Combining Near-Infrared (NIR) Analysis and Modelling as a Fast and Reliable Method to Determine the Authenticity of Agarwood (Aquilaria spp.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. NIR and SIMCA Instrumentation
2.2. Method Development
2.3. Sample Preparation for NIR Analysis
3. Results
3.1. Extent of Substitution
3.2. Near-Infrared Spectra
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- López-Sampson, A.; Page, T. History of Use and Trade of Agarwood. Econ. Bot. 2018, 72, 107–129. [Google Scholar] [CrossRef]
- Ash, A. First-Grade Agarwood Can Cost as Much as $100,000 per Kilogram. Why Is It So Expensive? Available online: https://www.businessinsider.com/why-agarwood-is-so-expensive-oud-vietnam-2020-8 (accessed on 21 December 2022).
- Barden, A.; Anak, N.A.; Mulliken, T.; Song, M. Heart of the Matter: Agarwood Use and Trade and CITES Implementation for Aquilaria malaccensis; Traffic International: Cambridge, UK, 2000. [Google Scholar]
- Soehartono, T.; Newton, A.C. Conservation and sustainable use of tropical trees in the genus Aquilaria II. The impact of gaharu harvesting in Indonesia. Biol. Conserv. 2001, 97, 29–41. [Google Scholar] [CrossRef]
- CITES. Appendices I, II and III. In Proceedings of the Convention on International Trade in Endangered Species of Wild Fauna and Flora, Panama City, Panama, 14–25 November 2022. [Google Scholar]
- Tan, C.S.; Isa, N.M.; Ismail, I.; Zainal, Z. Agarwood Induction: Current Developments and Future Perspectives. Front. Plant Sci. 2019, 10, 122. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Azren, P.D.; Lee, S.Y.; Emang, D.; Mohamed, R. History and perspectives of induction technology for agarwood production from cultivated Aquilaria in Asia: A review. J. For. Res. 2019, 30, 1–11. [Google Scholar] [CrossRef]
- Yan, T.; Yang, S.; Chen, Y.; Wang, Q.; Li, G. Chemical Profiles of Cultivated Agarwood Induced by Different Techniques. Molecules 2019, 24, 1990. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.-y.; Wei, J.-h.; Gao, Z.-h.; Zhang, Z.; Lyu, J.-c. A Review of Quality Assessment and Grading for Agarwood. Chin. Herb. Med. 2017, 9, 22–30. [Google Scholar] [CrossRef]
- Chong Saw, P.; Khairuddin Abdul, R.; Mat Rasol, A. Histology Study of Aquilaria malaccensis and the Agarwood Resin Formation under Light Microscope. J. Agrobiotechnol. 2014, 5, 77–83. [Google Scholar]
- Gasson, P. How precise can wood identification be? Wood anatomy’s role in support of the legal timber trade, especially cites. IAWA J. 2011, 32, 137–154. [Google Scholar] [CrossRef]
- Takamatsu, S.; Ito, M. Agarotetrol in agarwood: Its use in evaluation of agarwood quality. J. Nat. Med. 2020, 74, 98–105. [Google Scholar] [CrossRef]
- Lee, S.Y.; Ng, W.L.; Mahat, M.N.; Nazre, M.; Mohamed, R. DNA Barcoding of the Endangered Aquilaria (Thymelaeaceae) and Its Application in Species Authentication of Agarwood Products Traded in the Market. PLoS ONE 2016, 11, e0154631. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.L.; Zakaria, N.-F.; Tnah, L.H.; Ng, C.H.; Ng, K.K.S.; Lee, C.T.; Lau, K.H.; Chua, L.S.L. DNA databases of a CITES listed species Aquilaria malaccensis (Thymelaeaceae) as the tracking tools for forensic identification and chain of custody certification. Forensic Sci. Int. Genet. 2022, 57, 102658. [Google Scholar] [CrossRef] [PubMed]
- Xia, B.; Li, J.; Yang, D.; Mei, W.; Ding, L.; Zhou, Y. A Rapid and Highly Specific Method to Evaluate the Presence of 2-(2-Phenylethyl) Chromones in Agarwood by Supercritical Fluid Chromatography-Mass Spectrometry. Eur. J. Mass Spectrom. 2014, 20, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Li, L.; Chen, Y.; Yang, Y.; Xu, H.; Wang, Z.; Yang, L. Rapid authentication of agarwood by using liquid extraction surface analysis mass spectrometry (LESA-MS). Phytochem. Anal. 2020, 31, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.-a.; Zhang, H.; Li, Z.; Yu, W.; Zhao, Z.; Wang, K.; Zhang, M.; Wang, J. Determination and comparison of agarwood from different origins by comprehensive two-dimensional gas chromatography–quadrupole time-of-flight mass spectrometry. J. Sep. Sci. 2020, 43, 1284–1296. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Dong, W.; Chen, H.; Kong, F.; Wang, J.; Mei, W.; Dai, H. Qualitative and Quantitative Analysis of Flidersiachromones in Three Agarwood Samples by HPLC-MS/MS. Chem. Res. Chin. Univ. 2018, 34, 389–396. [Google Scholar] [CrossRef]
- Mei, W.-L.; Yang, D.-L.; Wang, H.; Yang, J.-L.; Zeng, Y.-B.; Guo, Z.-K.; Dong, W.-H.; Li, W.; Dai, H.-F. Characterization and Determination of 2-(2-Phenylethyl)chromones in Agarwood by GC-MS. Molecules 2013, 18, 12324–12345. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Han, X.; Huang, J.; Sun, Y.; Liu, Y.; Chen, H.; Jin, Y.; Yang, Y.; Gao, Z.; Xu, Y.; et al. Simultaneous determination of multiple active 2-(2-phenylethyl)chromone analogues in agarwood by HPLC, QAMS, and UPLC-MS. Phytochem. Anal. 2021, 32, 412–422. [Google Scholar] [CrossRef]
- Naef, R. The volatile and semi-volatile constituents of agarwood, the infected heartwood of Aquilaria species: A review. Flavour Fragr. J. 2011, 26, 73–87. [Google Scholar] [CrossRef]
- Lancaster, C.; Espinoza, E. Evaluating agarwood products for 2-(2-phenylethyl) chromones using direct analysis in real time time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2012, 26, 2649–2656. [Google Scholar] [CrossRef]
- Tsuchikawa, S.; Kobori, H. A review of recent application of near infrared spectroscopy to wood science and technology. J. Wood Sci. 2015, 61, 213–220. [Google Scholar] [CrossRef] [Green Version]
- Sandak, J.; Sandak, A.; Meder, R. Assessing Trees, Wood and Derived Products with near Infrared Spectroscopy: Hints and Tips. J. Near Infrared Spectrosc. 2016, 24, 485–505. [Google Scholar] [CrossRef] [Green Version]
- Sudarwoko Adi, D.; Hwang, S.-W.; Pramasari, D.; Amin, Y.; Ayu Widyaningrum, B.; Darmawan, T.; Septiana, E.; Dwianto, W.; Sugiyama, J. Spectral observation of agarwood by infrared spectroscopy: The differences of infected and normal Aquilaria microcarpa. Biodiversitas J. Biol. Divers. 2020, 21. [Google Scholar] [CrossRef]
- Qu, L.; Chen, J.-b.; Zhang, G.-J.; Sun, S.-Q.; Zheng, J. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2017, 174, 177–182. [Google Scholar] [CrossRef]
- Karlinasari, L.; Putri, N.; Turjaman, M.; Wahyudi, I.; Nandika, D. Moisture content effect on sound wave velocity and acoustic tomograms in agarwood trees (Aquilaria malaccensis Lamk.). Turk. J. Agric. For. 2016, 40, 696–704. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Class | Three Categories | Two Categories | ||
---|---|---|---|---|
Recognition | Rejection | Recognition | Rejection | |
Authentic | 95% | 91% | 95% | 91% |
Adulterated | 100% | 51% | - | - |
Substituted | 93% | 92% | 83% | 93% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grosskopf, E.K.; Simmonds, M.S.J.; Wallis, C.J. Combining Near-Infrared (NIR) Analysis and Modelling as a Fast and Reliable Method to Determine the Authenticity of Agarwood (Aquilaria spp.). Analytica 2023, 4, 231-238. https://doi.org/10.3390/analytica4020018
Grosskopf EK, Simmonds MSJ, Wallis CJ. Combining Near-Infrared (NIR) Analysis and Modelling as a Fast and Reliable Method to Determine the Authenticity of Agarwood (Aquilaria spp.). Analytica. 2023; 4(2):231-238. https://doi.org/10.3390/analytica4020018
Chicago/Turabian StyleGrosskopf, Esther K., Monique S. J. Simmonds, and Christopher J. Wallis. 2023. "Combining Near-Infrared (NIR) Analysis and Modelling as a Fast and Reliable Method to Determine the Authenticity of Agarwood (Aquilaria spp.)" Analytica 4, no. 2: 231-238. https://doi.org/10.3390/analytica4020018
APA StyleGrosskopf, E. K., Simmonds, M. S. J., & Wallis, C. J. (2023). Combining Near-Infrared (NIR) Analysis and Modelling as a Fast and Reliable Method to Determine the Authenticity of Agarwood (Aquilaria spp.). Analytica, 4(2), 231-238. https://doi.org/10.3390/analytica4020018