Real World Adherence to a Severely Energy Restricted Meal Replacement Diet in Participants with Class II and III Obesity
Abstract
:1. Introduction
2. Materials and Methods
Data Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ng, M.; Fleming, T.; Robinson, M.; Thomson, B.; Graetz, N.; Margono, C.; Mullany, E.C.; Biryukov, S.; Abbafati, C.; Abera, S.F.; et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014, 384, 766–781. [Google Scholar] [CrossRef][Green Version]
- OECD. Obesity Update 2017; OECD Health Statistics: Paris, France, 2017. [Google Scholar]
- Asia Pacific Cohort Studies Collaboration. The burden of overweight and obesity in the Asia-Pacific region. Obes. Rev. 2007, 8, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Palmo, A. Severe obesity: Introductory outlines and the conventional non surgical therapy. e-SPEN J. 2013, 8, e216–e227. [Google Scholar] [CrossRef]
- Hubert, B.H.; Feinleib, M.M.; McNamara, P.P.; Castelli, P.W. Obesity as an Independent Risk Factor for Cardiovascular Disease: A 26-year Follow-up of Participants in the Framingham Heart Study. Circulation 1983, 67, 968–977. [Google Scholar] [CrossRef][Green Version]
- Lavie, C.J.; Milani, R.V.; Ventura, H.O. Obesity and Cardiovascular Disease: Risk Factor, Paradox, and Impact of Weight Loss. J. Am. Coll. Cardiol. 2009, 53, 1925–1932. [Google Scholar] [CrossRef][Green Version]
- Colditz, G.; Willett, W.C.; Rotnitzky, A.; Manson, J.E. Weight Gain as a Risk Factor for Clinical Diabetes Mellitus in Women. Ann. Intern. Med. 1995, 122, 481–486. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, A.; Peeters, A.; de Courten, M.; Stoelwinder, J. The magnitude of association between overweight and obesity and the risk of diabetes: A meta-analysis of prospective cohort studies. Diabetes Res. Clin. Pract. 2010, 89, 309–319. [Google Scholar] [CrossRef]
- Boland, L.L.; Folsom, A.R.; Rosamond, W.D. Hyperinsulinemia, Dyslipidemia, and Obesity as Risk Factors for Hospitalized Gallbladder Disease: A Prospective Study. Ann. Epidemiol. 2002, 12, 131–140. [Google Scholar] [CrossRef]
- Kovesdy, C.P.; Furth, S.L.; Zoccali, C.; Li, P.K.T.; Garcia-Garcia, G.; Benghanem-Gharbi, M.; Bollaert, R.; Dupuis, S.; Erk, T.; Kalantar-Zadeh, K.; et al. Obesity and kidney disease: Hidden consequences of the epidemic. Kidney Int. 2016, 91, 260–262. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Gami, A.S.; Hodge, D.O.; Herges, R.M.; Olson, E.J.; Nykodym, J.; Kara, T.; Somers, V.K. Obstructive Sleep Apnea, Obesity, and the Risk of Incident Atrial Fibrillation. J. Am. Coll. Cardiol. 2007, 49, 565–571. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Fang, X.; Wei, J.; He, X.; Lian, J.; Han, D.; An, P.; Zhou, T.; Liu, S.; Wang, F.; Min, J. Quantitative association between body mass index and the risk of cancer: A global Meta-analysis of prospective cohort studies. Int. J. Cancer 2018, 143, 1595–1603. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Luppino, F.S.; de Wit, L.M.; Bouvy, P.F.; Stijnen, T.; Cuijpers, P.; Penninx, B.W.; Zitman, F.G. Overweight, Obesity, and Depression: A Systematic Review and Meta-analysis of Longitudinal Studies. Arch. Gen. Psychiatry 2010, 67, 220–229. [Google Scholar] [CrossRef]
- Wilkes, S.; Fankam, F. Review of the management of female infertility: A primary care perspective. Clin. Med. Rev. Women’s Health 2010, 2010, 11–23. [Google Scholar]
- Laberge, M.A.; Baum, T.; Virayavanich, W.; Nardo, L.; Nevitt, M.C.; Lynch, J.; McCulloch, C.E.; Link, T.M. Obesity increases the prevalence and severity of focal knee abnormalities diagnosed using 3T MRI in middle-aged subjects—Data from the Osteoarthritis Initiative. Skelet. Radiol. 2011, 41, 633–641. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lean, M.E.J.; Leslie, W.S.; Barnes, A.C.; Brosnahan, N.; Thom, G.; McCombie, L.; Peters, C.; Zhyzhneuskaya, S.; Al-Mrabeh, A.; Hollingsworth, K.G.; et al. Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol. 2019, 7, 344–355. [Google Scholar] [CrossRef][Green Version]
- Lean, M.E.; Leslie, W.S.; Barnes, A.C.; Brosnahan, N.; Thom, G.; McCombie, L.; Peters, C.; Zhyzhneuskaya, S.; Al-Mrabeh, A.; Hollingsworth, K.G.; et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): An open-label, cluster-randomised trial. Lancet 2018, 391, 541–551. [Google Scholar] [CrossRef][Green Version]
- Macmohan, S.; Cutler, J.; Brittain, E.; Higgins, M. Obesity and hypertension: Epidemiological and clinical issues. Eur. Heart J. 1987, 8, 57–70. [Google Scholar] [CrossRef]
- Rothberg, A.E.; McEwen, L.N.; Kraftson, A.T.; Ajluni, N.; Fowler, C.E.; Nay, C.K.; Miller, N.M.; Burant, C.F.; Herman, W.H. Impact of weight loss on waist circumference and the components of the metabolic syndrome. BMJ Open Diabetes Res. Care 2017, 5, e000341. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Dattilo, A.M.; Kris-Etherton, P.M. Effects of weight reduction on blood lipids and lipoproteins: A meta-analysis. Am. J. Clin. Nutr. 1992, 56, 320–328. [Google Scholar] [CrossRef]
- Huffman, D.M.; Barzilai, N. Contribution of Adipose Tissue to Health Span and Longevity. Interdiscip. Top. Gerontol. 2010, 37, 1–19. [Google Scholar] [CrossRef]
- Finelli, C.; Sommella, L.; Gioia, S.; La Sala, N.; Tarantino, G. Should visceral fat be reduced to increase longevity? Ageing Res. Rev. 2013, 12, 996–1004. [Google Scholar] [CrossRef]
- Seimon, R.V.; Wild-Taylor, A.L.; McClintock, S.; Harper, C.; Gibson, A.A.; Johnson, N.A.; Fernando, H.A.; Markovic, T.P.; Center, J.R.; Franklin, J.; et al. 3-Year effect of weight loss via severe versus moderate energy restriction on body composition among postmenopausal women with obesity—The TEMPO Diet Trial. Heliyon 2020, 6, e04007. [Google Scholar] [CrossRef] [PubMed]
- Astbury, N.M.; Piernas, C.; Hartmann-Boyce, J.; Lapworth, S.; Aveyard, P.; Jebb, S.A. A systematic review and meta-analysis of the effectiveness of meal replacements for weight loss. Obes. Rev. 2019, 20, 569–587. [Google Scholar] [CrossRef][Green Version]
- Gibson, A.A.; Seimon, R.V.; Franklin, J.; Markovic, T.P.; Byrne, N.M.; Manson, E.; Caterson, I.D.; Sainsbury, A. Fast versus slow weight loss: Development process and rationale behind the dietary interventions for the TEMPO Diet Trial. Obes. Sci. Pract. 2016, 2, 162–173. [Google Scholar] [CrossRef][Green Version]
- Codex Alimentarius Commission. Report of the Nineteenth Sesssion of the Codex Committee on Nutrition and Foods for Special Dietary Uses; Joint FAO/WHO Food Standards Program; Codex Alimentarius Commission: Bad Godesberg, Germany; Rome, Italy, 1995.
- Kizirian, N.A.S.; Colagiuri, S.; Deed, G.; Proietto, J.; Dixon, J.; Markovic, T.; Hamdorf, J.; Rigas, G. The Australian Obesity Management Algorithm; The University of Sydney: Sydney, Australia, 2016. [Google Scholar]
- Maston, G.; Gibson, A.A.; Kahlaee, H.R.; Franklin, J.; Manson, E.; Sainsbury, A.; Markovic, T.P. Effectiveness and characterization of severely energy-restricted diets in people with extreme obesity: Systematic review and meta-analysis. Behav. Sci. 2019, 9, 144. [Google Scholar] [CrossRef][Green Version]
- Phelan, S.; Wing, R.R.; Brannen, A.; McHugh, A.; Hagobian, T.A.; Schaffner, A.; Jelalian, E.; Hart, C.N.; Scholl, T.O.; Munoz-Christian, K.; et al. Randomized controlled clinical trial of behavioral lifestyle intervention with partial meal replacement to reduce excessive gestational weight gain. Am. J. Clin. Nutr. 2018, 107, 183–194. [Google Scholar] [CrossRef][Green Version]
- Maston, G.; Franklin, J.; Gibson, A.A.; Manson, E.; Hocking, S.; Sainsbury, A.; Markovic, T.P. Attitudes and Approaches to Use of Meal Replacement Products among Healthcare Professionals in Management of Excess Weight. Behav. Sci. 2020, 10, 136. [Google Scholar] [CrossRef]
- Noakes, M.; Foster, P.R.; Keogh, J.; Clifton, P. Meal Replacements Are as Effective as Structured Weight-Loss Diets for Treating Obesity in Adults with Features of Metabolic Syndrome. J. Nutr. 2004, 134, 1894–1899. [Google Scholar] [CrossRef]
- Wright, G.; Dawson, B.; Jalleh, G.; Law, S. Impact of compliance on weight loss and health profile in a very low energy diet program. Aust. Fam. Physician 2010, 39, 49–52. [Google Scholar] [PubMed]
- Steven, S.; Hollingsworth, K.G.; Al-Mrabeh, A.; Avery, L.; Aribisala, B.; Caslake, M.; Taylor, R. Very Low-Calorie Diet and 6 Months of Weight Stability in Type 2 Diabetes: Pathophysiological Changes in Responders and Nonresponders. Diabetes Care 2016, 39, 808–815. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Rehackova, L.; Araújo-Soares, V.; Adamson, A.; Steven, S.; Taylor, R.; Sniehotta, F.F. Acceptability of a very-low-energy diet in Type 2 diabetes: Patient experiences and behaviour regulation. Diabet. Med. 2017, 34, 1554–1567. [Google Scholar] [CrossRef][Green Version]
- Maston, G.; Franklin, J.; Hocking, S.; Swinbourne, J.; Gibson, A.; Manson, E.; Sainsbury, A.; Markovic, T. Dietary adherence and program attrition during a severely energy-restricted diet among people with complex class III obesity: A qualitative exploration. PLoS ONE 2021, 16, e0253127. [Google Scholar] [CrossRef] [PubMed]
- Mustajoki, P.; Pekkarinen, T. Very low energy diets in the treatment of obesity. Obes. Rev. 2001, 2, 61–72. [Google Scholar] [CrossRef] [PubMed]
- Miller, W.R. Motivational Interviewing: Helping People Change, 3rd ed.; Rollnick, S., Ed.; Guilford Publications: New York, NY, USA, 2012. [Google Scholar]
- National Health and Medical Research Council. Nutrient Reference Values Australia and New Zealand; Australian Government: Canberra, Australia, 2006.
- Gibson, A.A.; Franklin, J.; Pattinson, A.L.; Cheng, Z.G.Y.; Samman, S.; Markovic, T.P.; Sainsbury, A. Comparison of Very Low Energy Diet Products Available in Australia and How to Tailor Them to Optimise Protein Content for Younger and Older Adult Men and Women. Healthcare 2016, 4, 71. [Google Scholar] [CrossRef][Green Version]
- National Health and Medical Research Council. Australian Dietary Guidelines; National Health and Medical Research Council: Canberra, Australia, 2013.
- Food Standards Australia New Zealand. Australian Food Composition Database Food Standards Australia New Zealand. Food Standards Australia New Zealand, 2019. Available online: https://www.foodstandards.gov.au/science/monitoringnutrients/afcd/Pages/default.aspx (accessed on 1 November 2019).
- Jésus, P.; Achamrah, N.; Grigioni, S.; Charles, J.; Rimbert, A.; Folope, V.; Petit, A.; Déchelotte, P.; Coëffier, M. Validity of predictive equations for resting energy expenditure according to the body mass index in a population of 1726 patients followed in a Nutrition Unit. Clin. Nutr. 2015, 34, 529–535. [Google Scholar] [CrossRef]
- National Health and Medical Research Council. Clinical Practice Guidelines for the Management of Overweight and Obesity in Adults, Adolescents and Children in Australia; Australian Government: Canberra, Australia, 2013.
- Expert Panel on the Treatment of Obesity in Adults. Clinical guidelines on the identification, evaluation, and treatment of overweight and obesity in adults: Executive summary. Am. J. Clin. Nutr 1998, 68, 899–917. [Google Scholar]
- Scottish Intercollegiate Guidelines Network. Management of Obesity: SIGN Guideline 115; Scottish Intercollegiate Guidelines Network: Edinburgh, UK, 2010. [Google Scholar]
- National Institute for Health and Care Excellence. Weight Management: Lifestyle Services for Overweight or Obese Adults; National Institute for Health and Care Excellence: London, UK, 2014. [Google Scholar]
- Kanerva, N.; Larsson, I.; Peltonen, M.; Lindroos, A.-K.; Carlsson, L.M. Changes in total energy intake and macronutrient composition after bariatric surgery predict long-term weight outcome: Findings from the Swedish Obese Subjects (SOS) study. Am. J. Clin. Nutr. 2017, 106, 136–145. [Google Scholar] [CrossRef]
- Zomer, E.; Gurusamy, K.; Leach, R.; Trimmer, C.; Lobstein, T.; Morris, S.; James, W.; Finer, N. Interventions that cause weight loss and the impact on cardiovascular risk factors: A systematic review and meta-analysis. Obes. Rev. 2016, 17, 1001–1011. [Google Scholar] [CrossRef]
- Ashtary-Larky, D.; Ghanavati, M.; Lamuchi-Deli, N.; Payami, S.A.; Alavi-Rad, S.; Boustaninejad, M.; Afrisham, R.; Abbasnezhad, A.; Alipour, M. Rapid Weight Loss vs. Slow Weight Loss: Which is More Effective on Body Composition and Metabolic Risk Factors? Int. J. Endocrinol. Metab. 2017, 15, e13249. [Google Scholar] [CrossRef][Green Version]
- Anderson, J.W.; Grant, L.; Gotthelf, L.; Stifler, L.T. Weight loss and long-term follow-up of severely obese individuals treated with an intense behavioral program. Int. J. Obes. 2007, 31, 488–493, Erratum in Int. J. Obes. 2007, 31, 565. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Harbury, C.M.; Verbruggen, E.E.; Callister, R.; Collins, C.E. What do individuals with morbid obesity report as a usual dietary intake? A narrative review of available evidence. Clin. Nutr. ESPEN 2016, 13, e15–e22. [Google Scholar] [CrossRef]
- Strain, G.W.; Hershcopf, R.J.; Zumoff, B. Food-intake of very obese persons—Quantitative and qualitative aspects. J. Am. Diet. Assoc. 1992, 92, 199–203. [Google Scholar] [CrossRef]
- Micha, R.; Khatibzadeh, S.; Shi, P.; Andrews, K.G.; Engell, R.E.; Mozaffarian, D. Global, regional and national consumption of major food groups in 1990 and 2010: A systematic analysis including 266 country-specific nutrition surveys worldwide. BMJ Open 2015, 5, e008705. [Google Scholar] [CrossRef][Green Version]
- Buijsse, B.; Feskens, E.; Schulze, M.B.; Forouhi, N.; Wareham, N.J.; Sharp, S.; Palli, D.; Tognon, G.; Halkjaer, J.; Tjonneland, A.; et al. Fruit and vegetable intakes and subsequent changes in body weight in European populations: Results from the project on Diet, Obesity, and Genes (DiOGenes). Am. J. Clin. Nutr. 2009, 90, 202–209. [Google Scholar] [CrossRef] [PubMed][Green Version]
- He, K.; Hu, F.B.; Colditz, G.; Manson, J.E.; Willett, W.C.; Liu, S. Changes in intake of fruits and vegetables in relation to risk of obesity and weight gain among middle-aged women. Int. J. Obes. 2004, 28, 1569–1574. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Franz, M.J.; VanWormer, J.J.; Crain, A.L.; Boucher, J.L.; Histon, T.; Caplan, W.; Bowman, J.D.; Pronk, N.P. Weight-Loss Outcomes: A Systematic Review and Meta-Analysis of Weight-Loss Clinical Trials with a Minimum 1-Year Follow-Up. J. Am. Diet. Assoc. 2007, 107, 1755–1767. [Google Scholar] [CrossRef] [PubMed]
- King, B.M.; Cespedes, V.M.; Burden, G.K.; Brady, S.K.; Clement, L.R.; Abbott, E.M.; Baughman, K.S.; Joyner, S.E.; Clark, M.M.; Pury, C.L.S. Extreme under-reporting of body weight by young adults with obesity: Relation to social desirability. Obes. Sci. Pract. 2018, 4, 129–133. [Google Scholar] [CrossRef]
- Dekkers, J.C.; Van Wier, M.F.; Hendriksen, I.J.M.; Twisk, J.W.R.; Van Mechelen, W. Accuracy of self-reported body weight, height and waist circumference in a Dutch overweight working population. BMC Med. Res. Methodol. 2008, 8, 69. [Google Scholar] [CrossRef][Green Version]
- Park, H.A.; Lee, J.S.; Kuller, L.H. Underreporting of dietary intake by body mass index in premenopausal women participating in the Healthy Women Study. Nutr. Res. Pract. 2007, 1, 231–236. [Google Scholar] [CrossRef][Green Version]
Entire Group (n = 26) Mean ± SD | Completers (n = 13) Mean ± SD | Non-Completers (n = 13) Mean ± SD | p-Value for the Mean Difference between Completers and Non-completers (p < 0.05) | |
---|---|---|---|---|
Age (years) | 44.5 ± 10.8 | 42.5 ± 10.9 | 46.4 ± 10.9 | 0.377 |
No. of obesity related comorbidities a | 4.7 ± 2.2 | 3.7 ± 2.2 | 5.6 ± 1.8 | 0.023 * |
Mean BMI (kg/m2) | 53.8 ±11.1 | 55.0 ± 10.5 | 52.6 ±11.5 | 0.586 |
Baseline body weight (kg) | 151.3 ± 33.2 | 150 ± 35.1 | 152.6 ± 32.5 | 0.841 |
Mean weight change at 12 weeks (%) | −4.7 ± 4.9 | −7.8 ± 4.7 | −1.6 ± 2.6 | 0.001 * |
Mean weight change at 12 weeks (95% CI) | (−6.6, −2.7) | (−10.6, −4.9) | (−3.1, 0.0) | - |
Percentage of participants with self-reported data at 12 weeks (n) | 34.6 (9) | 15.4 (2) | 53.9 (7) | - |
Percentage of participants with bodyweight carried forward data at 12 weeks (n) | 19.2 (5) | 0.0 (0) | 38.5 (5) | - |
Mean weight change at 52 weeks (%) | −7.0 ± 10.2 | −12.2 ± 12.1 | −1.8 ± 3.2 | 0.006 * |
Mean weight change at 52 weeks (95% CI) | (−11.1, −2.9) | (−19.5, −4.9) | (−3.7, 0.2) | - |
Percentage of participants with self-reported data at 52 weeks (n) | 15.4 (4) | 23.0 (7) | 7.7 (1) | - |
Percentage of participants with bodyweight carried forward data at 52 weeks (n) | 53.8 (14) | 23.0 (3) | 42.3 (11) | - |
Prescription for the Entire Group (n = 26) Mean ± SD | Prescription for Non-Completers (n = 13) Mean ± SD | Prescription for Completers (n = 13) Mean ± SD | Reported Food and Exercise Amounts for Completers (n = 13) Mean ± SD | Difference between Prescribed and Reported Amounts for Completers Mean ± SD | p-Value for the Mean Difference between Prescribed and Reported Food and Exercise Quantities for Completers (p < 0.05) | Mean Percent Adherence for Completers (%) | |
---|---|---|---|---|---|---|---|
Mean no. of MR | 4.0 ± 4.3 | 4.1 ± 1.0 | 3.8 ± 0.6 | 3.1 ± 0.5 | −0.8 ± 0.2 | 0.001 * | 82.6 ± 21.2 |
Protein (g) | 96.4 ± 15.6 | 97.1 ± 17.4 | 95.7 ± 14.3 | 76.7 ± 16.8 | −19.0 ± 6.1 | 0.005 * | 81.1 ± 17.4 |
Energy intake (kJ) [kcal] | 3774.8 ± 581.6 [903.1 ± 139.1] | 4639.4 ± 1761.9 [1108.8 ±421.1] | 3700.2 ± 444.3 [884.4 ± 106.2] | 4549.3 ± 747.7 [1087.3 ± 178.7] | 849.1 ± 241.2 [202.9 ± 57.6] | 0.002 * | 125.0 ± 27.5 |
Mean percent energy restriction (%) | 69.2 ± 6.3 | 68.9 ± 8.6 | 69.2 ± 6.5 | 62.2 ± 7.7 | −7.3 ± 6.9 | 0.007 * | 62.2 ± 7.7 |
Mean serves of vegetables (Salad and cooked vegetables) | 5.0 ± 0.0 | 5.0 ± 0.0 | 5.0 ± 0.0 | 3.3 ± 1.9 | −1.7 + 0.5 | 0.004 * | 66.1 ± 38.5 |
Mean litres of water | 2.0 ± 0.0 | 2.0 ± 0.0 | 2.0 ± 0.0 | 1.6 ± 1.0 | −0.4 + 1.0 | 0.160 | 79.8 ± 50.2 |
Mean duration of exercise (minutes) | 30.0 ± 0.0 | 30.0 ± 0.0 | 30.0 ± 0.0 | 22.9 ± 22.4 | −7.1 + 6.2 | 0.263 | 76.2 ± 74.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maston, G.; Kahlaee, H.R.; Franklin, J.; Manson, E.; Gibson, A.A.; Hocking, S.; Sainsbury, A.; Markovic, T.P. Real World Adherence to a Severely Energy Restricted Meal Replacement Diet in Participants with Class II and III Obesity. Obesities 2022, 2, 8-20. https://doi.org/10.3390/obesities2010002
Maston G, Kahlaee HR, Franklin J, Manson E, Gibson AA, Hocking S, Sainsbury A, Markovic TP. Real World Adherence to a Severely Energy Restricted Meal Replacement Diet in Participants with Class II and III Obesity. Obesities. 2022; 2(1):8-20. https://doi.org/10.3390/obesities2010002
Chicago/Turabian StyleMaston, Gabrielle, Hamid Reza Kahlaee, Janet Franklin, Elisia Manson, Alice A. Gibson, Samantha Hocking, Amanda Sainsbury, and Tania P. Markovic. 2022. "Real World Adherence to a Severely Energy Restricted Meal Replacement Diet in Participants with Class II and III Obesity" Obesities 2, no. 1: 8-20. https://doi.org/10.3390/obesities2010002