Combining Near-Infrared (NIR) Analysis and Modelling as a Fast and Reliable Method to Determine the Authenticity of Agarwood (Aquilaria spp.)
Abstract
1. Introduction
2. Materials and Methods
2.1. NIR and SIMCA Instrumentation
2.2. Method Development
2.3. Sample Preparation for NIR Analysis
3. Results
3.1. Extent of Substitution
3.2. Near-Infrared Spectra
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- López-Sampson, A.; Page, T. History of Use and Trade of Agarwood. Econ. Bot. 2018, 72, 107–129. [Google Scholar] [CrossRef]
- Ash, A. First-Grade Agarwood Can Cost as Much as $100,000 per Kilogram. Why Is It So Expensive? Available online: https://www.businessinsider.com/why-agarwood-is-so-expensive-oud-vietnam-2020-8 (accessed on 21 December 2022).
- Barden, A.; Anak, N.A.; Mulliken, T.; Song, M. Heart of the Matter: Agarwood Use and Trade and CITES Implementation for Aquilaria malaccensis; Traffic International: Cambridge, UK, 2000. [Google Scholar]
- Soehartono, T.; Newton, A.C. Conservation and sustainable use of tropical trees in the genus Aquilaria II. The impact of gaharu harvesting in Indonesia. Biol. Conserv. 2001, 97, 29–41. [Google Scholar] [CrossRef]
- CITES. Appendices I, II and III. In Proceedings of the Convention on International Trade in Endangered Species of Wild Fauna and Flora, Panama City, Panama, 14–25 November 2022. [Google Scholar]
- Tan, C.S.; Isa, N.M.; Ismail, I.; Zainal, Z. Agarwood Induction: Current Developments and Future Perspectives. Front. Plant Sci. 2019, 10, 122. [Google Scholar] [CrossRef] [PubMed]
- Azren, P.D.; Lee, S.Y.; Emang, D.; Mohamed, R. History and perspectives of induction technology for agarwood production from cultivated Aquilaria in Asia: A review. J. For. Res. 2019, 30, 1–11. [Google Scholar] [CrossRef]
- Yan, T.; Yang, S.; Chen, Y.; Wang, Q.; Li, G. Chemical Profiles of Cultivated Agarwood Induced by Different Techniques. Molecules 2019, 24, 1990. [Google Scholar] [CrossRef]
- Liu, Y.-y.; Wei, J.-h.; Gao, Z.-h.; Zhang, Z.; Lyu, J.-c. A Review of Quality Assessment and Grading for Agarwood. Chin. Herb. Med. 2017, 9, 22–30. [Google Scholar] [CrossRef]
- Chong Saw, P.; Khairuddin Abdul, R.; Mat Rasol, A. Histology Study of Aquilaria malaccensis and the Agarwood Resin Formation under Light Microscope. J. Agrobiotechnol. 2014, 5, 77–83. [Google Scholar]
- Gasson, P. How precise can wood identification be? Wood anatomy’s role in support of the legal timber trade, especially cites. IAWA J. 2011, 32, 137–154. [Google Scholar] [CrossRef]
- Takamatsu, S.; Ito, M. Agarotetrol in agarwood: Its use in evaluation of agarwood quality. J. Nat. Med. 2020, 74, 98–105. [Google Scholar] [CrossRef]
- Lee, S.Y.; Ng, W.L.; Mahat, M.N.; Nazre, M.; Mohamed, R. DNA Barcoding of the Endangered Aquilaria (Thymelaeaceae) and Its Application in Species Authentication of Agarwood Products Traded in the Market. PLoS ONE 2016, 11, e0154631. [Google Scholar] [CrossRef]
- Lee, S.L.; Zakaria, N.-F.; Tnah, L.H.; Ng, C.H.; Ng, K.K.S.; Lee, C.T.; Lau, K.H.; Chua, L.S.L. DNA databases of a CITES listed species Aquilaria malaccensis (Thymelaeaceae) as the tracking tools for forensic identification and chain of custody certification. Forensic Sci. Int. Genet. 2022, 57, 102658. [Google Scholar] [CrossRef] [PubMed]
- Xia, B.; Li, J.; Yang, D.; Mei, W.; Ding, L.; Zhou, Y. A Rapid and Highly Specific Method to Evaluate the Presence of 2-(2-Phenylethyl) Chromones in Agarwood by Supercritical Fluid Chromatography-Mass Spectrometry. Eur. J. Mass Spectrom. 2014, 20, 395–402. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Li, L.; Chen, Y.; Yang, Y.; Xu, H.; Wang, Z.; Yang, L. Rapid authentication of agarwood by using liquid extraction surface analysis mass spectrometry (LESA-MS). Phytochem. Anal. 2020, 31, 801–808. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.-a.; Zhang, H.; Li, Z.; Yu, W.; Zhao, Z.; Wang, K.; Zhang, M.; Wang, J. Determination and comparison of agarwood from different origins by comprehensive two-dimensional gas chromatography–quadrupole time-of-flight mass spectrometry. J. Sep. Sci. 2020, 43, 1284–1296. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Dong, W.; Chen, H.; Kong, F.; Wang, J.; Mei, W.; Dai, H. Qualitative and Quantitative Analysis of Flidersiachromones in Three Agarwood Samples by HPLC-MS/MS. Chem. Res. Chin. Univ. 2018, 34, 389–396. [Google Scholar] [CrossRef]
- Mei, W.-L.; Yang, D.-L.; Wang, H.; Yang, J.-L.; Zeng, Y.-B.; Guo, Z.-K.; Dong, W.-H.; Li, W.; Dai, H.-F. Characterization and Determination of 2-(2-Phenylethyl)chromones in Agarwood by GC-MS. Molecules 2013, 18, 12324–12345. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; Han, X.; Huang, J.; Sun, Y.; Liu, Y.; Chen, H.; Jin, Y.; Yang, Y.; Gao, Z.; Xu, Y.; et al. Simultaneous determination of multiple active 2-(2-phenylethyl)chromone analogues in agarwood by HPLC, QAMS, and UPLC-MS. Phytochem. Anal. 2021, 32, 412–422. [Google Scholar] [CrossRef]
- Naef, R. The volatile and semi-volatile constituents of agarwood, the infected heartwood of Aquilaria species: A review. Flavour Fragr. J. 2011, 26, 73–87. [Google Scholar] [CrossRef]
- Lancaster, C.; Espinoza, E. Evaluating agarwood products for 2-(2-phenylethyl) chromones using direct analysis in real time time-of-flight mass spectrometry. Rapid Commun. Mass Spectrom. 2012, 26, 2649–2656. [Google Scholar] [CrossRef]
- Tsuchikawa, S.; Kobori, H. A review of recent application of near infrared spectroscopy to wood science and technology. J. Wood Sci. 2015, 61, 213–220. [Google Scholar] [CrossRef]
- Sandak, J.; Sandak, A.; Meder, R. Assessing Trees, Wood and Derived Products with near Infrared Spectroscopy: Hints and Tips. J. Near Infrared Spectrosc. 2016, 24, 485–505. [Google Scholar] [CrossRef]
- Sudarwoko Adi, D.; Hwang, S.-W.; Pramasari, D.; Amin, Y.; Ayu Widyaningrum, B.; Darmawan, T.; Septiana, E.; Dwianto, W.; Sugiyama, J. Spectral observation of agarwood by infrared spectroscopy: The differences of infected and normal Aquilaria microcarpa. Biodiversitas J. Biol. Divers. 2020, 21. [Google Scholar] [CrossRef]
- Qu, L.; Chen, J.-b.; Zhang, G.-J.; Sun, S.-Q.; Zheng, J. Chemical profiling and adulteration screening of Aquilariae Lignum Resinatum by Fourier transform infrared (FT-IR) spectroscopy and two-dimensional correlation infrared (2D-IR) spectroscopy. Spectrochim. Acta Part A: Mol. Biomol. Spectrosc. 2017, 174, 177–182. [Google Scholar] [CrossRef]
- Karlinasari, L.; Putri, N.; Turjaman, M.; Wahyudi, I.; Nandika, D. Moisture content effect on sound wave velocity and acoustic tomograms in agarwood trees (Aquilaria malaccensis Lamk.). Turk. J. Agric. For. 2016, 40, 696–704. [Google Scholar] [CrossRef]
- Jolliffe, I.T.; Cadima, J. Principal component analysis: A review and recent developments. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [PubMed]
Class | Three Categories | Two Categories | ||
---|---|---|---|---|
Recognition | Rejection | Recognition | Rejection | |
Authentic | 95% | 91% | 95% | 91% |
Adulterated | 100% | 51% | - | - |
Substituted | 93% | 92% | 83% | 93% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grosskopf, E.K.; Simmonds, M.S.J.; Wallis, C.J. Combining Near-Infrared (NIR) Analysis and Modelling as a Fast and Reliable Method to Determine the Authenticity of Agarwood (Aquilaria spp.). Analytica 2023, 4, 231-238. https://doi.org/10.3390/analytica4020018
Grosskopf EK, Simmonds MSJ, Wallis CJ. Combining Near-Infrared (NIR) Analysis and Modelling as a Fast and Reliable Method to Determine the Authenticity of Agarwood (Aquilaria spp.). Analytica. 2023; 4(2):231-238. https://doi.org/10.3390/analytica4020018
Chicago/Turabian StyleGrosskopf, Esther K., Monique S. J. Simmonds, and Christopher J. Wallis. 2023. "Combining Near-Infrared (NIR) Analysis and Modelling as a Fast and Reliable Method to Determine the Authenticity of Agarwood (Aquilaria spp.)" Analytica 4, no. 2: 231-238. https://doi.org/10.3390/analytica4020018
APA StyleGrosskopf, E. K., Simmonds, M. S. J., & Wallis, C. J. (2023). Combining Near-Infrared (NIR) Analysis and Modelling as a Fast and Reliable Method to Determine the Authenticity of Agarwood (Aquilaria spp.). Analytica, 4(2), 231-238. https://doi.org/10.3390/analytica4020018