Preparation of Cu4SnS4/CuCo2S4 Nanoparticles Using Combustion Reaction Accelerated by Organic Driving Agents under Microwave Irradiation †
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Synthesis Method
2.3. Characterizations
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
References
- Perin, G.; Jacob, R.G.; Dutra, L.G.; de Azambuja, F.; dos Santos, G.F.; Lenardao, E.J. Addition of chalcogenolate anions to terminal alkynes using microwave and solvent-free conditions: Easy access to bis-organochalcogen alkenes. Tetrahedron Lett. 2006, 47, 935–938. [Google Scholar] [CrossRef]
- Kanatzidis, M.G. Discovery-synthesis, design, and prediction of chalcogenide phases. Inorg. Chem. 2017, 56, 3158–3173. [Google Scholar] [CrossRef] [PubMed]
- Lin, J.; Lim, J.M.; Youn, D.H.; Liu, Y.; Cai, Y.; Kawashima, K.; Kim, J.H.; Peng, D.L.; Guo, H.; Henkelman, G.; et al. Cu4SnS4-Rich Nanomaterials for Thin-Film Lithium Batteries with Enhanced Conversion Reaction. ACS Nano 2019, 13, 10671–10681. [Google Scholar] [CrossRef]
- Xu, J.-M.; Wang, X.-C.; Cheng, J.-P. Supercapacitive performances of ternary CuCo2S4 sulfides. ACS Omega 2020, 5, 1305–1311. [Google Scholar] [CrossRef]
- Lokhande, A.C.; Gurav, K.V.; Jo, E.; He, M.; Lokhande, C.D.; Kim, J.H. Towards cost effective metal precursor sources for future photovoltaic material synthesis: CTS nanoparticles. Opt. Mater. 2016, 54, 207–216. [Google Scholar] [CrossRef]
- Zhang, X.; Tang, Y.; Wang, Y.; Shen, L.; Gupta, A.; Bao, N. Simple one-pot synthesis of Cu 4 SnS 4 nanoplates and temperature-induced phase transformation mechanism. CrystEngComm 2020, 22, 1220–1229. [Google Scholar] [CrossRef]
- Balalaie, S.; Arabanian, A. One-pot synthesis of tetrasubstituted imidazoles catalyzed by zeolite HY and silica gel under microwave irradiation. Green Chem. 2000, 2, 274–276. [Google Scholar] [CrossRef]
- Kent, R.D.; Vikesland, P.J. Dissolution and persistence of copper-based nanomaterials in undersaturated solutions with respect to cupric solid phases. Environ. Sci. Technol. 2016, 50, 6772–6781. [Google Scholar] [CrossRef] [PubMed]
- Oeba, D.A. Electrical and optical characterization of Cu4SnS4 and CdS: B Thin films for photovoltaic applications; Kenyatta University: Nairobi, Kenya, 2018. [Google Scholar]
- Vani, V.; Reddy, M.V.; Reddy, K. Thickness-dependent physical properties of coevaporated Cu4SnS4 Films. ISRN Condens. Matter Phys. 2013, 2013. [Google Scholar] [CrossRef]
Publisher†s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aghaei, M.; Imani, M.; Tadjarodi, A. Preparation of Cu4SnS4/CuCo2S4 Nanoparticles Using Combustion Reaction Accelerated by Organic Driving Agents under Microwave Irradiation. Chem. Proc. 2021, 3, 51. https://doi.org/10.3390/ecsoc-24-08354
Aghaei M, Imani M, Tadjarodi A. Preparation of Cu4SnS4/CuCo2S4 Nanoparticles Using Combustion Reaction Accelerated by Organic Driving Agents under Microwave Irradiation. Chemistry Proceedings. 2021; 3(1):51. https://doi.org/10.3390/ecsoc-24-08354
Chicago/Turabian StyleAghaei, Maede, Mina Imani, and Azadeh Tadjarodi. 2021. "Preparation of Cu4SnS4/CuCo2S4 Nanoparticles Using Combustion Reaction Accelerated by Organic Driving Agents under Microwave Irradiation" Chemistry Proceedings 3, no. 1: 51. https://doi.org/10.3390/ecsoc-24-08354
APA StyleAghaei, M., Imani, M., & Tadjarodi, A. (2021). Preparation of Cu4SnS4/CuCo2S4 Nanoparticles Using Combustion Reaction Accelerated by Organic Driving Agents under Microwave Irradiation. Chemistry Proceedings, 3(1), 51. https://doi.org/10.3390/ecsoc-24-08354