Exploring the Impact of Fe-Implantation on the Electrical Characteristics of Al/p-Si Schottky Barrier Diodes
Abstract
:1. Introduction
2. Details of Experiment
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jones, B.; Santana, J.; McPherson, M. Semiconductor detectors for use in high radiation damage environments—Semi-insulating GaAs or silicon? Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1997, 395, 81–87. [Google Scholar] [CrossRef]
- Gurimskaya, Y.; de Almeida, P.D.; Garcia, M.F.; Suau, I.M.; Moll, M.; Fretwurst, E.; Makarenko, L.; Pintilie, I. Radiation damage in p-type EPI silicon pad diodes irradiated with protons and neutrons. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2019, 958, 162221. [Google Scholar] [CrossRef]
- Lutz, G. Semiconductors as Detectors. In Semiconductor Radiation Detectors; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar] [CrossRef]
- Oeba, D.; Bodunrin, J.; Moloi, S. Electrical properties of 3 MeV proton irradiated silicon Schottky diodes. Phys. B Condens. Matter 2020, 610, 412786. [Google Scholar] [CrossRef]
- Bruzzi, M.; Adey, J.; Al-Ajili, A.; Alexandrov, P.; Alfieri, G.; Allport, P.; Andreazza, A.; Artuso, M.; Assouak, S.; Avset, B.; et al. Radiation-hard semiconductor detectors for SuperLHC. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2005, 541, 189–201. [Google Scholar] [CrossRef]
- Dixon, R.; Ekstrand, K. Gold and Platinum Doped Radiation Resistant Silicon Diode Detectors. Radiat. Prot. Dosim. 1986, 17, 527–530. [Google Scholar] [CrossRef]
- Kwon, Y.K.; Ishikawa, T.; Kuwano, H. Properties of platinum-associated deep levels in silicon. J. Appl. Phys. 1987, 61, 1055–1058. [Google Scholar] [CrossRef]
- McPherson, M.; Sloan, T.; Jones, B.K. Suppression of irradiation effects in gold-doped silicon detectors. J. Phys. D Appl. Phys. 1997, 30, 3028–3035. [Google Scholar] [CrossRef]
- Msimanga, M.; McPherson, M.; Theron, C. Fabrication and characterisation of gold-doped silicon Schottky barrier detectors. Radiat. Phys. Chem. 2004, 71, 733–734. [Google Scholar] [CrossRef]
- Sachse, J.-U.; Sveinbjörnsson, E.; Jost, W.; Weber, J.; Lemke, H. New interpretation of the dominant recombination center in platinum doped silicon. Appl. Phys. Lett. 1997, 70, 1584–1586. [Google Scholar] [CrossRef]
- Jones, B.; Santana, J.; McPherson, M. Ohmic I–V characteristics in semi-insulating semiconductor diodes. Solid State Commun. 1998, 105, 547–549. [Google Scholar] [CrossRef]
- Moloi, S.; McPherson, M. Capacitance–voltage behaviour of Schottky diodes fabricated on p-type silicon for radiation-hard detectors. Radiat. Phys. Chem. 2013, 85, 73–82. [Google Scholar] [CrossRef]
- Collins, C.B.; Carlson, R.O. Properties of silicon doped with iron or coppe. Phys. Rev. 1957, 108, 1409. [Google Scholar] [CrossRef]
- Graff, K.; Pieper, H. The Properties of Iron in Silicon. J. Electrochem. Soc. 1981, 128, 669–674. [Google Scholar] [CrossRef]
- Graff, K. Metal Impurities in Silicon-Device Fabrication; Springer Science & Business Media: Heilbronn, Germany, 2013; Volume 24. [Google Scholar]
- Deng, B.D.B.; Kuwano, H.K.H. Platinum as Recombination-Generation Centers in Silicon. Jpn. J. Appl. Phys. 1995, 34, 4587–4592. [Google Scholar] [CrossRef]
- Bera, B. Silicon wafer cleaning: A fundamental and critical step in semiconductor fabrication process. Int. J. Appl. Nanotechnol. 2019, 5, 8. [Google Scholar]
- Derry, T.; Lisema, L.; Magabe, A.; Aradi, E.; Machaka, R.; Madhuku, M. Allotrope conversion and surface hardness increase in ion implanted boron nitride. Surf. Coat. Technol. 2018, 355, 61–64. [Google Scholar] [CrossRef] [Green Version]
- Parida, M.K.; Sundari, S.T.; Sathiamoorthy, V.; Sivakumar, S. Current–voltage characteristics of silicon PIN diodes irradiated in KAMINI nuclear reactor. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2018, 905, 129–137. [Google Scholar] [CrossRef]
- Schroder, D.K. Semiconductor Material and Device Characterization; John Wiley & Sons: New York, NY, USA, 2015. [Google Scholar]
- Singh, B.K.; Tripathi, S. Fabrication and characterization of Au/p-ZnO Schottky contacts. Superlattices Microstruct. 2015, 85, 697–706. [Google Scholar] [CrossRef]
- Bodunrin, J.; Oeba, D.; Moloi, S. Current-voltage and capacitance-voltage characteristics of cadmium-doped p-silicon Schottky diodes. Sensors Actuators A Phys. 2021, 331, 112957. [Google Scholar] [CrossRef]
- Khamlich, S.; Msimanga, M.; Pineda-Vargas, C.; Nuru, Z.; McCrindle, R.; Maaza, M. Compositional analysis and depth profiling of thin film CrO2 by heavy ion ERDA and standard RBS: A comparison. Mater. Charact. 2012, 70, 42–47. [Google Scholar] [CrossRef]
- Wittmaack, K. Reliability of a popular simulation code for predicting sputtering yields of solids and ranges of low-energy ions. J. Appl. Phys. 2004, 96, 2632–2637. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Biersack, J.P. The Stopping and Range of Ions in MatterTreatise on Heavy-Ion Science; Springer: Boston, MA, USA, 1985. [Google Scholar]
- Nordlund, K. Historical review of computer simulation of radiation effects in materials. J. Nucl. Mater. 2019, 520, 273–295. [Google Scholar] [CrossRef]
- Bodunrin, J.; Oeba, D.; Moloi, S. Current-voltage characteristics of iron-implanted silicon based Schottky diodes. Mater. Sci. Semicond. Process. 2021, 123, 105524. [Google Scholar] [CrossRef]
- Dökme, I. The effect of series resistance and oxide layer formed by thermal oxidation on some electrical parameters of Al/SiO2/p-Si Schottky diodes. Phys. B Condens. Matter 2007, 388, 10–15. [Google Scholar] [CrossRef]
- Altındal, Ş.; Dökme, İ.; Bülbül, M.M.; Yalçın, N.; Serin, T. The role of the interface insulator layer and interface states on the current-transport mechanism of Schottky diodes in wide temperature range. Microelectron. Eng. 2006, 83, 499–505. [Google Scholar] [CrossRef]
- Alialy, S.; Tecimer, H.; Uslu, H.; Altındal, Ş. A Comparative Study on Electrical Characteristics of Au/N-Si Schottky Diodes, with and without Bi-Doped PVA Interfacial Layer in Dark and Under Illumination at Room Temperature. J. Nanomed. Nanotechnol. 2017, 4, 1000167. [Google Scholar] [CrossRef]
- Cheung, S.K.; Cheung, N.W. Extraction of Schottky diode parameters from forward current-voltage characteristics. Appl. Phys. Lett. 1986, 49, 85–87. [Google Scholar] [CrossRef]
- Soliman, H.; Farag, A.; Khosifan, N.; Solami, T. Electronic and photovoltaic properties of Au/pyronine G(Y)/p-GaAs/Au:Zn heterojunction. J. Alloys Compd. 2012, 530, 157–163. [Google Scholar] [CrossRef]
- Dökme, I.; Altindal, Ş. On the intersecting behaviour of experimental forward bias current–voltage (I–V) characteristics of Al/SiO2/p-Si (MIS) Schottky diodes at low temperatures. Semicond. Sci. Technol. 2006, 21, 1053–1058. [Google Scholar] [CrossRef]
- Güllü, Ö.; Aydoğan, Ş.; Biber, M.; Türüt, A. Fabrication and electrical properties of Al/phenolsulfonphthalein/n-Si/AuSb structure. Vacuum 2008, 82, 1264–1268. [Google Scholar] [CrossRef]
- Güllü, Ö.; Çankaya, M.; Biber, M.; Türüt, A.B. Gamma irradiation-induced changes at the electrical characteristics of organic-based schottky structures. J. Phys. D Appl. Phys. 2008, 41, 135103. [Google Scholar] [CrossRef]
- Moloi, S.; McPherson, M. Current–voltage behaviour of Schottky diodes fabricated on p-type silicon for radiation hard detectors. Phys. B: Condens. Matter 2009, 404, 2251–2258. [Google Scholar] [CrossRef]
- Sağlam, M.; Korucu, D.; Türüt, A. The effects of the time-dependent on the characteristic parameters of polypyrrole/p-type Si/Al diode. Polymer 2004, 45, 7335–7340. [Google Scholar] [CrossRef]
- Ocak, Y.; Kulakci, M.; Kılıçoğlu, T.; Turan, R.; Akkılıç, K. Current–voltage and capacitance–voltage characteristics of a Sn/Methylene Blue/p-Si Schottky diode. Synth. Met. 2009, 159, 1603–1607. [Google Scholar] [CrossRef]
- Taşçıoğlu, İ.; Aydemir, U.; Altındal, Ş.; Kınacı, B.; Özçelik, S. Analysis of the forward and reverse bias I-V characteristics on Au/PVA:Zn/n-Si Schottky barrier diodes in the wide temperature range. J. Appl. Phys. 2011, 109, 054502. [Google Scholar] [CrossRef]
- Yahia, I.; Zahran, H.; Alamri, F.; Manthrammel, M.A.; AlFaify, S.; Ali, A.M. Microelectronic properties of the organic Schottky diode with pyronin-Y: Admittance spectroscopy, and negative capacitance. Phys. B Condens. Matter 2018, 543, 46–53. [Google Scholar] [CrossRef]
- Bodunrin, J.; Moloi, S. Electrical properties and conduction mechanisms of heavily iron implanted silicon diodes. Solid State Commun. 2022, 341, 114575. [Google Scholar] [CrossRef]
- Rao, L.D.; Reddy, V.R. Electrical parameters and series resistance analysis of Au/Y/p-InP/Pt Schottky barrier diode at room temperature. In Proceedings of the AIP Conference Proceedings, Uttar Pradesh, India, 21–25 December 2015; AIP Publishing LLC: Melville, NY, USA, 2016; Volume 1731, p. 120020. [Google Scholar] [CrossRef]
- Bodunrin, J.O.; Moloi, S.J. Current-Voltage Characteristics of 4 MeV Proton-Irradiated Silicon Diodes at Room Temperature. Silicon 2022, 14, 10237–10244. [Google Scholar] [CrossRef]
- El-Nahass, M.; Ali, H. Temperature dependent I–V characterization of Coronene/p-Si based heterojunctions: Space charge limited current, Schottky emission at high voltages, thermionic emission and pool-Frenkel emission at low voltages. Solid State Sci. 2020, 106, 106297. [Google Scholar] [CrossRef]
- Ali, H.; Soliman, H.; Eid, K.; Atef, S. Electrical transport mechanisms and photovoltaic behavior of 2-(2-furanylmethylene) propanedinitrile/p-Si heterojunction. Mater. Chem. Phys. 2013, 142, 132–137. [Google Scholar] [CrossRef]
- Aldemir, D.A.; Kökce, A.; Özdemir, A.F. Temperature effects on the electrical characteristics of Al/PTh-SiO2/p-Si structure. Bull. Mater. Sci. 2017, 40, 1435–1439. [Google Scholar] [CrossRef] [Green Version]
- Muhammad, F.; Tahir, M.; Zeb, M.; Kalasad, M.N.; Said, S.M.; Sarker, M.R.; Sabri, M.F.M.; Ali, S.H.M. Synergistic enhancement in the microelectronic properties of poly-(dioctylfluorene) based Schottky devices by CdSe quantum dots. Sci. Rep. 2020, 10, 4828. [Google Scholar] [CrossRef] [Green Version]
- Şahin, B.; Çetin, H.; Ayyildiz, E. The effect of series resistance on capacitance–voltage characteristics of Schottky barrier diodes. Solid State Commun. 2005, 135, 490–495. [Google Scholar] [CrossRef]
- Altındal, Ş.; Uslu, H. The origin of anomalous peak and negative capacitance in the forward bias capacitance-voltage characteristics of Au/PVA/n-Si structures. J. Appl. Phys. 2011, 109, 074503. [Google Scholar] [CrossRef]
- Yeganeh, M.A.; Rahmatollahpur, S.H. Barrier height and ideality factor dependency on identically produced small Au/p-Si Schottky barrier diodes. J. Semicond. 2010, 31, 74001. [Google Scholar] [CrossRef]
- Güllü, Ö.; Demir, F.; Cimilli, F.E.; Biber, M. γ-Irradiation-induced changes at the electrical characteristics of Sn/p–Si Schottky contacts. Vacuum 2007, 82, 789–793. [Google Scholar] [CrossRef]
- Çakar, M.; Yıldırım, N.; Karataş, Ş.; Temirci, C.; Türüt, A. Current-voltage and capacitance-voltage characteristics of Sn/rhodamine-101∕n-Si and Sn/rhodamine-101∕p-Si Schottky barrier diodes. J. Appl. Phys. 2006, 100, 074505. [Google Scholar] [CrossRef]
ln(I)–V | dV/dln(I)–I | H(I)–I | |||||
---|---|---|---|---|---|---|---|
p-Si | |||||||
Unimplanted | 2.23 | 0.08 | 0.65 | 0.48 | 2.42 | 3.01 | 0.77 |
Fe-implanted | 2.89 | 8.35 | 0.54 | 0.24 | 1.11 | 1.33 | 0.73 |
p-Si Diode | ||||
---|---|---|---|---|
Unimplanted | 1.84 | 3.41 | 2.01 | 26.6 |
Fe-implanted | 0.09 | 224,000 | 0.03 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bodunrin, J.O.; Oeba, D.A.; Moloi, S.J. Exploring the Impact of Fe-Implantation on the Electrical Characteristics of Al/p-Si Schottky Barrier Diodes. Electron. Mater. 2023, 4, 95-109. https://doi.org/10.3390/electronicmat4020008
Bodunrin JO, Oeba DA, Moloi SJ. Exploring the Impact of Fe-Implantation on the Electrical Characteristics of Al/p-Si Schottky Barrier Diodes. Electronic Materials. 2023; 4(2):95-109. https://doi.org/10.3390/electronicmat4020008
Chicago/Turabian StyleBodunrin, Joseph Oluwadamilola, Duke Ateyh Oeba, and Sabata Jonas Moloi. 2023. "Exploring the Impact of Fe-Implantation on the Electrical Characteristics of Al/p-Si Schottky Barrier Diodes" Electronic Materials 4, no. 2: 95-109. https://doi.org/10.3390/electronicmat4020008
APA StyleBodunrin, J. O., Oeba, D. A., & Moloi, S. J. (2023). Exploring the Impact of Fe-Implantation on the Electrical Characteristics of Al/p-Si Schottky Barrier Diodes. Electronic Materials, 4(2), 95-109. https://doi.org/10.3390/electronicmat4020008