Efficient and Effective Irrigation Water Management Using Sprinkler Robot
Abstract
1. Introduction
- Surface Irrigation:
- 2.
- Sprinkler Irrigation:
- 3.
- Micro-Irrigation:
- 4.
- Subsurface Irrigation:
- 5.
- Intelligent irrigation:
- 6.
- Precision Irrigation:
- 7.
- Variable Rate Irrigation:
2. Materials and Methods
2.1. General Description of Traveler Gun Sprinkler
2.2. The Main Components
2.2.1. Frame
2.2.2. Power Source
2.2.3. Control Box
2.2.4. Sprinkler Irrigation System
2.3. Location and Experimental Conditions
2.4. Working Principle
2.5. Theoretical and Mathematical Analysis
2.6. Technical Detail and the Robotic System’s Functionality
2.7. Experimental Variables
2.7.1. Gun Nozzles
2.7.2. Forward Speed
2.7.3. Gun Height
2.8. Experimental Design
2.8.1. Fixed Irrigation
2.8.2. Traveling Irrigation
2.9. Measurements
2.9.1. Irrigation Time at Starting Point
- Tsp is the sprinkler stop time at start point (h).
- r is the wetting radius (m).
- is the forward speed (mph).
2.9.2. The Theoretical Application Rate
- Arth is the theoretical application rate (mm/h).
- Qth is the theoretical discharge of the sprinkler (m3/h).
- L is the length of the path to be irrigated by the gun (m).
- Wd is the wetted diameter (m).
2.9.3. The Actual Application Rate
- Arac is the actual application rate (mm/h).
- Qdac is the actual discharge of the sprinkler (m3/h).
- Wdac is the actual wetted diameter.
2.9.4. The Average Applied Water Depth
- Da is the depth of applied water (mm).
- Arth is the theoretical application rate (mm/h).
- T is the time required to irrigate the field (h).
- T is the time required (h).
- L is the length of the path to be irrigated by the gun (m).
- Fs is the forward speed of the robot during field irrigation (m/h).
2.9.5. The Average Collected Water Depth
2.9.6. Evaporation and Wind Drift Losses
2.9.7. Water Application Efficiency
3. Results
3.1. The Theoretical Application Rate
3.2. Effect of Gun Heights on Actual Wetted Diameter and Application Rate
3.3. Irrigation Time at Starting Point
3.4. Effect of Some Engineering Factors on Sprinkler Robot Performance
3.4.1. The Average Applied Water Depth
3.4.2. Evaporation and Wind Drift Losses and Water Application Efficiency
3.4.3. The Average Collected Water Depth
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Elkaoud, N.S.M.; Kassem, M.R.; Tarabye, H.H.; Adam, M.S. Promoting Food Security and Sustainability with A Transportable Indirect Evaporative Solar Pre-Cooler. Rev. Fac. Nac. Agron. Medellín 2024, 77, 10865–10876. [Google Scholar] [CrossRef]
- Chauhdary, J.N.; Li, H.; Jiang, Y.; Pan, X.; Hussain, Z.; Javaid, M.; Rizwan, M. Advances in Sprinkler Irrigation: A Review in the Context of Precision Irrigation for Crop Production. Agronomy 2024, 14, 47. [Google Scholar] [CrossRef]
- Zaky, M.; El Deen, G. The Efficiency Using of Water Resources Under the Environmental Effects in Arab Republic of Egypt. Assiut J. Agric. Sci. 2006, 37, 263–275. [Google Scholar] [CrossRef]
- Rayan, M.B.; Ismail, S.M.; Mahmoud, R.K.; Taraby, H.H.H. Field evaluation of a prototype self-drawn sprinkler irrigation. Arch. Agric. Sci. J. 2022, 5, 185–194. [Google Scholar] [CrossRef]
- Abu Abu-Ross, A.; Assail, I.; Mansour, R. Estimation of the Economic and Productive Efficiency of Maize Crop Under Different Irrigation Conditions in Beheira Governorate. J. Product. Dev. 2022, 27, 219–239. [Google Scholar] [CrossRef]
- Meng, Y. Unspeakable Ecology: Eco-Science and Environmental Awareness Through Thick Inquiries, 1910S–1980S. Twent.-Century China 2022, 47, 91–111. [Google Scholar] [CrossRef]
- Ibrahim, M.H.M.; Makled, S.M.; Elsabea, A.M.R. Current Demand for Water Resources in Egyptian Agriculture. Arab Univ. J. Agric. Sci. 2019, 27, 1291–1306. [Google Scholar] [CrossRef]
- El-Shahed, M.A. An Analytical Economic Study for the Optimal Use of Irrigation Water in Egyptian Agriculture. Aquat. Sci. Fish Resour. 2022, 3, 34–57. [Google Scholar] [CrossRef]
- Ezzeldin, M. Challenges of water resources management in Egypt and solution opportunities. Constr. Sci. Educ. 2021, 11, 1–14. [Google Scholar]
- Eissa, M.A.; Rekaby, S.A.; Hegab, S.A.; Ragheb, H.M. Effect of deficit irrigation on drip-irrigated wheat grown in semi-arid conditions of Upper Egypt. J. Plant Nutr. 2018, 41, 1576–1586. [Google Scholar] [CrossRef]
- Ragab, A.M.; Zekry, A.A.; Hassan, A.Y. Innovative Solar Photovoltaic Solutions for Water-Efficient Irrigation: A Comprehensive Algorithmic Approach. In Proceedings of the 2023 34th Conference of Open Innovations Association (FRUCT), Riga, Latvia, 15–17 November 2023. [Google Scholar] [CrossRef]
- Saleh, E.M.A. Can irrigation water saving options cope with water scarcity in Egypt? Environ. Sci. Agric. Food Sci. 2020, 6, 167–176. [Google Scholar]
- Moore, S.M. The development of water markets in China: Progress, peril, and prospects. Water Policy 2014, 17, 253–267. [Google Scholar] [CrossRef]
- Eissa, M.A.; Rekaby, S.A.; Hegab, S.A.; Ragheb, H.M. Optimum rate of nitrogen fertilization for drip-irrigated wheat under semi-arid conditions. J. Plant Nutr. 2018, 41, 1414–1424. [Google Scholar] [CrossRef]
- Li, M.; Wang, Y.; Guo, H.; Ding, F.; Yan, H. Evaluation of variable rate irrigation management in forage crops: Saving water and increasing water productivity. Agric. Water Manag. 2023, 275, 108020. [Google Scholar] [CrossRef]
- Liang, Z.; Liu, X.; Xiong, J.; Xiao, J. Water Allocation and Integrative Management of Precision Irrigation: A Systematic Review. Water 2020, 12, 3135. [Google Scholar] [CrossRef]
- Gunarathna, M.H.J.P.; Sakai, K.; Nakandakari, T.; Kazuro, M.; Onodera, T.; Kaneshiro, H.; Uehara, H.; Wakasugi, K. Optimized Subsurface Irrigation System (OPSIS): Beyond Traditional Subsurface Irrigation. Water 2017, 9, 599. [Google Scholar] [CrossRef]
- Dai, H.; Wang, R.; Chen, L.; Wang, L.; Xiong, C.; Wang, X.; Zhang, M. Effects of Different Micro-Irrigation Methods on Water Use and the Economic Benefits of an Apple–Soybean Intercropping System. Agronomy 2023, 13, 1143. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, X.; Jin, L.; Ni, J.; Zhu, Y.; Cao, W.; Jiang, X. Research and Development of an IoT Smart Irrigation System for Farmland Based on LoRa and Edge Computing. Agronomy 2025, 15, 366. [Google Scholar] [CrossRef]
- Wang, J.; Song, Z.; Chen, R.; Yang, T.; Tian, Z. Experimental Study on Droplet Characteristics of Rotating Sprinklers with Circular Nozzles and Diffuser. Agriculture 2022, 12, 987. [Google Scholar] [CrossRef]
- Sheikhesmaeili, O.; Montero, J.; Laserna, S. Analysis of water application with semi-portable big size sprinkler irrigation systems in semi-arid areas. Agric. Water Manag. 2016, 163, 275–284. [Google Scholar] [CrossRef]
- Zhu, X.; Fordjour, A.; Dwomoh, F.A.; Lewballah, J.K.; Ofosu, S.A.; Liu, J.; Oteng, J. Experimental study on the effects of pressure loss on uniformity, application rate and velocity on different working conditions using the dynamic fluidic sprinkler. Heliyon 2024, 10, e27140. [Google Scholar] [CrossRef]
- Pelletier, N.; Audsley, E.; Brodt, S.; Garnett, T.; Henriksson, P.; Kendall, A.; Kramer, K.J.; Murphy, D.; Nemecek, T.; Troell, M. Energy Intensity of Agriculture and Food Systems. Annu. Rev. Environ. Resour. 2011, 36, 223–246. [Google Scholar] [CrossRef]
- Adeyemi, O.; Grove, I.; Peets, S.; Norton, T. Advanced Monitoring and Management Systems for Improving Sustainability in Precision Irrigation. Sustainability 2017, 9, 353. [Google Scholar] [CrossRef]
- Gong, X.; Zhu, D.; Zhang, L.; Zhang, Y.; Ge, M.; Yang, W. Drop size distribution of fixed spray-plate sprinklers with two-dimensional video disdrometer. Trans. Chin. Soc. Agric. Mach. 2014, 148, 128–133. [Google Scholar]
- Wang, X.; Li, G.; Guo, C.; Han, W.; Yao, X.; Sun, Y. Optimization of impact sprinkler sub-nozzle parameters of elevation angle and position. Trans. Chin. Soc. Agric. Eng. 2015, 31, 89–95. [Google Scholar]
- Osman, M.; Hassan, S.B.; Yusof, K.B.W. Effect of combination factors of operating pressure, nozzle diameter and riser height on sprinkler irrigation uniformity. Appl. Mech. Mater. 2015, 695, 380–383. [Google Scholar] [CrossRef]
- Solomon, K.H.; Kissiinger, J.A.; Farrens, G.P.; Borneman, J. Performance and Water Conservation Potential of Multi-Stream, Multi-Trajectory Rotating Sprinklers for Landscape Irrigation. Appl. Eng. Agric. 2006, 23, 153–163. [Google Scholar] [CrossRef]
- Semananda, N.P.K.; Ward, J.D.; Myers, B.R. A Semi-Systematic Review of Capillary Irrigation: The Benefits, Limitations, and Opportunities. Horticulturae 2018, 4, 23. [Google Scholar] [CrossRef]
- Ribeiro, M.S.; Lima, L.A.; Colombo, A.; Caldeira, A.C.D.M.; Faria, F.H.D.S. Water distribuition characteristics and soil loss of LEPA Quad-Spray emitter nozzles. Eng. Agric. 2013, 33, 223–236. [Google Scholar] [CrossRef]
- Nuyttens, D.; Baetens, K.; De Schampheleire, M.; Sonck, B. Effect of nozzle type, size and pressure on spray droplet characteristics. Biosyst. Eng. 2007, 97, 333–345. [Google Scholar] [CrossRef]
- Kumar, P.; Pradeep, K.B.; Begum, S.G.; Kumar, K.A.; Sumathi, P. Feasibility studies on raingun method of irrigation system in groundnut. Agric. Eng. Today 2021, 45, 8–12. [Google Scholar] [CrossRef]
- Khedkar, D.D.; Gorantiwar, S.D.; Adsul, S.U. Studies on Pressure-Discharge and Pressure-Radius of Throw Relationships for Rainguns. J. Agric. Res. Technol. 2014, 39, 469–475. [Google Scholar]
- Chen, R.; Li, H.; Wang, J.; Song, Z. Critical Factors Influencing Soil Runoff and Erosion in Sprinkler Irrigation: Water Application Rate and Droplet Kinetic Energy. Agric. Water Manag. 2023, 283, 108299. [Google Scholar] [CrossRef]
- Chen, R.; Li, H.; Wang, J.; Guo, X. Effects of Pressure and Nozzle Size on the Spray Characteristics of Low-Pressure Rotating Sprinklers. Water 2020, 12, 2904. [Google Scholar] [CrossRef]
- Pan, Q.; Lu, Y.; Hu, H.; Hu, Y. Review and Research Prospects on Sprinkler Irrigation Frost Protection for Horticultural Crops. Sci. Hortic. 2024, 326, 112775. [Google Scholar] [CrossRef]
- Irmak, S.; Odhiambo, L.O.; Kranz, L.W.; Eisenhauer, D. EC732. Irrigation Efficiency and Uniformity, and Crop Water Use Efficiency. Biol. Syst. Eng. Pap. Publ. 2011, 451. Available online: https://digitalcommons.unl.edu/biosysengfacpub/451 (accessed on 12 March 2025).
- Yaseen, M.U.; Saddique, G.; Ashraf, M.; Yasmeen, Z.; Ahmad, S. Design, development and testing of mobile sprinkler rain gun for smart irrigation in arid zone-based crops. J. Agric. Res. 2019, 57, 109–118. [Google Scholar]
- Faria, L.C.; Flores, J.H.N.; Fuga, E.C.; Nörenberg, B.G.; Beskow, S.; de Oliveira, H.F.E.; do Prado, G.; Colombo, A. Modeling Water Distribution Uniformity of Medium-Sized Sprinklers Using Artificial Neural Networks. AgriEngineering 2025, 7, 41. [Google Scholar] [CrossRef]
- Yan, H.; Hui, X.; Li, M.; Xu, Y. Development in sprinkler irrigation technology in China. Irrig. Drainage. Irrig. Drain. 2020, 69, 75–87. [Google Scholar] [CrossRef]
- Yatheendrdasan, R.K.; Arathy, J.; Rubasree, M.; Shimola, C.M.; Rajeswari, R. Evaluation of a Traveller Sprinkler System with Various Nozzles. Water Product. J. 2020, 1, 21–30. [Google Scholar] [CrossRef]
- Cheng, J.; Tang, Y.; Tang, L. Energy consumption analysis of hydraulic turbine of JP75 hose reel irrigator. J. Drain. Irrig. Mach. Eng. 2016, 34, 1008–1012, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Ge, M.; Wu, P.; Zhu, D.; Zhang, L.; Xiao, X.; Xu, H. Construction and application of mobile spraying uniformity model of hard hose traveler. Trans. CSAE 2016, 32, 130–137, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Abdelhamid, M.A.; Abdelkader, T.K.; Sayed, H.A.A.; Zhang, Z.; Zhao, X.; Atia, M.F. Design and evaluation of a solar powered smart irrigation system for sustainable urban agriculture. Sci. Rep. 2025, 15, 11761. [Google Scholar] [CrossRef] [PubMed]
- Penzotti, G.; Rizzini, D.L.; Caselli, S. A planning strategy for sprinkler-based variable rate irrigation. Comput. Electron. Agric. 2023, 212, 108126. [Google Scholar] [CrossRef]
- Kohl, K.D.; Kohl, R.A.; DeBoer, D.W. Measurement of low-pressure sprinkler evaporation loss. Trans. ASAE 1987, 30, 1071–1074. [Google Scholar] [CrossRef]
- Silva, L.L.; Serralheiro, R.; Santos, N. Improving irrigation performance in hose-drawn traveller sprinkler systems. Biosyst. Eng. 2007, 96, 121–127. [Google Scholar] [CrossRef]
- Sallam, A.N.; Zabady, F.I.; Hassan, A.M.; Elmashad, M.M. Study of Temporal Changes in Subsurface Drainage in Land-Scape. Al-Azhar J. Agric. Eng. 2024, 7. [Google Scholar] [CrossRef]
- Shaban, K.M.; El-Gamal, T.T.; Abu El-Khair, R.; Osama, M.; El-Naser, A.; Khaled, H. Implications of different irrigation water qualities on crop production: A case study of Sharkia Governorate. Al-Azhar J. Agric. Eng. 2023, 5. [Google Scholar] [CrossRef]
- Abdeen, S.A.; El-Sayed, M.M. Influence of compost and canal clay scouring on sandy soil properties and wheat productivity under irrigation water regime. Int. J. Recycl. Org. Waste Agric. 2021, 10, 427–438. [Google Scholar] [CrossRef]
- Zhu, X.; Chikangaise, P.; Shi, W.; Chen, W.H.; Yuan, S. Review of intelligent sprinkler irrigation technologies for remote autonomous system. Int. J. Agric. Biol. Eng. 2018, 11, 23–30. [Google Scholar] [CrossRef]
- Li, H.; Issaka, Z.; Jiang, Y.; Tang, P.; Chen, C. Overview of emerging technologies in sprinkler irrigation to optimize crop production. Int. J. Agric. Biol. Eng. 2019, 12, 1–9. [Google Scholar] [CrossRef]
- Babaousmail, M.; Nili, M.S.; Brik, R.; Saadouni, M.; Yousif, S.K.M.; Omer, R.M.; Osman, N.A.; Alsahli, A.A.; Ashour, H.; El-Taher, A.M. Improving the Tolerance to Salinity Stress in Lettuce Plants (Lactuca sativa L.) Using Exogenous Application of Salicylic Acid, Yeast, and Zeolite. Life 2022, 12, 1538. [Google Scholar] [CrossRef]
Parameter | Symbol | Calculation | Values | Unit |
---|---|---|---|---|
Starting point | SP | Variable | Based on the nozzle sizes and the required overlap ratio | |
Wetting radius | r | Variable | 25, 27.5, 30 | m |
The angle of water flow from the nozzle on the horizontal axis | θ | Variable | Radian | |
Gun angular velocity at irrigation cycle | ωI | rad/s | ||
Gun rotations speed at irrigation cycle | nI | 0.33, 0.27, 0.21 | rpm | |
Gun angular velocity at return cycle | −ωR | rad/s | ||
Gun rotations speed at return cycle | nR | 2, 1.7, 1.5 | rpm | |
Forward speed | Fs | Variable | 25, 50, 75 | mph |
Distance from the starting point to the end of the experimental field | x | 110 − r | 60, 55, 50 | m |
Wetted diameter | Wd | WR + WL | 2 r | m |
The irrigated area | Ia1 | Variable | m2 |
Nozzles (mm) | h (m) | Wdac (m) |
---|---|---|
12 | 1.25 | 47.5 |
1.5 | 49 | |
2 | 48 | |
14 | 1.25 | 51.5 |
1.5 | 54 | |
2 | 53 | |
16 | 1.25 | 56 |
1.5 | 57 | |
2 | 55.5 |
Nozzles (mm) | r (m) | Fs (m/h) | Tsp (min) | Tx (min) | T (min) | (h) |
---|---|---|---|---|---|---|
12 | 25 | 25 | 60 | 204 | 264 | 4.4 |
50 | 30 | 102 | 132 | 2.2 | ||
75 | 20 | 68 | 88 | 1.467 | ||
14 | 27.5 | 25 | 66 | 198 | 264 | 4.4 |
50 | 33 | 99 | 132 | 2.2 | ||
75 | 22 | 66 | 88 | 1.467 | ||
16 | 30 | 25 | 72 | 192 | 264 | 4.4 |
50 | 36 | 96 | 132 | 2.2 | ||
75 | 24 | 64 | 88 | 1.467 |
Nozzles (mm) | Fs (m/h) | h (m) | T (h) | Da (mm) | Dc (mm) | EWDL (mm) | Aeff (%) |
---|---|---|---|---|---|---|---|
12 | 25 | 1.25 | 4.4 | 10.08 | 8.15 | 1.930 | 80.9 |
1.5 | 8.25 | 1.830 | 81.8 | ||||
2 | 8.05 | 2.030 | 79.9 | ||||
50 | 1.25 | 2.2 | 5.04 | 3.6 | 1.440 | 71.4 | |
1.5 | 3.89 | 1.150 | 77.2 | ||||
2 | 3.25 | 1.790 | 64.5 | ||||
75 | 1.25 | 1.467 | 3.34 | 2.4 | 0.945 | 71.8 | |
1.5 | 2.71 | 0.635 | 81.0 | ||||
2 | 2.35 | 0.995 | 70.3 | ||||
14 | 25 | 1.25 | 4.4 | 11.78 | 9.5 | 2.282 | 80.6 |
1.5 | 9.72 | 2.062 | 82.5 | ||||
2 | 9.25 | 2.532 | 78.5 | ||||
50 | 1.25 | 2.2 | 5.89 | 4.75 | 1.141 | 80.6 | |
1.5 | 4.8 | 1.091 | 81.5 | ||||
2 | 4.55 | 1.341 | 77.2 | ||||
75 | 1.25 | 1.467 | 3.91 | 3.1 | 0.809 | 79.3 | |
1.5 | 2.95 | 0.959 | 75.5 | ||||
2 | 2.65 | 1.259 | 67.8 | ||||
16 | 25 | 1.25 | 4.4 | 14.00 | 11.25 | 2.750 | 80.4 |
1.5 | 11.35 | 2.650 | 81.1 | ||||
2 | 11.21 | 2.790 | 80.1 | ||||
50 | 1.25 | 2.2 | 7.00 | 5.56 | 1.440 | 79.4 | |
1.5 | 5.6 | 1.400 | 80.0 | ||||
2 | 5.45 | 1.550 | 77.9 | ||||
75 | 1.25 | 1.467 | 4.65 | 3.66 | 0.985 | 78.8 | |
1.5 | 3.75 | 0.895 | 80.7 | ||||
2 | 3.7 | 0.945 | 79.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elkaoud, N.; Ismail, S.; Mahmoud, R.; Taraby, H.; Shang, S.; Wang, D.; Rayan, M. Efficient and Effective Irrigation Water Management Using Sprinkler Robot. Eng 2025, 6, 138. https://doi.org/10.3390/eng6070138
Elkaoud N, Ismail S, Mahmoud R, Taraby H, Shang S, Wang D, Rayan M. Efficient and Effective Irrigation Water Management Using Sprinkler Robot. Eng. 2025; 6(7):138. https://doi.org/10.3390/eng6070138
Chicago/Turabian StyleElkaoud, Nabil, Saleh Ismail, Ragab Mahmoud, Hassan Taraby, Shuqi Shang, Dongwei Wang, and Mostafa Rayan. 2025. "Efficient and Effective Irrigation Water Management Using Sprinkler Robot" Eng 6, no. 7: 138. https://doi.org/10.3390/eng6070138
APA StyleElkaoud, N., Ismail, S., Mahmoud, R., Taraby, H., Shang, S., Wang, D., & Rayan, M. (2025). Efficient and Effective Irrigation Water Management Using Sprinkler Robot. Eng, 6(7), 138. https://doi.org/10.3390/eng6070138