Gene Therapy in Pediatric Orthopedics
Abstract
:1. Introduction
2. Gene Therapy in Duchenne Muscular Dystrophy (#310200)
2.1. Gene Replacement Therapy
2.1.1. Microdystrophin Targeting
2.1.2. GALGT2 Targeting
2.2. Antisense Oligonucleotides
2.3. CRISPR/Cas9 Therapies
3. Gene Therapy in Osteogenesis Imperfecta (#166200)
3.1. Gene Silencing + iPSC Use in OI
3.2. CRISPR + iPSC Use in OI
3.3. Yamanaka Factor + iPSC Use in OI
4. Gene Therapy in Spinal Muscular Atrophy (#253300)
5. Gene Therapy in Osteosarcoma (#259500)
5.1. Tumor Suppressor Genes in Osteosarcoma
5.2. Proto-Oncogenes in Osteosarcoma
5.3. MiRNA in Osteosarcoma
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wirth, T.; Parker, N.; Ylä-Herttuala, S. History of gene therapy. Gene 2013, 525, 162–169. [Google Scholar] [CrossRef]
- Malech, H.L.; Garabedian, E.K.; Hsieh, M.M. Evolution of Gene Therapy, Historical Perspective. Hematol. Oncol. Clin. N. Am. 2022, 36, 627–645. [Google Scholar] [CrossRef] [PubMed]
- Patterson, G.; Conner, H.; Groneman, M.; Blavo, C.; Parmar, M.S. Duchenne muscular dystrophy: Current treatment and emerging exon skipping and gene therapy approach. Eur. J. Pharmacol. 2023, 947, 175675. [Google Scholar] [CrossRef] [PubMed]
- Chamakioti, M.; Karantzelis, N.; Taraviras, S. Advanced Gene-Targeting Therapies for Motor Neuron Diseases and Muscular Dystrophies. Int. J. Mol. Sci. 2022, 23, 23094824. [Google Scholar] [CrossRef]
- Mendell, J.R.; Sahenk, Z.; Lehman, K.; Nease, C.; Lowes, L.P.; Miller, N.F.; Iammarino, M.A.; Alfano, L.N.; Nicholl, A.; Al-Zaidy, S.; et al. Assessment of Systemic Delivery of rAAVrh74.MHCK7.micro-dystrophin in Children With Duchenne Muscular Dystrophy: A Nonrandomized Controlled Trial. JAMA Neurol. 2020, 77, 1122–1131. [Google Scholar] [CrossRef]
- Solid Biosciences. Solid Biosciences Presents New SGT-001 IGNITE DMD Study Results at World Muscle Society 2022 Congress Demonstrating Improvements in Ambulatory Function. Available online: https://www.solidbio.com/about/media/press-releases/solid-biosciences-presents-new-sgt-001-ignite-dmd-study-results-at-world-muscle-society-2022-congress-demonstrating-improvements-in-ambulatory-function (accessed on 9 November 2023).
- clinicaltrials.gov. Microdystrophin Gene Transfer Study in Adolescents and Children With DMD—Full Text View—ClinicalTrials.gov. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT03368742 (accessed on 9 November 2023).
- Scheller, E.L.; Krebsbach, P.H. Gene therapy: Design and prospects for craniofacial regeneration. J. Dent. Res. 2009, 88, 585–596. [Google Scholar] [CrossRef]
- The Yu Lab. Antisense Therapy. Available online: https://www.theyulab.org/antisense-therapy#:~:text=While%20they%20act%20on%20genetic (accessed on 9 November 2023).
- Takeda, S.; Clemens, P.R.; Hoffman, E.P. Exon-Skipping in Duchenne Muscular Dystrophy. J. Neuromuscul. Dis. 2021, 8 (Suppl. 2), S343–S358. [Google Scholar] [CrossRef] [PubMed]
- Happi Mbakam, C.; Lamothe, G.; Tremblay, G.; Tremblay, J.P. CRISPR-Cas9 Gene Therapy for Duchenne Muscular Dystrophy. Neurotherapeutics 2022, 19, 931–941. [Google Scholar] [CrossRef]
- Botor, M.; Fus-Kujawa, A.; Uroczynska, M.; Stepien, K.L.; Galicka, A.; Gawron, K.; Sieron, A.L. Osteogenesis Imperfecta: Current and Prospective Therapies. Biomolecules 2021, 11, 11101493. [Google Scholar] [CrossRef] [PubMed]
- Marom, R.; Rabenhorst, B.M.; Morello, R. Osteogenesis imperfecta: An update on clinical features and therapies. Eur. J. Endocrinol. 2020, 183, R95–R106. [Google Scholar] [CrossRef]
- Marr, C.; Seasman, A.; Bishop, N. Managing the patient with osteogenesis imperfecta: A multidisciplinary approach. J. Multidiscip. Healthc. 2017, 10, 145–155. [Google Scholar] [CrossRef]
- Schindeler, A.; Lee, L.R.; O’Donohue, A.K.; Ginn, S.L.; Munns, C.F. Curative Cell and Gene Therapy for Osteogenesis Imperfecta. J. Bone Miner. Res. 2022, 37, 826–836. [Google Scholar] [CrossRef]
- Besio, R.; Forlino, A. New frontiers for dominant osteogenesis imperfecta treatment: Gene/cellular therapy approaches. Adv. Regen. Biol. 2015, 2, 27964. [Google Scholar] [CrossRef]
- Deyle, D.R.; Khan, I.F.; Ren, G.; Wang, P.-R.; Kho, J.; Schwarze, U.; Russell, D.W. Normal collagen and bone production by gene-targeted human osteogenesis imperfecta iPSCs. Mol. Ther. J. Am. Soc. Gene Ther. 2012, 20, 204–213. [Google Scholar] [CrossRef]
- Cabral, W.A.; Marini, J.C. High proportion of mutant osteoblasts is compatible with normal skeletal function in mosaic carriers of osteogenesis imperfecta. Am. J. Hum. Genet. 2004, 74, 752–760. [Google Scholar] [CrossRef]
- Cao, Y.; Li, L.; Ren, X.; Mao, B.; Yang, Y.; Mi, H.; Guan, Y.; Li, S.; Zhou, S.; Guan, X.; et al. CRISPR/Cas9 correction of a dominant cis-double-variant in COL1A1 isolated from a patient with osteogenesis imperfecta increases the osteogenic capacity of induced pluripotent stem cells. J. Bone Miner. Res. 2023, 38, 719–732. [Google Scholar] [CrossRef] [PubMed]
- www.cellbiolabs.com. Adeno-Associated Virus (AAV) Provides Advantages for Gene Delivery | Cell Biolabs. Available online: https://www.cellbiolabs.com/news/adeno-associated-virus-aav-provides-advantages-gene-delivery#:~:text=Home- (accessed on 9 November 2023).
- Fus-Kujawa, A.; Mendrek, B.; Bajdak-Rusinek, K.; Diak, N.; Strzelec, K.; Gutmajster, E.; Janelt, K.; Kowalczuk, A.; Trybus, A.; Rozwadowska, P.; et al. Gene-repaired iPS cells as novel approach for patient with osteogenesis imperfecta. Front. Bioeng. Biotechnol. 2023, 11, 1205122. [Google Scholar] [CrossRef]
- Arnold, W.D.; Kassar, D.; Kissel, J.T. Spinal muscular atrophy: Diagnosis and management in a new therapeutic era. Muscle Nerve 2015, 51, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Blair, H.A. Onasemnogene Abeparvovec: A Review in Spinal Muscular Atrophy. CNS Drugs 2022, 36, 995–1005. [Google Scholar] [CrossRef]
- Mercuri, E.; Finkel, R.S.; Muntoni, F.; Wirth, B.; Montes, J.; Main, M.; Mazzone, E.S.; Vitale, M.; Snyder, B.; Quijano-Roy, S.; et al. SMA Care Group Diagnosis and management of spinal muscular atrophy: Part 1: Recommendations for diagnosis, rehabilitation, orthopedic and nutritional care. Neuromuscul. Disord. NMD 2018, 28, 103–115. [Google Scholar] [CrossRef]
- Schwentker, E.P.; Gibson, D.A. The orthopaedic aspects of spinal muscular atrophy. J. Bone Jt. Surg. Am. Vol. 1976, 58, 32–38. [Google Scholar] [CrossRef]
- Mendell, J.R.; Al-Zaidy, S.; Shell, R.; Arnold, W.D.; Rodino-Klapac, L.R.; Prior, T.W.; Lowes, L.; Alfano, L.; Berry, K.; Church, K.; et al. Single-Dose Gene-Replacement Therapy for Spinal Muscular Atrophy. N. Engl. J. Med. 2017, 377, 1713–1722. [Google Scholar] [CrossRef]
- Zhao, X.; Wu, Q.; Gong, X.; Liu, J.; Ma, Y. Osteosarcoma: A review of current and future therapeutic approaches. Biomed. Eng. Online 2021, 20, 24. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.L.; Choong, P.F.; Dass, C.R. Osteosarcoma: Conventional treatment vs. gene therapy. Cancer Biol. Ther. 2009, 8, 106–117. [Google Scholar] [CrossRef] [PubMed]
- Broadhead, M.L.; Clark, J.C.; Choong, P.F.; Dass, C.R. Making gene therapy for osteosarcoma a reality. Expert Rev. Anticancer Ther. 2010, 10, 477–480. [Google Scholar] [CrossRef]
- Tang, F.; Min, L.; Seebacher, N.A.; Li, X.; Zhou, Y.; Hornicek, F.J.; Wei, Y.; Tu, C.; Duan, Z. Targeting mutant TP53 as a potential therapeutic strategy for the treatment of osteosarcoma. J. Orthop. Res. Off. Publ. Orthop. Res. Soc. 2019, 37, 789–798. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Zhang, H.; Guo, Z.; Zhou, J.; Zhang, W.; Gong, M.; Wu, J. CKM and TERT dual promoters drive CRISPR-dCas9 to specifically inhibit the malignant behavior of osteosarcoma cells. Cell. Mol. Biol. Lett. 2023, 28, 52. [Google Scholar] [CrossRef] [PubMed]
- Freeman, F.E.; Dosta, P.; Shanley, L.C.; Ramirez Tamez, N.; Riojas Javelly, C.J.; Mahon, O.R.; Kelly, D.J.; Artzi, N. Localized Nanoparticle-Mediated Delivery of miR-29b Normalizes the Dysregulation of Bone Homeostasis Caused by Osteosarcoma whilst Simultaneously Inhibiting Tumor Growth. Adv. Mater. 2023, 35, e2207877. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, S.; Gao, Q.; Li, N.; Dong, S.; Gao, Y.; Wang, Z.; Zhang, B.; He, X. MiRNA-520a-3p combined with folic acid conjugated Fe2O3@PDA multifunctional nanoagents for MR imagine and antitumor gene-photothermal therapy. Nanotechnology 2023, 34, acd5d9. [Google Scholar] [CrossRef] [PubMed]
Disease Name | MIM Number | Treatment Type | Name of Treatment | Phase of Clinical Trial | Clinical Trial Number |
---|---|---|---|---|---|
Duchenne Muscular Dystrophy | #310200 | Microdystrophin gene replacement | SRP-9001 | Phase I | NCT04626674 |
PF-0693992 | Phase III | NCT04281485 | |||
SGT-001 | Phase I/II | NCT03368742 | |||
GALGT2 gene replacement | rAAVrh74.MCK.GALGT2 | Phase I/IIa | NCT03333590 | ||
Anti sense oligonucleotides | Eteplisern | FDA approved | N/A | ||
Golodirsen | FDA approved | N/A | |||
Casimersen | FDA approved | N/A | |||
Viltolarsen | Phase II/III and IV | NCT04060199 | |||
scAAV9.U7.ACCA | Phase I/IIa | NCT04240314 | |||
CRISPR/Cas9 Therapy | CRISPR/Cas9 | Pre clinical | N/A | ||
Osteogenesis Imperfecta | #166200 | Gene silencing and iPSC use | COL1A1 silencing | Pre clinical | N/A |
CRISPR/Cas9 and iPSC use | COL1A1/2 editing | Pre clinical | N/A | ||
Yamanka factor and iPSC use | N/A | Pre clinical | N/A | ||
Spinal Muscular Atrophy | #253300 | SMN1 gene replacement | Onasemnogene Abeparvovec | FDA approved | N/A |
Osteosarcoma | #259500 | Tumor supressor gene targeting | TP53 knockout | Pre-clinical | N/A |
proto-oncogene targeting | MDM2 targeting | Pre-clinical | N/A | ||
Mi-RNA delivery | MiR-29b delivery | Pre-clinical | N/A | ||
Mi-RNA delivery | Mi-R-520a-3p delivery | Pre-clinical | N/A |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olaonipekun, E.; Lisyansky, A.; Olaonipekun, R.; Merabia, B.G.; Gaber, K.; Kishta, W. Gene Therapy in Pediatric Orthopedics. Osteology 2024, 4, 33-44. https://doi.org/10.3390/osteology4010003
Olaonipekun E, Lisyansky A, Olaonipekun R, Merabia BG, Gaber K, Kishta W. Gene Therapy in Pediatric Orthopedics. Osteology. 2024; 4(1):33-44. https://doi.org/10.3390/osteology4010003
Chicago/Turabian StyleOlaonipekun, Emmanuel, Anthony Lisyansky, Robin Olaonipekun, Bouchra Ghania Merabia, Karim Gaber, and Waleed Kishta. 2024. "Gene Therapy in Pediatric Orthopedics" Osteology 4, no. 1: 33-44. https://doi.org/10.3390/osteology4010003
APA StyleOlaonipekun, E., Lisyansky, A., Olaonipekun, R., Merabia, B. G., Gaber, K., & Kishta, W. (2024). Gene Therapy in Pediatric Orthopedics. Osteology, 4(1), 33-44. https://doi.org/10.3390/osteology4010003