The Influence of Anti-Citrullinated Polypeptide Antibodies on Bone Mineral Density Decrease and Incident Major Osteoporotic Fractures in Patients with Rheumatoid Arthritis: A Retrospective Case-Control Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Baseline Background Study
2.2. Follow-Up Study
2.3. Comparison between ACPA Positive/Negative Groups Study
2.4. Incident MOF Study
3. Results
3.1. Baseline Background Study
3.2. Follow-Up Study
3.3. Comparison for ACPA Positivity Study
3.4. Incident MOF Study
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Hooyman, J.R.; Melton, L.J., 3rd; Nelson, A.M.; O’Fallon, W.M.; Riggs, B.L. Fractures after rheumatoid arthritis. A population-based study. Arthritis Rheum. 1984, 27, 1353–1361. [Google Scholar] [CrossRef] [PubMed]
- Hall, G.M.; Spector, T.D.; Griffin, A.J.; Jawad, A.S.; Hall, M.L.; Doyle, D.V. The effect of rheumatoid arthritis and steroid therapy on bone density in postmenopausal women. Arthritis Rheum. 1993, 36, 1510–1516. [Google Scholar] [CrossRef] [PubMed]
- Haugeberg, G.; Uhlig, T.; Falch, J.A.; Halse, J.I.; Kvien, T.K. Bone mineral density and frequency of osteoporosis in female patients with rheumatoid arthritis: Results from 394 patients in the Oslo County Rheumatoid Arthritis register. Arthritis Rheum. 2000, 43, 522–530. [Google Scholar] [CrossRef] [PubMed]
- Huusko, T.M.; Korpela, M.; Karppi, P.; Avikainen, V.; Kautiainen, H.; Sulkava, R. Threefold increased risk of hip fractures with rheumatoid arthritis in Central Finland. Ann. Rheum. Dis. 2001, 60, 521–522. [Google Scholar] [CrossRef] [Green Version]
- Lodder, M.C.; de Jong, Z.; Kostense, P.J.; Molenaar, E.T.; Staal, K.; Voskuyl, A.E.; Hazes, J.M.W.; Dijkmans, B.A.C.; Lems, W.F. Bone mineral density in patients with rheumatoid arthritis: Relation between disease severity and low bone mineral density. Ann. Rheum. Dis. 2004, 63, 1576–1580. [Google Scholar] [CrossRef] [Green Version]
- Van Staa, T.P.; Geusens, P.; Bijlsma, J.W.; Leufkens, H.G.; Cooper, C. Clinical assessment of the long-term risk of fracture in patients with rheumatoid arthritis. Arthritis Rheum. 2006, 54, 3104–3112. [Google Scholar] [CrossRef] [Green Version]
- Güler-Yüksel, M.; Allaart, C.F.; Goekoop-Ruiterman, Y.P.; de Vries-Bouwstra, J.K.; van Groenendael, J.H.; Mallée, C.; De Bois, M.H.W.; Breedveld, F.C.; Dijkmans, B.A.C.; Lems, W.F. Changes in hand and generalised bone mineral density in patients with recent-onset rheumatoid arthritis. Ann. Rheum. Dis. 2009, 68, 330–336. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.Y.; Schneeweiss, S.; Liu, J.; Daniel, G.W.; Chang, C.L.; Garneau, K.; Solomon, D.H. Risk of osteoporotic fracture in a large population-based cohort of patients with rheumatoid arthritis. Arthritis Res. Ther. 2009, 12, R154. [Google Scholar] [CrossRef] [Green Version]
- Heidari, B.; Roushan, M.R.H. Rheumatoid arthritis and osteoporosis. Caspian J. Intern. Med. 2012, 3, 445–446. [Google Scholar]
- Kanis, J.A. FRAX® Fracture Risk Assessment Tool. University of Sheffield. 2011. Available online: https://www.sheffield.ac.uk/FRAX/tool.aspx?lang=en/ (accessed on 27 April 2021).
- Cortet, B.; Flipo, R.M.; Blanckaert, F.; Duquesnoy, B.; Marchandise, X.; Declamble, B. Evaluation of bone mineral density in patients with rheumatoid arthritis. Influence of disease activity and glucocorticoid therapy. Rev. Rheum. Engl. Ed. 1997, 64, 451–458. [Google Scholar]
- Van Staa, T.P.; Leufkens, H.G.M.; Abenhaim, L.; Zhang, B.; Cooper, C. Use of oral corticosteroid and risk of fractures. J. Bone Miner. Res. 2000, 15, 993–1000. [Google Scholar] [CrossRef] [Green Version]
- Kanis, J.A.; Johansson, H.; Oden, A.; Johnell, O.; de Laet, C.; Melton, L.J., III; Tenenhouse, A.; Reeve, J.; Silman, A.J.; Pols, H.A.; et al. A meta-analysis of prior corticosteroid use and fractur risk. J. Bone Miner. Res. 2004, 19, 893–899. [Google Scholar] [CrossRef]
- Cortet, B.; Guyot, M.H.; Solau, E.; Pigny, P.; Dumoulin, F.; Flipo, R.M.; Marchandise, X.; Delcambre, B. Factors influencing bone loss in rheumatoid arthritis: A longitudinal study. Clin. Exp. Rheumatol. 2000, 18, 683–690. [Google Scholar]
- Furuya, T.; Inoue, E.; Hosoi, T.; Taniguchi, A.; Momohara, S.; Yamanaka, H. Risk factors associated with the occurrence of hip fracture in Japanese patients with rheumatoid arthritis: A prospective observational cohort study. Osteoporos. Int. 2013, 24, 1257–1265. [Google Scholar] [CrossRef]
- Gosch, M.; Jeske, M.; Kammerlander, C.; Roth, T. Osteoporosis and polypharmacy. J. Gerontol. Geriat. 2012, 45, 450–454. [Google Scholar] [CrossRef]
- Krishnamurthy, A.; Joshua, V.; Haj Hensvold, A.; Jin, T.; Sun, M.; Vivar, N.; Ytterberg, A.J.; Engström, M.; Fernandes-Cerqueira, C.; Amara, K.; et al. Identification of a novel chemokine-dependent molecular mechanism underlying rheumatoid arthritis-associated autoantibody-mediated bone loss. Ann. Rheum. Dis. 2016, 75, 721–729. [Google Scholar] [CrossRef] [Green Version]
- Steffen, U.; Schett, G.; Bozec, A. How Autoantibodies Regulate Osteoclast Induced Bone Loss in Rheumatoid Arthritis. Front. Immunol. 2019, 10, 1483. [Google Scholar] [CrossRef] [Green Version]
- Krishnamurthy, A.; Ytterberg, A.J.; Sun, M.; Sakuraba, K.; Steen, J.; Joshua, V.; Tarasova, N.K.; Malmström, V.; Wähämaa, H.; Réthi, B.; et al. Citrullination Controls Dendritic Cell Transdifferentiation into Osteoclasts. J. Immunol. 2019, 202, 3143–3150. [Google Scholar] [CrossRef] [Green Version]
- Catrina, A.; Krishnamurthy, A.; Rethi, B. Curent view on the pathogenic role of anti-citrullinated protein antibodies in rheumatoid arthritis. RMD Open 2021, 7, e001228. [Google Scholar] [CrossRef]
- Kleyer, A.; Finzel, S.; Rech, J.; Manger, B.; Krieter, M.; Faustini, F.; Araujo, E.; Hueber, A.J.; Harre, U.; Engelke, K.; et al. Bone loss before the clinical onset of rheumatoid arthritis in subjects with anticitrullinated protein antibodies. Ann. Rheum. Dis. 2014, 73, 854–860. [Google Scholar] [CrossRef] [Green Version]
- Llorente, I.; Merino, L.; Ortiz, A.M.; Escolano, E.; González-Ortega, S.; García-Vicuña, R.; García-Vadillo, J.A.; Castañeda, S.; González-Álvaro, I. Anti-citrullinated protein antibodies are associated with decreased bone mineral density: Baseline data from a register of early arthritis patients. Rheumatol. Int. 2017, 37, 799–806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stemmler, F.; Simon, D.; Liphardt, A.M.; Englbrecht, M.; Rech, J.; Hueber, A.J.; Engelke, K.; Schett, G.; Kleyer, A. Biomechanical properties of bone are impaired in patients with ACPA-positive rheumatoid arthritis and associated with the occurrence of fractures. Ann. Rheum. Dis. 2018, 77, 973–980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshii, I.; Sawada, N.; Chijiwa, T.; Kokei, S. Impact of sustaining SDAI remission for preventing incident of bone fragility fracture with rheumatoid arthritis. Ann. Rheum. Dis. 2022, 81, 296–299. [Google Scholar] [CrossRef] [PubMed]
- Aletaha, D.; Neogi, T.; Silman, A.J.; Funovits, J.; Felson, D.T.; Bingham, C.O., 3rd; Birnbaum, N.S.; Burmester, G.R.; Bykerk, V.P.; Cohen, M.D.; et al. 2010 Rheumatoid arthritis classification criteria: An American College of Rheumatology/European League Against Rheumatism collaborative initiative. Arthritis Rheum. 2010, 62, 2569–2581. [Google Scholar] [CrossRef]
- Smolen, J.S.; Landewé, R.B.M.; Bijlsma, J.W.J.; Burmester, G.R.; Dougados, M.; Kerschbaumer, A.; Mclnnes, I.B.; Sepriano, A.; Vollenhoven, R.F.; Wit, M.; et al. EULAR recommendations for the management of rheumatoid arthritis with synthetic and biological disease-modifying antirheumatic drugs: 2019 update. Ann. Rheum. Dis. 2020, 79, 685–699. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.Y.; Yang, H.Y.; Lai, J.H. Anti-citrullinated protein antibodies in patients with rheumatoid arthritis: Biological effects and mechanisms of immunopathogenesis. Int. J. Mol. Sci. 2020, 21, 4015. [Google Scholar] [CrossRef]
- Sokolova, M.V.; Schett, G.; Steffen, U. Autoantibodies in rheumatoid arthritis: Histological background and novel findings. Clin. Rev. Allergy Immunol. 2022, 63, 138–151. [Google Scholar] [CrossRef]
- Amkreutz, J.A.; de Moel, E.C.; Theander, L.; Willim, M.; Heimans, L.; Nilsson, J.Å.; Karlsson, M.K.; Huizinga, T.W.; Åkesson, K.E.; Jacobsson, L.T.; et al. Association Between Bone Mineral Density and Autoantibodies in Patients with Rheumatoid Arthritis. Arthritis Rheumatol. 2021, 73, 921–930. [Google Scholar] [CrossRef]
Cases (Male:Female) | 222 (17:205) |
---|---|
age at baseline (year-old) | 69.2 ± 11.8 |
disease duration at baseline (months) | 6.4 ± 6.8 |
ACPA positivity (%) | 77.5 |
ACPA titer (U/mL) | 202.1 ± 496.4 |
RF titer at baseline (IU/mL) | 95.6 ± 199.8 |
SDAI at baseline | 22.2 ± 8.9 |
HAQ at baseline | 0.516 ± 0.617 |
SHS at baseline | 6.6 ± 7.3 |
presence of prevalent MOF at baseline | 115 (51.8%) |
BMD in the LS at baseline and follow-up (g/cm2) | 0.838 ± 0.185/0.845 ± 0.185 |
BMD in the TH at baseline and follow-up (g/cm2) | 0.706 ± 0.143/0.709 ± 0.126 |
Z-score in the LS at baseline and follow-up | −0.047 ± 1.467/0.148 ± 1.491 |
Z-score in the TH at baseline and follow-up | 0.106 ± 1.061/0.314 ± 0.949 |
presence of lifestyle-related diseases at baseline (%) | 85.5 |
presence of fall-ability at baseline (%) | 66.8 |
presence of cognitive impairment at baseline (%) | 10.7 |
presence of incident MOF at follow-up | 39 (17.6%) |
anti-osteoporotic drug administered at baseline and follow-up (%) | 45.8 and 66.7 |
GCS administered at baseline and follow-up (%) | 33.8 and 24.6 |
Candidate Risk Factors | BMD in LS | BMD in TH | Z-Score in LS | Z-Score in TH | ||||
---|---|---|---|---|---|---|---|---|
Univariate Models | Multivariate Model (R: 0.413) | Univariate Models | Multivariate Model (R: 0.572) | Univariate Models | Multivariate Model (R: 0.211) | Univariate Models | Multivariate Model (R: 0.440) | |
p-Value | Coefficient (95%CI) (Beta-Value) | p-Value | Coefficient (95%CI) (Beta-Value) | p-Value | Coefficient (95%CI) (Beta-Value) | p-Value | Coefficient (95%CI) (Beta-Value) | |
female | <0.001 | −0.248 (−0.332–−0.164) (−0.358) ### | <0.001 | −0.078 (−0.145–−0.010) (−0.143) # | <0.01 | −0.319 (−1.086–0.448) (−0.059) | 0.19 | |
older age | <0.05 | −0.001 (−0.003–−0.001) (−0.080) | <0.001 | −0.004 (−0.005–−0.010) (−0.299) ### | 0.1 | 0.13 | ||
longer disease duration | 0.86 | <0.05 | −0.005 (−0.008–−0.017) (−0.234) ## | 0.8 | <0.001 | −0.035 (−0.063–−0.008) (−0.220) # | ||
ACPA positivity | 0.31 | 0.61 | <0.05 | −0.343 (−0.7632–0.047) (−0.125) | <0.05 | −0.026 (−0.344–0.293) (−0.012) | ||
higher ACPA titer | 0.54 | <0.05 | −0.000 (−0.000–−0.000) (−0.140) # | 0.41 | <0.01 | −0.000 (−0.001–−0.000) (−0.153) # | ||
higher SDAI score | 0.16 | <0.05 | 0.000 (−0.002–0.162) (0.011) | 0.36 | 0.11 | |||
higher HAQ score | 0.89 | <0.01 | −0.001 (−0.033–0.030) (−0.006) | 0.37 | <0.05 | −0.069 (−0.305–0.167) (−0.042) | ||
higher SHS | 0.22 | <0.001 | −0.000 (−0.001–0.000) (0.118) | 0.29 | <0.001 | −0.002 (−0.004–0.001) (−0.123) | ||
pr−MOF | <0.001 | −0.071 (−0.120–−0.023) (−0.193) ## | <0.001 | −0.055 (−0.094–−0.017) (−0.202) ## | 0.1 | <0.05 | −0.254 (−0.551–0.043) (−0.122) | |
LSDs | 0.42 | 0.16 | 0.51 | 0.15 | ||||
Fall | 0.20 | 0.95 | <0.01 | 0.432 (0.027–0.838) (0.153) # | <0.05 | 0.352 (0.044–0.660) (0.162) # | ||
CI | 0.44 | 0.07 | 0.67 | 0.78 | ||||
OPD administration | 0.83 | 0.89 | 0.4 | 0.41 | ||||
GCS administration | 0.27 | 0.43 | 0.44 | 0.9 |
Being Female | <0.001 | −0.217 (−0.305–−0.131) (−0.314) ### | <0.001 | −0.100 (−0.154–−0.045) (−0.216) ### | <0.001 | −0.831 (−1.556–−0.106) (−0.152) # | 0.16 | |
---|---|---|---|---|---|---|---|---|
older age at last contact | 0.11 | <0.001 | −0.003 (−0.004–−0.001) −0.261 ### | 0.3 | 0.19 | |||
longer disease duration at last contact | 0.91 | <0.001 | −0.002 (−0.005–0.000) −0.129 | 0.99 | <0.01 | −0.029 (−0.056–0.003) (−0.188) # | ||
ACPA positivity at baseline | 0.2 | 0.82 | <0.05 | −0.377 (−0.774–0.020) (−0.134) | <0.05 | −0.121 (−0.391–0.149) (−0.066) | ||
higher ACPA titer at baseline | 0.34 | 0.47 | 0.71 | 0.14 | ||||
higher mean SDAI score at follow-up | 0.14 | <0.01 | −0.003 (−0.007–0.001) (−0.110) | 0.07 | <0.001 | −0.028 (−0.062–0.005) (−0.127) | ||
higher mean HAQ score at follow-up | 0.98 | <0.001 | −0.016 (−0.047–0.014) (−0.076) | 0.46 | 0.08 | |||
higher mean SHS at follow-up | 0.45 | <0.001 | −0.000 (−0.000–0.000) (−0.099) | 0.20 | <0.001 | −0.001 (−0.003–0.001) (−0.071) | ||
pr-MOF at baseline | <0.01 | −0.055 (−0.101–−0.008) (−0.148) # | <0.001 | −0.048 (−0.081–−0.016) (−0.197) ### | 0.28 | 0.1 | ||
LSDs, ever | 0.65 | 0.32 | 0.35 | 0.51 | ||||
Fall, ever | 0.31 | 0.94 | <0.05 | 0.089 (−0.479–0.302) (0.031) | <0.05 | 0.110 (−0.366–0.146) (−0.006) | ||
CI, ever | 0.52 | 0.29 | 0.95 | 0.75 | ||||
OPD administration, ever | 0.86 | 0.92 | 0.45 | 0.63 | ||||
GCS administration, ever | 0.39 | 0.64 | 0.59 | 0.67 |
Candidate Risk Factors | BMD in LS (120/102) | BMD in TH (121/101) | Z-Score in LS | Z-Score in TH | ||||
---|---|---|---|---|---|---|---|---|
Univariate Models | Multivariate Model (R: 0.227) | Univariate Models | Multivariate Model (R: 0.332) | Univariate Models | Multivariate Model (R: 0.188) | Univariate Models | Multivariate Model (R: 0.418) | |
p-Value | Coefficient (95%CI) (Beta−Value) | p-Value | Coefficient (95%CI) (Beta-Value) | p-Value | Coefficient (95%CI) (Beta-Value) | p-Value | Coefficient (95%CI) (Beta-Value) | |
being female | <0.001 | 0.128 (−0.372–0.628) (0.035) | 0.32 | <0.001 | 0.111 (−0.451–0.675) (−0.028) | 0.16 | ||
older age at last contact | 0.27 | 0.92 | 0.3 | 0.19 | ||||
longer disease duration at last contact | 0.60 | 0.08 | 0.99 | <0.01 | −0.008 (−0.037–0.022) (−0.047) | |||
ACPA positivity at baseline | 0.76 | 0.91 | <0.05 | −0.384 (−0.668–0.099) (0.075) ## | <0.05 | −0.032 (−0.333–0.268) (−0.016) | ||
higher ACPA titer at baseline | 0.51 | 0.53 | 0.71 | 0.14 | ||||
higher mean SDAI score at follow-up | 0.96 | 0.57 | 0.06 | <0.001 | −0.044 (−0.081–−0.007) (−0.186) # | |||
higher mean HAQ score at follow-up | 0.62 | 0.42 | 0.46 | 0.07 | ||||
higher mean SHS at follow-up | 0.61 | <0.05 | 0.003 (0001–0.005) (0.177) # | 20 | <0.001 | −0.001 (−0.003–0.002) (−0.052) | ||
pr-MOF at baseline | <0.05 | 0.136 (−0.135–0.47) (0.068) | 0.14 | 0.28 | 0.1 | |||
LSDs, ever | 0.22 | 0.99 | 0.35 | 0.51 | ||||
Fall, ever | 0.29 | 0.69 | <0.05 | 0.156 (−0.141–0.453) (0.075) | <0.05 | 0.092 (−0.207–0.391) (0.045) | ||
CI, ever | 0.98 | 0.61 | 0.95 | 0.75 | ||||
OPD administration, ever | 0.85 | 0.29 | 0.45 | 0.63 | ||||
GCS administration, ever | <0.05 | −0.221 (−0.509–0.067) (−0.105) | 0.2 | 0.59 | 0.67 |
Parameters | ACPA-Positive (n = 172) | ACPA-Negative (n = 50) | p-Value | |
---|---|---|---|---|
female (%) | 91.3 | 96.5 | 0.10 | |
at baseline | age (year-old) | 65.4 | 71.3 | <0.001 |
disease duration (months) | 7.7 | 4.6 | <0.001 | |
RF (IU/L) | 138.3 ± 197.1 | 21.5 ± 49.3 | <0.001 | |
SDAI | 26.3 ± 24.0 | 21.0 ± 17.8 | <0.05 | |
HAQ | 0.496 ± 0.618 | 0.553 ± 0.639 | 0.48 | |
SHS | 8.4 ± 8.2 | 3.5 ± 5.0 | <0.001 | |
BMD in LS (g/cm2) | 0.825 ± 0.167 | 0.849 ± 0.156 | 0.23 | |
BMD in H (g/cm2) | 0.700 ± 0.140 | 0.710 ± 0.132 | 0.75 | |
Z-score in LS | −0.246 ± 1.300 | 0.123 ± 1.392 | <0.05 | |
Z-score in TH | −0.062 ± 1.034 | 0.261 ± 1.020 | <0.05 | |
presence of lifestyle-related disease (%) | 87.5 | 85.5 | 0.69 | |
presence of fall-ability (%) | 69.8 | 64.2 | 0.49 | |
presence of cognitive impairment (%) | 9.8 | 10.8 | 0.82 | |
at follow-up | follow-up length (months) | 64.8 | 65.4 | 0.65 |
SDAI | 4.5 ± 3.1 | 5.1±4.4 | 0.22 | |
HAQ | 0.495 ± 0.616 | 0.516 ± 0.544 | 0.32 | |
SHS | 8.1 ± 8.2 | 3.4 ± 4.8 | <0.001 | |
BMD in LS (g/cm2) | 0.839 ± 0.171 | 0.870 ± 0.165 | 0.16 | |
BMD in TH (g/cm2) | 0.710 ± 0.118 | 0.713 ± 0.115 | 0.99 | |
Z-score in LS | −0.008 ± 1.361 | 0.368 ± 1.426 | <0.05 | |
Z-score in TH | 0.129 ± 0.902 | 0.396 ± 0.891 | 0.11 | |
anti-osteoporotic drug administered, ever (%) | 73.4 | 69.8 | 0.72 | |
GCS administered, ever (%) | 35.8 | 32.9 | 0.68 |
Prevalent MOF | Incident MOF | |||
---|---|---|---|---|
Univariate Model | Multivariate Model | Univariate Model | Multivariate Model | |
Odds Ratio | Odds Ratio (95%CI) | Odds Ratio | Odds Ratio (95%CI) | |
(95%CI) | (Beta-Value) | (95%CI) | (Beta-Value) | |
female gender | 1.59 (0.58–4.34) | 3.64 (0.47–28.30) | ||
older age at baseline | 1.08 (1.05–1.11) ### | 1.08 (1.04–1.12) (0.08) ### | 1.00 (0.97–1.03) | |
longer disease duration at baseline | 1.03 (0.99–1.08) | 1.01 (0.96–1.06) | ||
ACPA positivity at baseline | 1.6 (0.66–2.03) | 0.84 (0.41–1.73) | ||
higher ACPA titer at baseline | 1.00 (1.00–1.00) | 1.00 (1.00–1.00) | ||
higher SDAI score at baseline | 1.02 (0.99–1.06) | 1.03 (1.00–1.08) | ||
Higher mean SDAI score at follow-up | 1.04 (0.97–1.11) | |||
Higher HAQ score at baseline | 2.24 (1.35–3.70) ## | 1.05 (0.56–1.98) (0.05) | 1.72 (1.02–2.91) # | 1.21 (0.38–3.82) (0.19) |
Higher mean HAQ score at follow-up | 1.75 (1.03–2.96) # | 2.7 (0.32–3.66) (0.07) | ||
higher SHS at baseline | 1.00 (1.00–1.01) # | 1.01 (1.00–1.01) (0.01) # | 1.00 (1.00–1.01) | |
presence of prevalent MOF at baseline | 6.77 (2.71–16.95) ### | 4.85 (1.84–12.79) (1.58) ## | ||
higher BMD in the LS at baseline | 0.05 (0.01–0.27) ### | 0.16 (0.01–2.41) (−1.82) | 0.50 (0.07–3.48) | |
higher BMD in the LS at last observation | 1.08 (0.17–6.95) | |||
higher BMD in the TH at baseline | 0.01 (0.00–0.02) ### | 0.04 (0.00–1.73) (−3.35) | 0.13 (0.01–1.61) | |
higher BMD in the TH at last observation | 0.18 (0.01–3.13) | |||
presence of LSDs, ever | 2.83 (1.28–6.29) # | 2.22 (0.78–6.32) (0.80) | 8.39 (1.11–63.36) # | 5.01 (0.62–40.37) (1.61) |
presence of fall-ability, ever | 3.48 (1.91–6.32) ### | 2.88 (1.34–6.19) (1.06) ## | 3.35 (1.33–8.42) # | 1.84 (0.67–5.05) (0.61) |
presence of cognitive impairment, ever | 12.02 (2.74–52.67) ### | 6.63 (1.19–37.05) (1.89) # | 1.71 (0.63–4.67) | |
anti-osteoporotic drug administration, ever | 0.73 (0.41–1.30) | 0.63 (0.31–1.29) | ||
GCS administration, ever | 0.86 (0.49–1.51) | 0.65 (0.30–1.43) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoshii, I.; Chijiwa, T.; Sawada, N. The Influence of Anti-Citrullinated Polypeptide Antibodies on Bone Mineral Density Decrease and Incident Major Osteoporotic Fractures in Patients with Rheumatoid Arthritis: A Retrospective Case-Control Study. Osteology 2023, 3, 47-60. https://doi.org/10.3390/osteology3020006
Yoshii I, Chijiwa T, Sawada N. The Influence of Anti-Citrullinated Polypeptide Antibodies on Bone Mineral Density Decrease and Incident Major Osteoporotic Fractures in Patients with Rheumatoid Arthritis: A Retrospective Case-Control Study. Osteology. 2023; 3(2):47-60. https://doi.org/10.3390/osteology3020006
Chicago/Turabian StyleYoshii, Ichiro, Tatsumi Chijiwa, and Naoya Sawada. 2023. "The Influence of Anti-Citrullinated Polypeptide Antibodies on Bone Mineral Density Decrease and Incident Major Osteoporotic Fractures in Patients with Rheumatoid Arthritis: A Retrospective Case-Control Study" Osteology 3, no. 2: 47-60. https://doi.org/10.3390/osteology3020006
APA StyleYoshii, I., Chijiwa, T., & Sawada, N. (2023). The Influence of Anti-Citrullinated Polypeptide Antibodies on Bone Mineral Density Decrease and Incident Major Osteoporotic Fractures in Patients with Rheumatoid Arthritis: A Retrospective Case-Control Study. Osteology, 3(2), 47-60. https://doi.org/10.3390/osteology3020006