abstract
1. Introduction
2. Model-Driven Engineering
3. Machine Learning
4. Advantages of Integrating ML into MDE
4.1. Approaches to Integration MDE and ML
4.2. Addressing ML Development Challenges with Model-Driven Engineering (MDE)
4.3. Integrating Machine Learning into Model-Driven Engineering: Approaches, Strategies, and Benefits
4.4. Analysis of Scientific Studies in MDE
5. Conclusions and Future Work
6. Discussion and Research Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Naveed, H.; Arora, C.; Khalajzadeh, H.; Grundy, J.; Haggag, O. Model driven engineering for machine learning components: A systematic literature review. IEEE Trans. Softw. Eng. 2024, 46, 912–930. [Google Scholar] [CrossRef]
- Stahl, T.; Völter, M.; Czarnecki, K. Model-Driven Software Development: Technology, Engineering, Management; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Kelly, S.; Tolvanen, J.-P. Domain-Specific Modeling: Enabling Full Code Generation; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2008. [Google Scholar]
- Lee, I.; Shin, Y.J. Machine learning for enterprises: Applications, algorithm selection, and challenges. Bus. Horiz. 2020, 63, 157–170. [Google Scholar] [CrossRef]
- Hartmann, T.; Moawad, A.; Fouquet, F.; Le Traon, Y. The next evolution of MDE: A seamless integration of machine learning into domain modeling. Softw. Syst. Model. 2019, 18, 1285–1304. [Google Scholar] [CrossRef]
- Object Management Group: OMG Unified Modeling Language, Version 2.5. 2015. Available online: http://www.omg.org/spec/UML/2.5/PDF (accessed on 28 September 2025).
- Baumann, N.; Kusmenko, E.; Ritz, J.; Rumpe, B.; Weber, M.B. Dynamic data management for continuous retraining. In Proceedings of the 25th International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings, Montreal, QC, Canada, 23–28 October 2022; pp. 359–366. [Google Scholar] [CrossRef]
- Jahić, B.; Guelfi, N.; Ries, B. SEMKISDSL: A Domain-Specific Language to Support Requirements Engineering of Datasets and Neural Network Recognition. Information 2023, 14, 213. [Google Scholar] [CrossRef]
- Koseler, K.; McGraw, K.; Stephan, M. Realization of a Machine Learning Domain Specific Modeling Language: A Baseball Analytics Case Study. In Proceedings of the 7th International Conference on Model-Driven Engineering and Software Development, Prague, Czech Republic, 20–22 February 2019; pp. 13–24. [Google Scholar] [CrossRef]
- Rädler, S.; Rupp, M.; Rigger, E.; Rinderle-Ma, S. Model-Driven Engineering for Machine Learning Code Generation using SysML. In Proceedings of the Modellierung 2024, Potsdam, Germany, 12–15 March 2024; pp. 197–212. [Google Scholar]
- Brambilla, M.; Cabot, J.; Wimmer, M. Model-Driven Software Engineering in Practice; Morgan & Claypool: San Rafael, CA, USA, 2017. [Google Scholar]
- Ciccozzi, F.; Malavolta, I.; Selic, B. Execution of UML models: A systematic review of research and practice. Softw. Syst. Model. 2019, 18, 2313–2360. [Google Scholar] [CrossRef]
- López, J.A.H.; Cánovas Izquierdo, J.L.; Cuadrado, J.S. ModelSet: A dataset for machine learning in model-driven engineering. Softw. Syst. Model. 2022, 21, 967–986. [Google Scholar] [CrossRef]
- Ries, B.; Guelfi, N.; Jahic, B. An mde method for improving deep learning dataset requirements engineering using alloy and uml. In Proceedings of the 9th International Conference on Model-Driven Engineering and Software Development, Online, 8–10 February 2021; pp. 41–52. [Google Scholar] [CrossRef]
- Cueva-Lovelle, J.M.; García-Díaz, V.; Pelayo García-Bustelo, B.C.; Pascual-Espada, J. Towards a standard-based domain-specific platform to solve machine learningbased problems. Int. J. Interact. Multimed. Artif. Intell. 2015, 3, 351. [Google Scholar] [CrossRef]
- Yohannis, A.; Kolovos, D. Towards model-based bias mitigation in machine learning. In Proceedings of the 25th International Conference on Model Driven Engineering Languages and Systems, Montreal, QC, Canada, 23–28 October 2022; pp. 143–153. [Google Scholar] [CrossRef]
- Kourouklidis, P.; Kolovos, D.; Noppen, J.; Matragkas, N. A model-driven engineering approach for monitoring machine learning models. In Proceedings of the 2021 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C), Fukuoka, Japan, 10–15 October 2021; pp. 160–164. [Google Scholar]
- Al-Azzoni, I. Model Driven Approach for Neural Networks. In Proceedings of the 2020 International Conference on Intelligent Data Science Technologies and Applications (IDSTA), Valencia, Spain, 19–22 October 2020; pp. 87–94. [Google Scholar] [CrossRef]
- Gatto, N.; Kusmenko, E.; Rumpe, B. Modeling deep reinforcement learning based architectures for cyber–physi cal systems. In Proceedings of the 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems Companion (MODE LS-C), Munich, Germany, 15–20 September 2019; pp. 196–202. [Google Scholar] [CrossRef]
- Kusmenko, E.; Nickels, S.; Pavlitskaya, S.; Rumpe, B.; Timmermanns, T. Modeling and training of neural processing systems. In Proceedings of the 2019 ACM/IEEE 22nd International Conference on Model Driven Engineering Languages and Systems (MODELS), Munich, Germany, 15–20 September 2019; pp. 283–293. [Google Scholar] [CrossRef]
- Espinosa, R.; García-Saiz, D.; Zorrilla, M.; Zubcoff, J.J.; Mazón, J.N. S3Mining: A model-driven engineering approach for supporting novice data miners in selecting suitable classifiers. Comput. Stand. Interfaces 2019, 65, 143–158. [Google Scholar] [CrossRef]
- Tabbiche, M.N.; Khalfi, M.F.; Adjoudj, R. Applying Machine Learning and Model-Driven Approach for the Identification and Diagnosis Of COVID-19. Int. J. Distrib. Syst. Technol. (IJDST) 2023, 14, 1–27. [Google Scholar] [CrossRef]
- Safdar, A.; Azam, F.; Anwar, M.W.; Akram, U.; Rasheed, Y. MoDLF: A model-driven deep learning framework for autonomous vehicle perception (AVP). In Proceedings of the 25th International Conference on Model Driven Engineering Languages and Systems, Montreal, QC, Canada, 23–28 October 2022; pp. 187–198. [Google Scholar] [CrossRef]
- Mili, S.; Meslati, D. Modeling bio inspired systems: Towards a new view based on MDE. J. Theor. Appl. Inf. Technol. 2012, 38, 63–73. [Google Scholar]
- Santos, F.; Nunes, I.; Bazzan, A.L. Modeldriven agent-based simulation development: A modeling language and empirical evaluation in the adaptive traffic signal control domain. Simul. Model. Pract. Theory 2018, 83, 162–187. [Google Scholar] [CrossRef]
- Krstić, D.; Petrović, N.; Al-Azzoni, I. Model -driven approach to fading-aware wireless network planning leveraging multiobjective optimization and deep learning. Math. Probl. Eng. 2022, 2022, 4140522. [Google Scholar] [CrossRef]
- Shi, Y.; Kienzle, J.; Guo, J.L. Feature-oriented modularization of deep learning APIs. In Proceedings of the 25th International Conference on Model Driven Engineering Languages and Systems: Companion Proceedings, Montreal, QC, Canada, 23–28 October 2022; pp. 367–374. [Google Scholar]
- Shin, S.-J. An opc ua-compliant interface of data analytics models for interoperable manufacturing intelligence. IEEE Trans. Ind. Inform. 2020, 17, 3588–3598. [Google Scholar] [CrossRef]
- Mehrabi, M.; Zamani, B.; Hamou-Lhadj, A. HealMA: A model-driven framework for automatic generation of IoT-based Android health monitoring applications. Autom. Softw. Eng. 2022, 29, 56. [Google Scholar] [CrossRef] [PubMed]
- Meliá, S.; Nasabeh, S.; Luján-Mora, S.; Cachero, C. MoSIoT: Modeling and Simulating IoT Healthcare-Monitoring Systems for People with Disabilities. Int. J. Environ. Res. Public Health 2021, 18, 6357. [Google Scholar] [CrossRef] [PubMed]
- Kotronis, C.; Nikolaidou, M.; Dimitrakopoulos, G.; Anagnostopoulos, D.; Amira, A.; Bensaali, F. A model-based approach for managing criticality requirements in e-health iot systems. In Proceedings of the 2018 13th Annual Conference on System of Systems Engineering (SoSE), Paris, France, 19–22 June 2018; pp. 60–67. [Google Scholar]
- Morin, B.; Fleurey, F.; Husa, K.E.; Barais, O. A Generative Middleware for Heterogeneous and Distributed Services. In Proceedings of the 2016 19th International ACM SIGSOFT Symposium on Component-Based Software Engineering (CBSE), Venice, Italy, 5–8 April 2016; pp. 107–116. [Google Scholar]
- Mezghani, E.; Exposito, E.; Drira, K. A model-driven methodology for the design of autonomic and cognitive IoT-based systems: Application to healthcare. IEEE Trans. Emerg. Top. Comput. Intell. 2017, 1, 224–234. [Google Scholar] [CrossRef]
- Venčkauskas, A.; Štuikys, V.; Toldinas, J.; Jusas, N. A model-driven framework to develop personalized health monitoring. Symmetry 2016, 8, 65. [Google Scholar] [CrossRef]
- Barriga, J.A.; Clemente, P.J.; Sosa-Sánchez, E.; Prieto, Á.E. SimulateIoT: Domain Specific Language to design, code generation and execute IoT simulation environments. IEEE Access 2021, 9, 92531–92552. [Google Scholar] [CrossRef]
- Barriga, J.A.; Clemente, P.J. Designing and simulating IoT environments by using a model-driven approach. In Proceedings of the 2022 17th Iberian Conference on Information Systems and Technologies (CISTI), Madrid, Spain, 22–25 June 2022; pp. 1–6. [Google Scholar]
- Barriga, J.A.; Clemente, P.J.; Hernández, J.; Pérez-Toledano, M.A. SimulateIoT-FIWARE: Domain Specific Language to Design, Code Generation and Execute IoT Simulation Environments on FIWARE. IEEE Access 2022, 10, 7800–7822. [Google Scholar] [CrossRef]
- Nepomuceno, T.; Carneiro, T.; Maia, P.H.; Adnan, M.; Nepomuceno, T.; Martin, A. AutoIoT: A framework based on user-driven MDE for generating IoT applications. In Proceedings of the 35th Annual ACM Symposium on Applied Computing, Virtual, 30 March–3 April 2020; pp. 719–728. [Google Scholar]
- Ziaei, M.; Zamani, B.; Bohlooli, A. A Model-Driven Approach for IoT-Based Monitoring Systems in Industry 4.0. In Proceedings of the 2020 4th International Conference on Smart City, Internet of Things and Applications (SCIOT), Mashhad, Iran, 16–17 September 2020; pp. 99–105. [Google Scholar]
- Berrouyne, I.; Adda, M.; Mottu, J.M.; Tisi, M. A Model-Driven Methodology to Accelerate Software Engineering in the Internet of Things. IEEE Internet Things J. 2022, 9, 19757–19772. [Google Scholar] [CrossRef]
- Berrouyne, I.; Adda, M.; Mottu, J.M.; Royer, J.C.; Tisi, M. A Model-Driven Approach to Unravel the Interoperability Problem of the Internet of Things. In International Conference on Advanced Information Networking and Applications; Springer: Berlin/Heidelberg, Germany, 2020; pp. 1162–1175. [Google Scholar]
- Kirchhof, J.C.; Rumpe, B.; Schmalzing, D.; Wortmann, A. Montithings: Model-driven development and deployment of reliable iot applications. J. Syst. Softw. 2022, 183, 111087. [Google Scholar] [CrossRef]
- Alulema, D.; Criado, J.; Iribarne, L. An Approach to Integrate IoT Systems with No-Web Interfaces. In International Conference on Information Technology & Systems; Springer: Berlin/Heidelberg, Germany, 2021; pp. 417–427. [Google Scholar]
- Karaduman, B.; Challenger, M.; Eslampanah, R.; Denil, J.; Vangheluwe, H. Analyzing WSN-based IoT Systems using MDE Techniques and Petri-net Models. In STAF Workshops; CEUR Workshop Proceedings: Bergen, Norway, 2020; pp. 35–46. [Google Scholar]
- Asici, T.Z.; Karaduman, B.; Eslampanah, R.; Challenger, M.; Denil, J.; Vangheluwe, H. Applying model driven engineering techniques to the development of contiki-based IoT systems. In Proceedings of the 2019 IEEE/ACM 1st International Workshop on Software Engineering Research & Practices for the Internet of Things (SERP4IoT), Montreal, QC, Canada, 27 May 2019; pp. 25–32. [Google Scholar]
- Durmaz, C.; Challenger, M.; Dagdeviren, O.; Kardas, G. Modelling contiki-based IoT systems. In Proceedings of the 6th Symposium on Languages, Applications and Technologies (SLATE 2017), Vila do Conde, Portugal, 26–27 June 2017. [Google Scholar]
- Anwer, H.; Azam, F.; Anwar, M.W.; Rashid, M. A model-driven approach for load-balanced MQTT protocol in internet of things (IoT). In Complex, Intelligent, and Software Intensive Systems: Proceedings of the 13th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS-2019); Springer: Berlin/Heidelberg, Germany, 2020; pp. 368–378. [Google Scholar]
- Erazo-Garzón, L.; Cedillo, P.; Rossi, G.H.; Moyano, J. A Domain-Specific Language for Modeling IoT System Architectures That Support Monitoring. IEEE Access 2022, 10, 61639–61665. [Google Scholar] [CrossRef]
- Ihirwe, F.; Di Ruscio, D.; Mazzini, S.; Pierantonio, A. Towards a modeling and analysis environment for industrial IoT systems. arXiv 2021, arXiv:2105.14136. [Google Scholar] [CrossRef]
- Karaduman, B.; Mustafiz, S.; Challenger, M. FTG+ PM for the Model-Driven Development of Wireless Sensor Network based IoT Systems. In Proceedings of the 2021 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C), Fukuoka, Japan, 10–15 October 2021; pp. 306–316. [Google Scholar]
- Parri, J.; Sampietro, S.; Vicario, E. FaultFlow: A tool supporting an MDE approach for Timed Failure Logic Analysis. In Proceedings of the 2021 17th European Dependable Computing Conference (EDCC), Munich, Germany, 13–16 September 2021; pp. 25–32. [Google Scholar]
- Karaduman, B.; Challenger, M. Model-driven development for ESP-based IoT systems. In Proceedings of the 2021 IEEE/ACM 3rd International Workshop on Software Engineering Research and Practices for the IoT (SERP4IoT), Madrid, Spain, 3 June 2021; pp. 9–12. [Google Scholar]
- Plazas, J.E.; Bimonte, S.; de Vaulx, C.; Schneider, M.; Nguyen, Q.D.; Chanet, J.P.; Shi, H.; Hou, K.M.; Corrales, J.C. A conceptual data model and its automatic implementation for IoT-based business intelligence applications. IEEE Internet Things J. 2020, 7, 10719–10732. [Google Scholar] [CrossRef]
- Jahed, K.; Dingel, J. Enabling model-driven software development tools for the internet of things. In Proceedings of the 2019 IEEE/ACM 11th International Workshop on Modelling in Software Engineering (MiSE), Montreal, QC, Canada, 26–27 May 2019; pp. 93–99. [Google Scholar]
- Moreira, J.L. SEMIoTICS: Semantic Model-Driven Development for IoT Interoperability of Emergency Services: Improving the Semantic Interoperability of IoT Early Warning Systems. Ph.D. Thesis, University of Twente, Enschede, The Netherlands, 2019. [Google Scholar]
- Sosa-Reyna, C.M.; Tello-Leal, E.; Lara-Alabazares, D.; Mata-Torres, J.A.; Lopez-Garza, E. A Methodology Based on Model-Driven Engineering for IoT Application Development. In Proceedings of the 12th International Conference on Digital Society and eGovernments (ICDS 2018), Rome, Italy, 25–29 March 2018. [Google Scholar]
- Costa, B.; Pires, P.F.; Delicato, F.C.; Li, W.; Zomaya, A.Y. Design and analysis of IoT applications: A model-driven approach. In Proceedings of the 2016 IEEE 14th Intl Conf on Dependable, Autonomic and Secure Computing, 14th Intl Conf on Pervasive Intelligence and Computing, 2nd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress (DASC/PiCom/DataCom/CyberSciTech), Auckland, New Zealand, 8–12 August 2016; pp. 392–399. [Google Scholar]

| Criteria | Classification of Papers by ML with MDE | Classification of Papers by Model Transformation Language | Classification of Papers by Application Domain (Intelligent Systems) | Classification of Papers by Modeling Language for Developing IoT Applications |
|---|---|---|---|---|
| Papers | Naveed et al. (2024) [1] Kelly et al. (2024) [3] Lee et al. (2024) [4] Brambilla et al.(2024) [11] Ciccozzi et al. (2024) [12] López et al. (2024) [13] | XTend Jahić et al. (2023) [8] Ries et al. (2021) [14] García-Díaz et al. (2015) [15] Epsilon Generation Language (EGL) Koseler et al. (2019) [9] Yohannis et al. (2022) [16] Kourouklidis et al. (2021) [17] Al-Azzoni et al. (2020) [18] MontiAnna/MontiArc generators Baumann et al. (2022) [7] Gatto et al. (2019) [19] Kusmenko et al. (2019) [20] Acceleo Espinosa et al. (2029) [21] Tabbiche et al. (2023) [22] Safdar et al. (2022) [23] Atlas Transformation language (ATL) Mili et al. (2012) [24] Santos et al. (2018) [25] Krstić et al. (2022) [26] TouchCore Shi et al. (2022) [27] Apache Velocity Hartmann et al. (2017) [5] OPC UA code generator Shin et al. (2020) [28] | Healthcare Brambilla et al. (2017) [5] Mehrabi et al. (2022) [29] Meliá et al. (2021) [30] Kotronis et al. (2018) [31] Morin et al. (2016) [32] Mezghani et al. (2017) [33] Veňckauskas et al. (2016) [34] Agricultural City Energy Manufacturing Barriga et al. (2022) [35,36,37] Nepomuceno et al. (2020) [38] Ziaei et al. (2020) [39] Building Berrouyne et al. (2022) [40] Barriga et al. (2022) [36,37] Berrouyne et al. (2020) [41] Kirchhof et al. (2022) [42] Alulema et al. (2021) [43] Environment Karaduman et al. (2020) [44] Asici et al. (2019) [45] Durmaz et al. (2017) [46] Transport Anwer et al. (2020) [47] Berrouyne et al. (2022) [40] | DSLs Veňckauskas et al. (2016) [34] Erazo-Garzón et al. (2022) [48] Ihirwe et al. (2021) [49] Karaduman et al. (2021) [37,50] UML Parri et al. (2021) [51] Karaduman et al. (2021) [50,52] Plazas et al. (2020) [53] Jahed et al. (2019) [54] Moreira et al. (2019) [55] BPMN Moreira et al. (2019) [55] Sosa-Reyna et al. (2018) [56] SysML Costa et al. (2016) [57] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elgueddari, K.; Aarab, Z.; Lyazidi, A.; Anwar, A. Integrating Model-Driven Engineering with Machine Learning for Intelligent Systems: Literature Review. Eng. Proc. 2025, 112, 67. https://doi.org/10.3390/engproc2025112067
Elgueddari K, Aarab Z, Lyazidi A, Anwar A. Integrating Model-Driven Engineering with Machine Learning for Intelligent Systems: Literature Review. Engineering Proceedings. 2025; 112(1):67. https://doi.org/10.3390/engproc2025112067
Chicago/Turabian StyleElgueddari, Kaouthar, Zineb Aarab, Achraf Lyazidi, and Adil Anwar. 2025. "Integrating Model-Driven Engineering with Machine Learning for Intelligent Systems: Literature Review" Engineering Proceedings 112, no. 1: 67. https://doi.org/10.3390/engproc2025112067
APA StyleElgueddari, K., Aarab, Z., Lyazidi, A., & Anwar, A. (2025). Integrating Model-Driven Engineering with Machine Learning for Intelligent Systems: Literature Review. Engineering Proceedings, 112(1), 67. https://doi.org/10.3390/engproc2025112067

