Effect of the RF Power of PECVD on the Crystalline Fractions of Microcrystalline Silicon (μc-Si:H) Films and Their Structural, Optical, and Electronic Properties
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Structural Characterization
3.1.1. Thickness Measurements
3.1.2. Atomic Force Microscopy
3.1.3. Raman Spectroscopy
3.1.4. Field Emission Scanning Electron Microscopy
3.1.5. Transmission Electron Microscopy
3.2. Optical Characterization
3.2.1. Fourier Transform Infrared Spectroscopy
3.2.2. Absorption Coefficient and Determination of the Bandgap
3.3. Electrical Characterization
3.3.1. Room Temperature Conductivity and Photoconductivity
3.3.2. Temperature Dependence of Conductivity and Activation Energy
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Spear, W.E.; Le Comber, P.G.; Kinmond, S.; Brodsky, M.H. Amorphous silicon p-n junction. Appl. Phys. Lett. 1976, 28, 105–107. [Google Scholar] [CrossRef]
- Schropp, R.E.I.; Zeman, M. New Developments in Amorphous Thin-Film Silicon Solar Cells. IEEE Trans. Electron Dev. 1999, 46, 2086–2092. [Google Scholar] [CrossRef]
- Ichikawa, Y.; Yoshida, T.; Hama, T.; Sakai, H.; Harashima, K. Production technology for amorphous silicon-based flexible solar cells. Sol. Energy Mater. Sol. Cells 2001, 66, 107–115. [Google Scholar] [CrossRef]
- Sonntag, P.; Preissler, N.; Bokalič, M.; Trahms, M.; Haschke, J.; Schlatmann, R.; Topič, M.; Rech, B.; Amkreutz, D. Silicon Solar Cells on Glass with Power Conversion Efficiency above 13% at Thickness below 15 Micrometer. Sci. Rep. 2017, 7, 873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Powell Martin, J. The physics of amorphous-silicon thin-film transistors. IEEE Trans. Electron Dev. 1989, 36, 2753–2763. [Google Scholar] [CrossRef]
- Flewitt, A.J. Hydrogenated Amorphous Silicon Thin-Film Transistors (a-Si:H TFTs). In Handbook of Visual Display Technology; Blankenbach, K., Yan, Q., O’Brien, R.J., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 1–18. [Google Scholar]
- Tanaka, K.; Matsuda, A. Glow-discharge amorphous silicon: Growth process and structure. Mater. Sci. Rep. 1987, 2, 139–184. [Google Scholar] [CrossRef]
- Staebler, D.L.; Wronski, C.R. Reversible conductivity changes in discharge-produced amorphous Si. Appl. Phys. Lett. 1977, 31, 292–294. [Google Scholar] [CrossRef]
- Bronner, W.; Kleider, J.P.; Bruggemann, R.; Mencaraglia, D.; Mehring, M. Comparison of transport and defects properties in hydrogenated polymorphous and amorphous silicon. J. Non-Cryst. Solids 2002, 299–302, 551–555. [Google Scholar] [CrossRef]
- Joubert, P.; Loisel, B.; Chouan, Y.; Haji, L. The Effect of Low Pressure on the Structure of LPCVD Polycrystalline Silicon Films. J. Electrochem. Soc. 1987, 134, 2541–2545. [Google Scholar] [CrossRef]
- Shah, A.; Vallat-Sauvain, E.; Torres, P.; Meier, J.; Kroll, U.; Hof, C.; Droz, C.; Goerlitzer, M.; Wyrsch, N.; Vanecek, M. Intrinsic microcrystalline silicon (μc-Si:H) deposited by VHF-GD (very high frequency-glow discharge): A new material for photovoltaics and optoelectronics. Mater. Sci. Eng. B 2000, 69–70, 219–226. [Google Scholar] [CrossRef]
- Dorostghol, Z.; Kosarian, A. Improving structural, optical, and electrical properties of μc-Si:H using non-uniform hydrogen dilution treatment on RF-PECVD prepared layers. Mat. Sci. Semicon. Proc. 2021, 129, 105790. [Google Scholar] [CrossRef]
- Fischer, D.; Dubail, S.; Selvan, J.A.A.; Vaucher, N.P.; Platz, R.; Hof, C.H.; Kroll, U.; Meier, J.; Torres, P.; Keppner, H.; et al. The “micromorph” solar cell: Extending a-Si:H technology towards thin film crystalline silicon. In Proceedings of the Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference, Washington, DC, USA, 6 August 1996. [Google Scholar]
- Keppner, H.; Meier, J.; Torres, P.; Fischer, D.; Shah, A. Microcrystalline silicon and micromorph tandem solar cells. Appl. Phys. A 1999, 69, 169–177. [Google Scholar] [CrossRef] [Green Version]
- Chan, K.-Y.; Knipp, D.; Gordijn, A.; Stiebig, H. Influence of crystalline volume fraction on the performance of high mobility microcrystalline silicon thin-film transistors. J. Non-Cryst. Solids 2008, 354, 2505–2508. [Google Scholar] [CrossRef]
- Cabarrocas, P.R.I.; Morral, A.F.I.; Lebib, S.; Poissant, Y. Plasma production of nanocrystalline silicon particles and polymorphous silicon thin films for large-area electronic devices. Pure Appl. Chem. 2002, 74, 359–367. [Google Scholar] [CrossRef]
- Makuła, P.; Pacia, M.; Macyk, W. How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. J. Phys. Chem. Lett. 2018, 9, 6814–6817. [Google Scholar] [CrossRef] [Green Version]
- Luna-López, J.A.; Morales-Sánchez, A.; Aceves-Mijares, M.; Yu, Z.; Domínguez, C. Analysis of surface roughness and its relationship with photoluminescence properties of silicon-rich oxide films. J. Vac. Sci. Technol. A 2009, 27, 57–62. [Google Scholar] [CrossRef]
- Langford, J.I.; Wilson, A.J.C. Scherrer after Sixty Years: A Survey and Some New Results in the Determination of Crystallite Size. J. Appl. Cryst. 1978, 11, 102–113. [Google Scholar] [CrossRef]
- Veprek, S.; Sarott, F.-A.; Rückschloss, M. Temperature dependence of the crystallite size and crystalline fraction of microcrystalline silicon deposited from silane by plasma CVD. J. Non-Cryst. Solids 1991, 137–138, 733–736. [Google Scholar] [CrossRef]
- Viera, G.; Huet, S.; Boufendi, L. Crystal size and temperature measurements in nanostructured silicon using Raman spectroscopy. J. Appl. Phys. 2001, 90, 4175–4183. [Google Scholar] [CrossRef]
- Drevillon, B.; Solomon, I.; Fang, M. The Physics of Plasma Deposition of Microcrystalline Silicon. Mat. Res. Soc. Symp. Proc. 1993, 283, 455–462. [Google Scholar] [CrossRef]
- Solomon, I.; Drévillon, B.; Shirai, H.; Layadi, N. Plasma deposition of microcrystalline silicon: The selective etching model. J. Non-Cryst. Solids 1993, 164–166, 989–992. [Google Scholar] [CrossRef]
- Vetterl, O.; Finger, F.; Carius, R.; Hapke, P.; Houben, L.; Kluth, O.; Lambertz, A.; MuKck, A.; Rech, B.; Wagner, H. Intrinsic microcrystalline silicon: A new material for photovoltaics. Sol. Energy Mater. Sol. Cells 2000, 62, 97–108. [Google Scholar] [CrossRef]
- Goldie, D.M.; Persheyev, S.K. Quantitative hydrogen measurements in PECVD and HWCVD a-Si:H using FTIR spectroscopy. J. Mater. Sci. 2006, 41, 5287–5291. [Google Scholar] [CrossRef]
- Han, D.; Wang, K.; Owens, J.M.; Gedvilas, L.; Nelson, B.; Habuchi, H.; Tanaka, M. Hydrogen structures and the optoelectronic properties in transition films from amorphous to microcrystalline silicon prepared by hot-wire chemical vapor deposition. J. Appl. Phys. 2003, 93, 3776–3783. [Google Scholar] [CrossRef]
- Tang, Z.; Wang, W.; Zhou, B.; Wang, D.; Peng, S.; He, D. The influence of H2/(H2 + Ar) ratio on microstructure and optoelectronic properties of microcrystalline silicon films deposited by plasma-enhanced CVD. Appl. Surf. Sci. 2009, 255, 8867–8873. [Google Scholar] [CrossRef]
- Kroll, U.; Meier, J.; Shah, A. Hydrogen in amorphous and microcrystalline silicon films prepared by hydrogen dilution. J. Appl. Phys. 1996, 80, 4971–4975. [Google Scholar] [CrossRef]
- Birgin, E.G.; Chambouleyron, I.; Martínez, J.M. Estimation of optical constants of thin films using unconstrained optimization. J. Comput. Phys. 1999, 151, 862–880. [Google Scholar] [CrossRef] [Green Version]
- Mulato, M.; Chambouleyron, I.; Birgin, E.G.; Martínez, J.M. Determination of thickness and optical constants of a-Si:H films from transmittance data. Appl. Phys. Lett. 2000, 77, 2133–2135. [Google Scholar] [CrossRef] [Green Version]
- Moreno, M.; Boubekri, R.; Cabarrocas, P.R.I. Study of the effects of different fractions of large grains of µc-Si:H:F films on the infrared absorption on thin film solar cells. Sol. Energy Mater. Sol. Cells 2012, 100, 16–20. [Google Scholar] [CrossRef]
- Moreno, M.; Ponce, A.; Galindo, A.; Ortega, E.; Morales, A.; Flores, J.; Ambrosio, R.; Torres, A.; Hernandez, L.; Vazquez-Leal, H.; et al. Comparative Study on the Quality of Microcrystalline and Epitaxial Silicon Films Produced by PECVD Using Identical SiF4 Based Process Conditions. Materials 2021, 14, 6947. [Google Scholar] [CrossRef]
- Astakhov, O. Relationship between defect density and charge carrier transport in amorphous and microcrystalline silicon. Phys. Rev. B 2009, 79, 104205. [Google Scholar] [CrossRef] [Green Version]
- Remes, Z.; Vanecek, M.; Torres, P.; Kroll, U.; Mahan, A.H.; Crandall, R.S. Optical determination of the mass density of amorphous and microcrystalline silicon layers with different hydrogen contents. J. Non-Cryst. Solids 1998, 227–230, 876–879. [Google Scholar] [CrossRef] [Green Version]
- Wei, L.; Donglin, X.; Huifang, W.; Xiujian, Z. Hydrogenated nanocrystalline silicon thin film prepared by RF-PECVD at high pressure. J. Non-Cryst. Solids 2010, 356, 2552–2556. [Google Scholar]
- Hishikawa, Y.; Nakamura, N.; Tsuda, S.; Nakano, S.; Kishi, Y.; Kuwano, Y. Interference-Free Determination of the Optical Absorption Coefficient and the Optical Gap of Amorphous Silicon Thin Films. Jap. J. Appl. Phys. 1991, 30, 1008–1014. [Google Scholar] [CrossRef]
Sample | Pressure (mTorr) | RF Power (W) | RF Power Density (mW/cm2) | SiH4 10% in H2 (Sccm) | H2 (Sccm) | Ar (Sccm) | H2/SiH4 Ratio |
---|---|---|---|---|---|---|---|
μc-Si:H-1 | 1500 | 20 | 69.2 | 10 | 41 | 10 | 50 |
μc-Si:H-2 | 1500 | 25 | 86.5 | 10 | 41 | 10 | 50 |
μc-Si:H-3 | 1500 | 30 | 103.8 | 10 | 41 | 10 | 50 |
μc-Si:H-4 | 1500 | 35 | 121.1 | 10 | 41 | 10 | 50 |
μc-Si:H-5 | 1500 | 40 | 138.4 | 10 | 41 | 10 | 50 |
μc-Si:H-6 | 1500 | 45 | 155.7 | 10 | 41 | 10 | 50 |
Sample | Thickness (nm) | Deposition Rate (Å/s) | Average Roughness (nm) | RMS Roughness (nm) | Crystalline Fraction, XC (%) |
---|---|---|---|---|---|
μc-Si:H-1 | 181 | 1.09 | 1.12 | 1.46 | 64 |
μc-Si:H-2 | 160 | 0.88 | 1.21 | 1.67 | 75 |
μc-Si:H-3 | 161 | 0.89 | 1.57 | 1.95 | 64 |
μc-Si:H-4 | 164 | 0.91 | 1.23 | 1.65 | 69 |
μc-Si:H-5 | 157 | 0.87 | 1.57 | 2.12 | 69 |
μc-Si:H-6 | 145 | 0.80 | 1.86 | 2.48 | 67 |
Sample | Crystalline Fraction, XC (%) | CH (%) | Eg (eV) | σRT (Ωcm)−1 | σph (Ωcm)−1 | σph/σRT | EA (eV) |
---|---|---|---|---|---|---|---|
μc-Si:H-1 | 64 | 10.3 | 2.46 | 6.9 × 10−4 | 1.1 × 10−3 | 1.6 | 0.18 |
μc-Si:H-2 | 75 | 9.4 | 2.2 | 6.4 × 10−4 | 1.0 × 10−3 | 1.8 | 0.19 |
μc-Si:H-3 | 64 | 9.4 | 2.37 | 1.2 × 10−3 | 1.8 × 10−3 | 1.5 | 0.17 |
μc-Si:H-4 | 69 | 7.0 | 2.10 | 2.2 × 10−4 | 1.4 × 10−3 | 6.4 | 0.23 |
μc-Si:H-5 | 69 | 7.2 | 2.42 | 2.3 × 10−4 | 3.3 × 10−4 | 1.4 | 0.22 |
μc-Si:H-6 | 67 | 13.1 | 2.48 | 8.3 × 10−5 | 1.4 × 10−4 | 1.7 | 0.28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moreno, M.; Torres-Sánchez, A.; Rosales, P.; Morales, A.; Torres, A.; Flores, J.; Hernández, L.; Zúñiga, C.; Ascencio, C.; Arenas, A. Effect of the RF Power of PECVD on the Crystalline Fractions of Microcrystalline Silicon (μc-Si:H) Films and Their Structural, Optical, and Electronic Properties. Electron. Mater. 2023, 4, 110-123. https://doi.org/10.3390/electronicmat4030009
Moreno M, Torres-Sánchez A, Rosales P, Morales A, Torres A, Flores J, Hernández L, Zúñiga C, Ascencio C, Arenas A. Effect of the RF Power of PECVD on the Crystalline Fractions of Microcrystalline Silicon (μc-Si:H) Films and Their Structural, Optical, and Electronic Properties. Electronic Materials. 2023; 4(3):110-123. https://doi.org/10.3390/electronicmat4030009
Chicago/Turabian StyleMoreno, Mario, Arturo Torres-Sánchez, Pedro Rosales, Alfredo Morales, Alfonso Torres, Javier Flores, Luis Hernández, Carlos Zúñiga, Carlos Ascencio, and Alba Arenas. 2023. "Effect of the RF Power of PECVD on the Crystalline Fractions of Microcrystalline Silicon (μc-Si:H) Films and Their Structural, Optical, and Electronic Properties" Electronic Materials 4, no. 3: 110-123. https://doi.org/10.3390/electronicmat4030009
APA StyleMoreno, M., Torres-Sánchez, A., Rosales, P., Morales, A., Torres, A., Flores, J., Hernández, L., Zúñiga, C., Ascencio, C., & Arenas, A. (2023). Effect of the RF Power of PECVD on the Crystalline Fractions of Microcrystalline Silicon (μc-Si:H) Films and Their Structural, Optical, and Electronic Properties. Electronic Materials, 4(3), 110-123. https://doi.org/10.3390/electronicmat4030009