Application of NaCl Plant Extracts to Decrease the Costs of Microfiltration for Winery Wastewater Treatment †
Abstract
:1. Introduction
2. Material and Methods
2.1. Reagents and Winery Wastewater Sampling
2.2. Analytical Determinations
2.3. Plant Extract Preparation
2.4. Coagulation–Flocculation–Decantation/Microfiltration Experimental Setup
2.5. Statistical Analysis
3. Results and Discussion
3.1. Characterization of Plant Powders
3.2. Coagulation–Flocculation–Decantation/Microfiltration Batch Treatment Experiments
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- OIV. State of the World Vitivinicultural Sector in 2019; OIV, International Organisation of Vine and Wine: Paris, France, 2019; pp. 1–15. [Google Scholar]
- Costa, J.M.; Oliveira, M.; Egipto, R.J.; Cid, J.F.; Fragoso, R.A.; Lopes, C.M.; Duarte, E.N. Water and Wastewater Management for Sustainable Viticulture and Oenology in South Portugal—A Review. Ciência Técnica Vitivinícola 2020, 35, 1–15. [Google Scholar] [CrossRef]
- Mosteo, R.; Sarasa, J.; Ormad, M.P.; Ovelleiro, J.L. Sequential Solar Photo-Fenton-Biological System for the Treatment of Winery Wastewaters. J. Agric. Food Chem. 2008, 56, 7333–7338. [Google Scholar] [CrossRef] [PubMed]
- Ward, R.J.S.; Mccrohan, C.R.; White, K.N. Influence of Aqueous Aluminium on the Immune System of the Freshwater Crayfish Pacifasticus Leniusculus. Aquat. Toxicol. 2006, 77, 222–228. [Google Scholar] [CrossRef] [PubMed]
- Heredia, J.B.; Martín, J.S. Improvement of Water Treatment Pilot Plant with Moringa Oleifera Extract as Flocculant Agent. Environ. Technol. 2009, 30, 525–534. [Google Scholar] [CrossRef] [PubMed]
- Rezakazemi, M.; Khajeh, A.; Mesbah, M. Membrane Filtration of Wastewater from Gas and Oil Production. Environ. Chem. Lett. 2018, 16, 367–388. [Google Scholar] [CrossRef]
- Zavoi, S.; Fetea, F.; Ranga, F.; Pop, R.M.; Baciu, A.; Socaciu, C. Comparative Fingerprint and Extraction Yield of Medicinal Herb Phenolics with Hepatoprotective Potential, as Determined by UV-Vis and FT-MIR Spectroscopy. Not. Bot. Horti Agrobot. Cluj-Napoca 2011, 39, 82–89. [Google Scholar] [CrossRef] [Green Version]
- Dobrucka, R.; Dlugaszewska, J.; Kaczmarek, M. Cytotoxic and Antimicrobial Effects of Biosynthesized ZnO Nanoparticles Using of Chelidonium Majus Extract. Biomed. Microdevices 2018, 20, 5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ciorîță, A.; Suciu, M.; Macavei, S.; Kacso, I.; Lung, I.; Soran, M.L.; Pârvu, M. Green Synthesis of Ag-MnO2 Nanoparticles Using Chelidonium Majus and Vinca Minor Extracts and Their In Vitro Cytotoxicity. Molecules 2020, 25, 819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lisperguer, J.; Saravia, Y.; Vergara, E. Structure and Thermal Behavior of Tannins from Acacia Dealbata Bark and Their Reactivity toward Formaldehyde. J. Chil. Chem. Soc. 2016, 61, 3188–3190. [Google Scholar] [CrossRef] [Green Version]
- Carlo, J.; Jiménez, J.; Sofía, A.; Abarca, V.; Bonilla, P.J.; Alpízar, H.B.; Mario, R.; Fallas, S. Extracción y Evaluación de Taninos Condensados a Partir de La Corteza de Once Especies Maderables de Costa Rica. Rev. Tecnol. En Marcha 2012, 25, 15–22. [Google Scholar] [CrossRef]
- Lee, W.; Lan, W. Properties of Resorcinol–Tannin–Formaldehyde Copolymer Resins Prepared from the Bark Extracts of Taiwan Acacia and China Fir. Bioresour. Technol. 2006, 97, 257–264. [Google Scholar] [CrossRef] [PubMed]
Parameters | Portuguese Law Decree n° 236/98 | WW |
---|---|---|
pH | 6.0–9.0 | 4.0 ± 0.100 |
Electrical conductivity (μS/cm) | 62.5 ± 0.361 | |
Turbidity (NTU) | 296 ± 2.000 | |
Total suspended solids–TSS (mg/L) | 60 | 750 ± 1.528 |
Chemical oxygen demand–COD (mg O2/L) | 150 | 2145 ± 1.000 |
Biochemical oxygen demand–BOD5 (mg O2/L) | 40 | 550 ± 1.155 |
Total organic carbon–TOC (mg C/L) | 400 ± 4.040 | |
Total nitrogen–TN (mg N/L) | 15 | 9.07 ± 0.010 |
Total polyphenols (mg gallic acid/L) | 0.5 | 22.6 ± 0.100 |
Biodegradability–BOD5/COD | 0.26 ± 0.015 | |
Aluminum (mg/L) | 10.0 | 0.00 ± 0.000 |
Plant Species | Sub-Species | Part Collected | Herbarium Number |
---|---|---|---|
Acacia dealbata Link. | Pollen | ||
Chelidonium majus L. | Seed | ||
Daucus carota L. | carota | Seed | HVR22100 |
Tanacetum vulgare L. | Seed | HVR22099 | |
Vitis vinífera L. | Rachis |
Coagulant | pH | Dosage | Fast Mix | Slow Mix | Flocculant Type | Flocculant Dosage | CFD → Microfiltration |
---|---|---|---|---|---|---|---|
g/L | rpm/min | rpm/min | mg/L | ||||
Acacia dealbata Link. (5%) | 3.0 | 0.5 | 150/3 | 20/20 | Activated sodium bentonite | 50 | Glass microfiber filters |
Chelidonium majus L. (5%) | 3.0 | 0.5 | 150/2 | 50/30 | Activated sodium bentonite | 5 | |
Daucus carota L. (5%) | 3.0 | 0.5 | 150/3 | 20/20 | Activated charcoal | 5 | |
Tanacetum vulgare L. (5%) | 3.0 | 0.1 | 150/3 | 20/20 | Potassium caseinate | 100 | |
Vitis vinifera L. (5%) | 3.0 | 0.1 | 150/3 | 20/20 | Potassium caseinate | 5 | |
Aluminum sulfate (10%) | 5.0 | 0.5 | 150/2 | 50/30 | Activated charcoal | 50 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jorge, N.; Teixeira, A.R.; Marchão, L.; Goufo, P.; Lucas, M.S.; Peres, J.A. Application of NaCl Plant Extracts to Decrease the Costs of Microfiltration for Winery Wastewater Treatment. Chem. Proc. 2022, 10, 35. https://doi.org/10.3390/IOCAG2022-12331
Jorge N, Teixeira AR, Marchão L, Goufo P, Lucas MS, Peres JA. Application of NaCl Plant Extracts to Decrease the Costs of Microfiltration for Winery Wastewater Treatment. Chemistry Proceedings. 2022; 10(1):35. https://doi.org/10.3390/IOCAG2022-12331
Chicago/Turabian StyleJorge, Nuno, Ana R. Teixeira, Leonilde Marchão, Piebiep Goufo, Marco S. Lucas, and José A. Peres. 2022. "Application of NaCl Plant Extracts to Decrease the Costs of Microfiltration for Winery Wastewater Treatment" Chemistry Proceedings 10, no. 1: 35. https://doi.org/10.3390/IOCAG2022-12331
APA StyleJorge, N., Teixeira, A. R., Marchão, L., Goufo, P., Lucas, M. S., & Peres, J. A. (2022). Application of NaCl Plant Extracts to Decrease the Costs of Microfiltration for Winery Wastewater Treatment. Chemistry Proceedings, 10(1), 35. https://doi.org/10.3390/IOCAG2022-12331