Physical Activity, Sedentary Behaviour and Cardiovascular Risk Factors in Overweight Low-Income Schoolchildren: A Complex System Perspective
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Description
2.2. Sample
- School:
- -
- Elementary public schools from central and suburban and deprived areas from Petrolina-PE, Brazil;
- -
- Indoor gym and with a minimum of one hundred students;
- -
- Overweight children (85th percentile for sex and age, according to the World Health Organization [17]).
- Children:
- -
- Overweight or obese [17];
- -
- Properly enrolled in participating schools;
- -
- Parental consent to participate.
2.3. Data Collection
- Anthropometric measurements
- Hemodynamic measurements
- Lipid and glucose profile
- Cardiorespiratory Fitness
- Left Ventricular Mass
- Physical activity and Sedentary Behaviour
- Data management and statistical analysis
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Swinburn, B.; Egger, G.; Raza, F. Dissecting obesogenic environments: The development and application of a framework for identifying and prioritizing environmental interventions for obesity. Prev. Med. 1999, 29 Pt 1, 563–570. [Google Scholar] [CrossRef]
- Klinerogerseva, R.; Eagle, T.F.; Sheetz, A.; Woodward, A.; Leibowitz, R.; Song, M.; Sylvester, R.; Corriveau, N.; Kline-Rogers, E.; Jiang, Q.; et al. The Relationship between Childhood Obesity, Low Socioeconomic Status, and Race/Ethnicity: Lessons from Massachusetts. Child. Obes. 2015, 11, 691–695. [Google Scholar] [CrossRef]
- Ajala, O.; Mold, F.E.; Boughton, C.; Cooke, D.; Whyte, M. Childhood predictors of cardiovascular disease in adulthood. A systematic review and meta-analysis. Obes. Rev. 2017, 18, 1061–1070. [Google Scholar] [CrossRef] [Green Version]
- Weihrauch-Blüher, S.; Wiegand, S. Risk Factors and Implications of Childhood Obesity. Curr. Obes. Rep. 2018, 7, 254–259. [Google Scholar] [CrossRef] [PubMed]
- de Simone, G.; Devereux, R.B.; Daniels, S.R.; Koren, M.J.; Meyer, R.A.; Laragh, J.H. Effect of growth on variability of left ventricular mass: Assessment of allometric signals in adults and children and their capacity to predict cardiovascular risk. J. Am. Coll. Cardiol. 1995, 25, 1056–1062. [Google Scholar] [CrossRef]
- Dušan, P.; Tamara, I.; Goran, V.; Gordana, M.-L.; Amira, P.-A. Left ventricular mass and diastolic function in obese children and adolescents. Pediatr. Nephrol. 2015, 30, 645–652. [Google Scholar] [CrossRef]
- Wang, Y.; Lim, H. The global childhood obesity epidemic and the association between socio-economic status and childhood obesity. Int. Rev. Psychiatry 2012, 24, 176–188. [Google Scholar] [CrossRef] [Green Version]
- Dinsa, G.D.; Goryakin, Y.; Fumagalli, E.; Suhrcke, M. Obesity and socioeconomic status in developing countries: A systematic review. Obes. Rev. 2012, 13, 1067–1079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz, J.R.; Cavero-Redondo, I.; Ortega, F.B.; Welk, G.J.; Andersen, L.B.; Martinez-Vizcaino, V. Cardiorespiratory fitness cut points to avoid cardiovascular disease risk in children and adolescents; what level of fitness should raise a red flag? A systematic review and meta-analysis. Br. J. Sports Med. 2016, 50, 1451–1458. [Google Scholar] [CrossRef]
- Carson, V.; Hunter, S.; Kuzik, N.; Gray, C.E.; Poitras, V.J.; Chaput, J.-P.; Saunders, T.J.; Katzmarzyk, P.T.; Okely, A.D.; Gorber, S.C.; et al. Systematic review of sedentary behaviour and health indicators in school-aged children and youth: An update. Appl. Physiol. Nutr. Metab. 2016, 41, S240–S265. [Google Scholar] [CrossRef] [Green Version]
- Pearson, N.; Braithwaite, R.E.; Biddle, S.J.H.; Sluijs, E.M.F.; Atkin, A.J. Associations between sedentary behaviour and physical activity in children and adolescents: A meta-analysis. Obes. Rev. 2014, 15, 666–675. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Li, X.C.; Lu, L.; Cao, Y.; Sun, R.R.; Chen, S.; Zhang, P.Y. Cardiovascular disease and its relationship with chronic kidney disease. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 2918–2926. [Google Scholar]
- Gluvic, Z.; Zaric, B.; Resanovic, I.; Obradovic, M.; Mitrovic, A.; Radak, D.; Isenovic, E. Link between Metabolic Syndrome and Insulin Resistance. Curr. Vasc. Pharmacol. 2016, 15, 30–39. [Google Scholar] [CrossRef]
- Andersen, L.; Wedderkopp, N.; Hansen, H.; Cooper, A.; Froberg, K. Biological cardiovascular risk factors cluster in Danish children and adolescents: The European Youth Heart Study. Prev. Med. 2003, 37, 363–367. [Google Scholar] [CrossRef] [PubMed]
- Borsboom, D.; Cramer, A.O. Network Analysis: An Integrative Approach to the Structure of Psychopathology. Annu. Rev. Clin. Psychol. 2013, 9, 91–121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmittmann, V.D.; Cramer, A.O.; Waldorp, L.J.; Epskamp, S.; Kievit, R.A.; Borsboom, D. Deconstructing the construct: A network perspective on psychological phenomena. New Ideas Psychol. 2013, 31, 43–53. [Google Scholar] [CrossRef]
- World Health Organization. Physical Status: The Use and Interpretation of Anthropometry; Report of a WHO Expert Committee; World Health Organ: Geneva, Switzerland, 1995; Volume 854. [Google Scholar]
- Harrison, K.; Bost, K.K.; McBride, B.A.; Donovan, S.M.; Grigsby-Toussaint, D.S.; Kim, J.; Liechty, J.M.; Wiley, A.; Teran-Garcia, M.; Jacobsohn, G.C. Toward a Developmental Conceptualization of Contributors to Overweight and Obesity in Childhood: The Six-Cs Model. Child Dev. Perspect. 2011, 5, 50–58. [Google Scholar] [CrossRef]
- Furusawa, E.A.; Ruiz, M.F.O.; Saito, M.I.; Koch, V. Avaliação do monitor de medida de pressão arterial 0mron 705-CP para uso em adolescentes e adultos jovens. Arq. Bras. Cardiol. 2005, 84, 367–370. [Google Scholar] [CrossRef] [PubMed]
- Brandão, A.A.; Rodrigues, C.I.S.; Consolim-Colombo, F.; Plavnik, F.L.; Malachias, M.V.B.; Kohlmann Junior, O. Ferreira Filho SJABC (2010) VI diretrizes brasileiras de hipertensão. Volume 95. Available online: http://publicacoes.cardiol.br/consenso/2010/Diretriz_hipertensao_associados.pdf (accessed on 20 February 2023).
- De Souza, C.B.; Dourado, C.D.S.; Mill, J.G.; Salaroli, L.B.; Molina, M.D.C.B. Prevalence of Hypertension in Children from Public Schools. Int. J. Cardiovasc. Sci. 2017, 30, 42–51. [Google Scholar] [CrossRef]
- Xavier, H.T.; Izar, M.; Faria Neto, J.; Assad, M.; Rocha, V.; Sposito, A.; Fonseca, F.; Dos Santos, J.; Santos, R. V Diretriz brasileira de dislipidemias e prevenção da aterosclerose. Arq. Bras. Cardiol. 2013, 101, 1–20. [Google Scholar] [CrossRef]
- Gaya, A.; Gaya, A. Projeto Esporte Brasil: Manual de Testes e Avaliação Versão 2016. Porto Alegre UFRGS 2016. Available online: https://www.ufrgs.br/proesp/arquivos/manual-proesp-br-2016.pdf (accessed on 20 February 2023).
- Devereux, R.B.; Alonso, D.R.; Lutas, E.M.; Gottlieb, G.J.; Campo, E.; Sachs, I.; Reichek, N. Echocardiographic assessment of left ventricular hypertrophy: Comparison to necropsy findings. Am. J. Cardiol. 1986, 57, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Kohsaka, S.; Sciacca, R.R.; Sugioka, K.; Sacco, R.L.; Homma, S.; Di Tullio, M.R. Additional impact of electrocardiographic over echocardiographic diagnosis of left ventricular hypertrophy for predicting the risk of ischemic stroke. Am. Hear. J. 2005, 149, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Actigraph. GT3X+ and wGT3X+ Device Manual. 2013. Available online: https://dl.theactigraph.com/gt3xp_wgt3xp_device_manual.pdf (accessed on 20 February 2023).
- Engelen, L.; Bundy, A.C.; Naughton, G.; Simpson, J.M.; Bauman, A.; Ragen, J.; Baur, L.; Wyver, S.; Tranter, P.; Niehues, A.; et al. Increasing physical activity in young primary school children—It’s child’s play: A cluster randomised controlled trial. Prev. Med. 2013, 56, 319–325. [Google Scholar] [CrossRef]
- Evenson, K.R.; Catellier, D.J.; Gill, K.; Ondrak, K.S.; McMurray, R.G. Calibration of two objective measures of physical activity for children. J. Sports Sci. 2008, 26, 1557–1565. [Google Scholar] [CrossRef]
- Fruchterman, T.M.J.; Reingold, E.M. Graph drawing by force-directed placement. Softw. Pract. Exp. 1991, 21, 1129–1164. [Google Scholar] [CrossRef]
- Friedman, J.; Hastie, T.; Tibshirani, R. Sparse inverse covariance estimation with the graphical lasso. Biostatistics 2007, 9, 432–441. [Google Scholar] [CrossRef] [Green Version]
- Foygel, R.; Drton, M. Extended Bayesian information criteria for Gaussian graphical models. In Advances in Neural In-Formation Processing Systems; The MIT Press: London, UK, 2010; Volume 23, pp. 604–612. [Google Scholar]
- Epskamp, S.; Cramer, A.O.J.; Waldorp, L.J.; Schmittmann, V.D.; Borsboom, D. qgraph: Network Visualizations of Relationships in Psychometric Data. J. Stat. Softw. 2012, 48, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Raistenskis, J.; Sidlauskiene, A.; Strukcinskiene, B.; Baysal, S.U.; Buckus, R. Physical activity and physical fitness in obese, overweight, and normal-weight children. Turk. J. Med. Sci. 2016, 46, 443–450. [Google Scholar] [CrossRef] [PubMed]
- Bailey, D.P.; Charman, S.J.; Ploetz, T.; Savory, L.A.; Kerr, C.J. Associations between prolonged sedentary time and breaks in sedentary time with cardiometabolic risk in 10–14-year-old children: The HAPPY study. J. Sports Sci. 2016, 35, 2164–2171. [Google Scholar] [CrossRef] [PubMed]
- Fairchild, T.J.; Klakk, H.; Heidemann, M.; Andersen, L.B.; Wedderkopp, N. Exploring the Relationship between Adiposity and Fitness in Young Children. Med. Sci. Sports Exerc. 2016, 48, 1708–1714. [Google Scholar] [CrossRef] [Green Version]
- Ekelund, U.; Anderssen, S.A.; Froberg, K.; Sardinha, L.B.; Andersen, L.B.; Brage, S. European Youth Heart Study Group Independent associations of physical activity and cardiorespiratory fitness with metabolic risk factors in children: The European youth heart study. Diabetologia 2007, 50, 1832–1840. [Google Scholar] [CrossRef] [Green Version]
- Tarp, J.; Child, A.; White, T.; Westgate, K.; Bugge, A.; Grøntved, A.; Wedderkopp, N.; Andersen, L.B.; Cardon, G.; Davey, R.; et al. Physical activity intensity, bout-duration, and cardiometabolic risk markers in children and adolescents. Int. J. Obes. 2018, 42, 1639–1650. [Google Scholar] [CrossRef] [Green Version]
- García-Hermoso, A.; Cerrillo-Urbina, A.J.; Herrera-Valenzuela, T.; Cristi-Montero, C.; Saavedra, J.M.; Martínez-Vizcaíno, V. Is high-intensity interval training more effective on improving cardiometabolic risk and aerobic capacity than other forms of exercise in overweight and obese youth? A meta-analysis. Obes. Rev. 2016, 17, 531–540. [Google Scholar] [CrossRef] [PubMed]
- Andersen, L.B.; Riddoch, C.; Kriemler, S.; Hills, A.P. Physical activity and cardiovascular risk factors in children. Br. J. Sports Med. 2011, 45, 871–876. [Google Scholar] [CrossRef] [Green Version]
- Calcaterra, V.; Larizza, D.; Codrons, E.; De Silvestri, A.; Brambilla, P.; Abela, S.; Arpesella, M.; Vandoni, M. Improved metabolic and cardiorespiratory fitness during a recreational training program in obese children. J. Pediatr. Endocrinol. Metab. 2012, 26, 271–276. [Google Scholar] [CrossRef]
- Rajjo, T.; Mohammed, K.; Alsawas, M.; Ahmed, A.T.; Farah, W.; Asi, N.; Almasri, J.; Prokop, L.J.; Murad, M.H. Treatment of Pediatric Obesity: An Umbrella Systematic Review. J. Clin. Endocrinol. Metab. 2017, 102, 763–775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brown, T.; Moore, T.H.; Hooper, L.; Gao, Y.; Zayegh, A.; Ijaz, S.; Elwenspoek, M.; Foxen, S.C.; Magee, L.; O’Malley, C.; et al. Interventions for preventing obesity in children. Cochrane Database Syst. Rev. 2019, 2019, CD001871. [Google Scholar] [CrossRef] [Green Version]
- Hills, A.P.; Andersen, L.B.; Byrne, N. Physical activity and obesity in children. Br. J. Sports Med. 2011, 45, 866–870. [Google Scholar] [CrossRef] [Green Version]
- O’Mahony, C.; Elliott, P.; McKenna, W. Sudden cardiac death in hypertrophic cardiomyopathy. Circ. Arrhythmia Electrophysiol. 2013, 6, 443–451. [Google Scholar] [CrossRef] [Green Version]
- Westerterp, K.R. Exercise, energy balance and body composition. Eur. J. Clin. Nutr. 2018, 72, 1246–1250. [Google Scholar] [CrossRef] [Green Version]
- Ridgers, N.D.; Timperio, A.; Cerin, E.; Salmon, J. Compensation of Physical Activity and Sedentary Time in Primary School Children. Med. Sci. Sports Exerc. 2014, 46, 1564–1569. [Google Scholar] [CrossRef] [Green Version]
- Ekelund, U.; Luan, J.; Sherar, L.B.; Esliger, D.W.; Griew, P.; Cooper, A. Moderate to Vigorous Physical Activity and Sedentary Time and Cardiometabolic Risk Factors in Children and Adolescents. JAMA 2012, 307, 704–712. [Google Scholar] [CrossRef] [Green Version]
- Kidokoro, T.; Suzuki, K.; Naito, H.; Balasekaran, G.; Song, J.K.; Park, S.Y.; Liou, Y.M.; Lu, D.; Poh, B.K.; Kijboonchoo, K.; et al. Moderate-to-vigorous physical activity attenuates the detrimental effects of television viewing on the cardiorespiratory fitness in Asian adolescents: The Asia-fit study. BMC Public Health 2019, 19, 1737. [Google Scholar] [CrossRef] [PubMed]
- Júdice, P.B.; Silva, A.M.; Berria, J.; Petroski, E.L.; Ekelund, U.; Sardinha, L.B. Sedentary patterns, physical activity and health-related physical fitness in youth: A cross-sectional study. Int. J. Behav. Nutr. Phys. Act. 2017, 14, 25. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mäkikallio, K.; Shah, J.; Slorach, C.; Qin, H.; Kingdom, J.; Keating, S.; Kelly, E.; Manlhiot, C.; Redington, A.; Jaeggi, E. Fetal growth restriction and cardiovascular outcome in early human infancy: A prospective longitudinal study. Hear. Vessel. 2015, 31, 1504–1513. [Google Scholar] [CrossRef]
- Ji, F.; Ning, F.; Duan, H.; Kaprio, J.; Zhang, D.; Zhang, D.; Wang, S.; Qiao, Q.; Sun, J.; Liang, J.; et al. Genetic and Environmental Influences on Cardiovascular Disease Risk Factors: A Study of Chinese Twin Children and Adolescents. Twin Res. Hum. Genet. 2014, 17, 72–79. [Google Scholar] [CrossRef] [Green Version]
- Hjorth, M.F.; Chaput, J.P.; Damsgaard, C.T.; Dalskov, S.M.; Andersen, R.; Astrup, A.; Michaelsen, K.F.; Tetens, I.; Ritz, C.; Sjödin, A. Low physical activity level and short sleep duration are associated with an increased cardio-metabolic risk profile: A longitudinal study in 8–11 year old Danish children. PLoS ONE 2014, 9, e104677. [Google Scholar] [CrossRef] [PubMed]
- Saunders, T.J.; Gray, C.; Poitras, V.J.; Chaput, J.-P.; Janssen, I.; Katzmarzyk, P.; Olds, T.; Gorber, S.C.; Kho, M.; Sampson, M.; et al. Combinations of physical activity, sedentary behaviour and sleep: Relationships with health indicators in school-aged children and youth. Appl. Physiol. Nutr. Metab. 2016, 41, S283–S293. [Google Scholar] [CrossRef] [Green Version]
- Bull, C.J.; Northstone, K. Childhood dietary patterns and cardiovascular risk factors in adolescence: Results from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort. Public Health Nutr. 2016, 19, 3369–3377. [Google Scholar] [CrossRef] [Green Version]
- Bassali, R.; Waller, J.L.; Gower, B.; Allison, J.; Davis, C.L. Utility of waist circumference percentile for risk evaluation in obese children. Pediatr. Obes. 2011, 5, 97–101. [Google Scholar] [CrossRef]
- Sönmez, H.E.; Canpolat, N.; Ağbaş, A.; Taşdemir, M.; Ekmekçi, B.; Alikaşifoğlu, M.; Sever, L.; Çalışkan, S. The Relationship between the Waist Circumference and Increased Carotid Intima Thickness in Obese Children. Child. Obes. 2019, 15, 468–475. [Google Scholar] [CrossRef] [PubMed]
- Zampetti, S.; Campagna, G.; Leto, G.; Lucantoni, F.; D’Onofrio, L.; Marandola, L.; Moretti, C.; Chiesa, C.; Pacifico, L.; Buzzetti, R. Relation Between Wrist Circumference and Left Ventricular Structure in Overweight Children. Am. J. Cardiol. 2018, 121, 1624–1628. [Google Scholar] [CrossRef] [PubMed]
- Zimmet, P.; Alberti, G.; Kaufman, F.; Tajima, N.; Silink, M.; Arslanian, S.; Wong, G.; Bennett, P.; Shaw, J.; Caprio, S. The metabolic syndrome in children and adolescents. Lancet 2007, 369, 2059–2061. [Google Scholar] [CrossRef]
- Nehus, E.; Mitsnefes, M. Childhood Obesity and the Metabolic Syndrome. Pediatr. Clin. N. Am. 2019, 66, 31–43. [Google Scholar] [CrossRef] [PubMed]
Variables | Boys (n = 18) (Mean ± SD) | Girls (n = 23) (Mean ± SD) | p | d’ Cohen |
---|---|---|---|---|
Age | 7.7 ± 0.9 | 8.0 ± 1.0 | 0.277 | −0.347 |
MVPA (min/day) | 34.6 ± 16.4 | 24.6 ± 13.5 | 0.037 * | 0.679 |
SB (min/day) | 330.4 ± 44.6 | 389.0 ± 68.6 | 0.003 * | −0.987 |
BMI (kg/m²) | 21.7 ± 3.2 | 22.1 ± 2.6 | 0.621 | −0.157 |
WC (cm) | 68.8 ± 3.2 | 22.1 ± 2.6 | 0.822 | 0.071 |
Fat (%) | 34.2 ± 9.2 | 34.7 ± 6.5 | 0.841 | −0.063 |
MBP (mmHg) | 84.5 ± 6.9 | 80.3 ± 8.2 | 0.091 | 0.546 |
TC (mg/dL) | 159.2 ± 35.3 | 156.6 ± 35.4 | 0.800 | 0.080 |
HDL-C (mg/dL) | 37.4 ± 3.8 | 37.3 ± 7.8 | 0.962 | 0.015 |
LDL-C (mg/dL) | 101.9 ± 29.8 | 97.8 ± 25.7 | 0.635 | 0.151 |
TG (mg/dL) | 96.3 ± 45.1 | 100.9 ± 52.3 | 0.769 | −0.093 |
Glucose (mg/dL) | 82.4 ± 5.8 | 82.7 ± 6.2 | 0.891 | −0.044 |
CRF (meters) | 748.6 ± 73.7 | 752.0 ± 95.3 | 0.901 | −0.039 |
LVM (g) | 49.9 ± 9.4 | 48.2 ± 12.4 | 0.629 | 0.153 |
Sokolow–Lyon | 33.4 ± 6.9 | 31.7 ± 5.6 | 0.384 | 0.277 |
Variables | MVPA | SB | Age | Sex | BMI | WC | MBP | HDL | LDL | TGL | Glucose | Fat | CRF | LVM | Sokolow |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
MVPA | 0.000 | ||||||||||||||
SB | −0.267 | 0.000 | |||||||||||||
Age | −0.513 | −0.319 | 0.000 | ||||||||||||
Sex | 0.062 | 0.581 | 0.408 | 0.000 | |||||||||||
BMI | −0.251 | −0.116 | −0.561 | 0.378 | 0.000 | ||||||||||
WC | 0.499 | 0.326 | 0.716 | −0.444 | 0.664 | 0.000 | |||||||||
MBP | 0.016 | −0.097 | −0.094 | −0.151 | 0.037 | 0.092 | 0.000 | ||||||||
HDL-C | 0.307 | 0.069 | 0.263 | −0.127 | 0.072 | −0.253 | −0.315 | 0.000 | |||||||
LDL-C | 0.047 | 0.008 | −0.174 | 0.065 | −0.086 | 0.122 | 0.105 | 0.129 | 0.000 | ||||||
TG | −0.144 | −0.073 | −0.204 | 0.156 | −0.228 | 0.305 | −0.219 | −0.062 | −0.083 | 0.000 | |||||
Glucose | −0.148 | −0.020 | 0.084 | −0.150 | 0.265 | −0.072 | −0.080 | 0.004 | −0.060 | 0.079 | 0.000 | ||||
Fat | −0.341 | −0.092 | −0.115 | 0.035 | 0.123 | 0.485 | −0.099 | 0.084 | 0.224 | 0.021 | −0.212 | 0.000 | |||
CRF | 0.276 | 0.296 | 0.503 | −0.223 | 0.164 | −0.271 | 0.011 | −0.146 | 0.277 | 0.031 | 0.144 | −0.199 | 0.000 | ||
LVM | 0.171 | 0.250 | 0.318 | −0.311 | 0.237 | −0.355 | −0.027 | −0.089 | 0.314 | 0.329 | −0.217 | −0.108 | −0.386 | 0.000 | |
Sokolow-Lyon | 0.203 | 0.215 | 0.110 | −0.248 | 0.158 | −0.216 | 0.038 | −0.093 | 0.112 | 0.331 | −0.128 | −0.012 | −0.075 | −0.187 | 0.000 |
Variables | Network | ||
---|---|---|---|
Betweenness | Closeness | Strength | |
MVPA | −0.502 | 0.585 | 0.480 |
SB | −0.662 | −0.029 | −0.044 |
Age | 0.459 | 1.506 | 1.628 |
Sex | −0.182 | 0.596 | 0.576 |
BMI | 0.139 | 0.504 | 0.574 |
WC | 3.182 | 1.809 | 2.069 |
Fat | −0.662 | 0.074 | −0.627 |
MBP | −0.662 | −1.602 | −1.403 |
HDL-C | 0.299 | −0.831 | −0.764 |
LDL-C | −0.662 | −1.062 | −0.976 |
TG | −0.182 | −0.211 | −0.510 |
Glucose | −0.662 | −1.307 | −1.120 |
CRF | −0.021 | 0.159 | 0.233 |
LVM | 0.779 | 0.717 | 0.536 |
Sokolow-Lyon | −0.662 | −0.908 | −0.651 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bezerra, T.; Souza Filho, A.; Quirino, N.; Bandeira, P.; Cabral, L.; Reuter, C.; Martins, C.; Carvalho, F. Physical Activity, Sedentary Behaviour and Cardiovascular Risk Factors in Overweight Low-Income Schoolchildren: A Complex System Perspective. Obesities 2023, 3, 86-96. https://doi.org/10.3390/obesities3010008
Bezerra T, Souza Filho A, Quirino N, Bandeira P, Cabral L, Reuter C, Martins C, Carvalho F. Physical Activity, Sedentary Behaviour and Cardiovascular Risk Factors in Overweight Low-Income Schoolchildren: A Complex System Perspective. Obesities. 2023; 3(1):86-96. https://doi.org/10.3390/obesities3010008
Chicago/Turabian StyleBezerra, Thaynã, Anastácio Souza Filho, Natália Quirino, Paulo Bandeira, Luciana Cabral, Cézane Reuter, Clarice Martins, and Ferdinando Carvalho. 2023. "Physical Activity, Sedentary Behaviour and Cardiovascular Risk Factors in Overweight Low-Income Schoolchildren: A Complex System Perspective" Obesities 3, no. 1: 86-96. https://doi.org/10.3390/obesities3010008
APA StyleBezerra, T., Souza Filho, A., Quirino, N., Bandeira, P., Cabral, L., Reuter, C., Martins, C., & Carvalho, F. (2023). Physical Activity, Sedentary Behaviour and Cardiovascular Risk Factors in Overweight Low-Income Schoolchildren: A Complex System Perspective. Obesities, 3(1), 86-96. https://doi.org/10.3390/obesities3010008