A Neural Network to Decipher Organic Electrochemical Transistors’ Multivariate Responses for Cation Recognition
Abstract
:1. Introduction
2. Experimental Section
2.1. Device Operation
2.2. Electrical Characterization
2.3. Data Analysis
3. Results and Discussion
3.1. OECT Data Sequencing
3.2. Data Descriptor Comparison
- -
- ΔIstd100 = Id3 − Id12 as the steady-state drain current modulation at VG = 100 mV;
- -
- ΔItrs100 = Id2 − Id11 as the 50-μs transient drain current modulation at VG = 100 mV;
- -
- ΔIspk100 = Id1 − Id10 as the 1-μs spike drain current modulation at VG = 100 mV;
- -
- ΔIstd350 = Id9 − Id6 as the steady-state drain current modulation at VG = 350 mV;
- -
- ΔItrs350 = Id8 − Id5 as the 50-μs transient drain current modulation at VG = 350 mV;
- -
- ΔIspk350 = Id7 − Id4 as the 1-μs spike drain current modulation at VG = 350 mV.
3.3. Data Separability by Electrolyte Composition
3.4. Environment Recognition via an Artificial Neural Network
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shulaker, M.M.; Hills, G.; Park, R.S.; Howe, R.T.; Saraswat, K.; Wong, H.-S.P.; Mitra, S. Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature 2017, 547, 74–78. [Google Scholar] [CrossRef] [PubMed]
- Mitrokhin, A.; Sutor, P.; Fermüller, C.; Aloimonos, Y. Learning sensorimotor control with neuromorphic sensors: Toward hyperdimensional active perception. Sci. Robot. 2019, 4, eaaw6736. [Google Scholar] [CrossRef] [PubMed]
- Sundaram, S.; Kellnhofer, P.; Li, Y.; Zhu, J.-Y.; Torralba, A.; Matusik, W. Learning the signatures of the human grasp using a scalable tactile glove. Nature 2019, 569, 698–702. [Google Scholar] [CrossRef]
- Lee, W.W.; Tan, Y.J.; Yao, H.; Li, S.; See, H.H.; Hon, M.; Ng, K.A.; Xiong, B.; Ho, J.S.; Tee, B.C.K. A neuro-inspired artificial peripheral nervous system for scalable electronic skins. Sci. Robot. 2019, 4, eaax2198. [Google Scholar] [CrossRef]
- de Chaumont, F.; Ey, E.; Torquet, N.; Lagache, T.; Dalongeville, S.; Imbert, A.; Legou, T.; Le Sourd, A.-M.; Faure, P.; Bourgeron, T.; et al. Real-time analysis of the behaviour of groups of mice via a depth-sensing camera and machine learning. Nat. Biomed. Eng. 2019, 3, 930–942. [Google Scholar] [CrossRef] [PubMed]
- Peveler, W.J.; Yazdani, M.; Rotello, V.M. Selectivity and Specificity: Pros and Cons in Sensing. ACS Sens. 2016, 1, 1282–1285. [Google Scholar] [CrossRef] [PubMed]
- IEEE Std 2700–2017 (Revision of IEEE Std 2700–2014); IEEE Standard for Sensor Performance Parameter Definitions. IEEE: Piscataway, NJ, USA, 2018. [CrossRef]
- Kim, G.H.; Kim, K.; Lee, E.; An, T.; Choi, W.S.; Lim, G.; Shin, J.H. Recent Progress on Microelectrodes in Neural Interfaces. Materials 2018, 11, 1995. [Google Scholar] [CrossRef]
- Seymour, J.P.; Wu, F.; Wise, K.D.; Yoo, E. State-of-the-art MEMS and microsystem tools for brain research. Microsyst. Nanoeng. 2017, 3, 16066. [Google Scholar] [CrossRef] [PubMed]
- Bushdid, C.; Magnasco, M.O.; Vosshall, L.B.; Keller, A. Humans Can Discriminate More than 1 Trillion Olfactory Stimuli. Science 2014, 343, 1370–1372. [Google Scholar] [CrossRef]
- Gerkin, R.C.; Castro, J.B. The number of olfactory stimuli that humans can discriminate is still unknown. eLife 2015, 4, e08127. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Smith, B.H.; Sharpee, T.O. Hyperbolic geometry of the olfactory space. Sci. Adv. 2018, 4, eaaq1458. [Google Scholar] [CrossRef] [PubMed]
- Hierlemann, A.; Gutierrez-Osuna, R. Higher-Order Chemical Sensing. Chem. Rev. 2008, 108, 563–613. [Google Scholar] [CrossRef] [PubMed]
- Khodagholy, D.; Doublet, T.; Quilichini, P.; Gurfinkel, M.; Leleux, P.; Ghestem, A.; Ismailova, E.; Hervé, T.; Sanaur, S.; Bernard, C.; et al. In vivo recordings of brain activity using organic transistors. Nat. Commun. 2013, 4, 1575. [Google Scholar] [CrossRef]
- Gkoupidenis, P.; Koutsouras, D.A.; Malliaras, G.G. Neuromorphic device architectures with global connectivity through electrolyte gating. Nat. Commun. 2017, 8, 15448. [Google Scholar] [CrossRef] [PubMed]
- Pecqueur, S.; Mastropasqua Talamo, M.; Guérin, D.; Blanchard, P.; Roncali, J.; Vuillaume, D.; Alibart, F. Neuromorphic Time-Dependent Pattern Classification with Organic Electrochemical Transistor Arrays. Adv. Electron. Mater. 2018, 4, 1800166. [Google Scholar] [CrossRef]
- Bernards, D.A.; Malliaras, G.G. Steady-State and Transient Behavior of Organic Electrochemical Transistors. Adv. Funct. Mater. 2007, 17, 3538–3544. [Google Scholar] [CrossRef]
- Pecqueur, S.; Guérin, D.; Vuillaume, D.; Alibart, F. Cation Discrimination in Organic Electrochemical Transistors by Dual Frequency Sensing. Org. Electron. 2018, 57, 232–238. [Google Scholar] [CrossRef]
- Pecqueur, S.; Lončarić, I.; Zlatić, V.; Vuillaume, D.; Crljen, Ž. The Non-Ideal Organic Electrochemical Transistors Impedance. Org. Electron. 2019, 71, 14–23. [Google Scholar] [CrossRef]
- Bos, M.A.; Van der Linden, W.E. Processing of signals from an ion-elective electrode array by a neural network. Anal. Chim. Acta 1990, 233, 31–39. [Google Scholar] [CrossRef]
- Abdullah, W.F.H.; Othman, M.; Ali, M.A.M.; Islam, M.S. Improving ion-sensitive field-effect transistor selectivity with backpropagation neural network. WSEAS Trans. Circuits Syst. 2010, 9, 700–712. [Google Scholar]
- Pecqueur, S.; Lenfant, S.; Guérin, D.; Alibart, F.; Vuillaume, D. Concentric-electrode organic electrochemical transistors: Case study for selective hydrazine sensing. Sensors 2017, 17, 570. [Google Scholar] [CrossRef] [PubMed]
- Metsalu, T.; Vilo, J. ClustVis: A web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap. Nucleic Acids Res. 2015, 46, W566–W570. [Google Scholar] [CrossRef]
- Zhang, S.; Kumar, P.; Nouas, A.S.; Fontaine, L.; Tang, H.; Cicoira, F. Solvent-induced changes in PEDOT:PSS films for organic electrochemical transistors. APL Mater. 2015, 3, 014911. [Google Scholar] [CrossRef]
- Nikoletopoulou, V.; Tavernarakis, N. Calcium homeostasis in aging neurons. Front. Genet. 2012, 3, 200. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, A.; Greenberg, M.E. Calcium signaling in neurons: Molecular mechanisms and cellular consequences. Science 1995, 268, 239–247. [Google Scholar] [CrossRef] [PubMed]
- Bishop, C.M. Neural Networks for Pattern Recognition; Oxford University Press: Oxford, UK, 1995. [Google Scholar]
- Reed, R.; Marks, R.J., II. Neural Smithing: Supervised Learning in Feedforward Artificial Neural Networks; MIT Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Stathakis, D. How many hidden layers and nodes? Int. J. Remote Sens. 2009, 30, 2133–2147. [Google Scholar] [CrossRef]
PC1 | PC2 | PC3 | PC4 | PC5 | PC6 | |
---|---|---|---|---|---|---|
Variance | 38.0% | 19.9% | 16.2% | 14.4% | 11.3% | <0.3% |
ΔIstd100 | 0.08 | −0.31 | 0.93 | −0.18 | 0.03 | −0.00 |
ΔIstd350 | −0.26 | −0.46 | 0.02 | 0.74 | −0.42 | 0.01 |
ΔItrs100 | 0.00 | −0.67 | −0.33 | −0.59 | −0.33 | 0.00 |
ΔItrs350 | 0.33 | −0.49 | −0.17 | 0.24 | 0.74 | −0.01 |
ΔIspk100 | 0.64 | 0.06 | −0.01 | 0.10 | −0.29 | −0.70 |
ΔIspk350 | 0.64 | 0.05 | −0.01 | 0.10 | −0.27 | 0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pecqueur, S.; Vuillaume, D.; Crljen, Ž.; Lončarić, I.; Zlatić, V. A Neural Network to Decipher Organic Electrochemical Transistors’ Multivariate Responses for Cation Recognition. Electron. Mater. 2023, 4, 80-94. https://doi.org/10.3390/electronicmat4020007
Pecqueur S, Vuillaume D, Crljen Ž, Lončarić I, Zlatić V. A Neural Network to Decipher Organic Electrochemical Transistors’ Multivariate Responses for Cation Recognition. Electronic Materials. 2023; 4(2):80-94. https://doi.org/10.3390/electronicmat4020007
Chicago/Turabian StylePecqueur, Sébastien, Dominique Vuillaume, Željko Crljen, Ivor Lončarić, and Vinko Zlatić. 2023. "A Neural Network to Decipher Organic Electrochemical Transistors’ Multivariate Responses for Cation Recognition" Electronic Materials 4, no. 2: 80-94. https://doi.org/10.3390/electronicmat4020007
APA StylePecqueur, S., Vuillaume, D., Crljen, Ž., Lončarić, I., & Zlatić, V. (2023). A Neural Network to Decipher Organic Electrochemical Transistors’ Multivariate Responses for Cation Recognition. Electronic Materials, 4(2), 80-94. https://doi.org/10.3390/electronicmat4020007