Antennas in the Internet of Vehicles: Application for X Band and Ku Band in Low-Earth-Orbiting Satellites
Abstract
:1. Introduction
2. Recommended Patch Antenna Construction
2.1. Antenna Configuration
2.2. Parametric Analysis
2.3. Surface Current
3. Results
3.1. S-Parameters Analysis
3.2. Gain and Efficiency of Patch Antenna
3.3. Radiation Pattern
3.4. Performance Comparison with Other Antennas
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Khalifa, M.O.; Yacoub, A.M.; Aloi, D.N. A multiwideband compact antenna design for vehicular sub-6 GHz 5G wireless systems. IEEE Trans. Antennas Propag. 2021, 69, 8136–8142. [Google Scholar] [CrossRef]
- Kannappan, L.; Palaniswamy, S.K.; Wang, L.; Kanagasabai, M.; Kumar, S.; Alsath, M.G.N.; Rao, T.R. Quad-port multiservice diversity antenna for automotive applications. Sensors 2021, 21, 8238. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Zhang, J.; He, Y.; Mao, C.; Li, W.; Wong, S.-W.; Mei, P.; Gao, S. A Single-Layer 10–30 GHz Reflectarray Antenna for the Internet of Vehicles. IEEE Trans. Veh. Technol. 2021, 71, 1480–1490. [Google Scholar] [CrossRef]
- Wang, R.; Ma, J.-J.; Chen, C.-S.; Wang, B.-Z.; Xiong, J. Low-profile implementation of U-shaped power quasi-isotropic antennas for intra-vehicle wireless communications. IEEE Access 2020, 8, 48557–48565. [Google Scholar] [CrossRef]
- Michel, A.; Singh, R.K.; Nepa, P. A Compact and Wideband Dashboard Antenna for Vehicular LTE/5G Wireless Communications. Electronics 2022, 11, 1923. [Google Scholar] [CrossRef]
- Yang, P.; Yang, R.; Li, Y. Dual circularly polarized split beam generation by a metasurface sandwich-based Fabry–Pérot resonator antenna in Ku-band. IEEE Antennas Wirel. Propag. Lett. 2021, 20, 933–937. [Google Scholar] [CrossRef]
- Wang, W.; Zheng, Y. Wideband gain enhancement of a dual-polarized MIMO vehicular antenna. IEEE Trans. Veh. Technol. 2021, 70, 7897–7907. [Google Scholar] [CrossRef]
- Pirapaharan, K.; Ajithkumar, N.; Sarujan, K.; Fernando, X.; Hoole, P.R. Smart, Fast, and Low Memory Beam-Steering Antenna Configurations for 5G and Future Wireless Systems. Electronics 2022, 11, 2658. [Google Scholar] [CrossRef]
- Kraus, D.; Diwold, K.; Pestana, J.; Priller, P.; Leitgeb, E. Towards a Recommender System for In-Vehicle Antenna Placement in Harsh Propagation Environments. Sensors 2022, 22, 6339. [Google Scholar] [CrossRef]
- Bryant, B.; Won, H.; Hong, Y.-K.; Lee, W.; Choi, M. Design of Triple-Band (DSRC, 5G, 6G) Antenna for Autonomous Vehicle Telematics. Electronics 2022, 11, 2523. [Google Scholar] [CrossRef]
- Im, C.; Lim, T.-H.; Jang, D.; Kong, N.-K.; Choo, H. Design of a Printed 5G Monopole Antenna on Vehicle Window Glass Using Parasitic Elements and a Lattice-Structure Reflector for Gain Enhancement. Appl. Sci. 2021, 11, 9953. [Google Scholar] [CrossRef]
- Kumar, R.; Arnon, S. SNR Optimization for LEO Satellite at sub-THz Frequencies. IEEE Trans. Antennas Propag. 2022, 70, 4449–4458. [Google Scholar] [CrossRef]
- Chung, M.-A.; Yang, C.-W. Miniaturized broadband-multiband planar monopole antenna in autonomous vehicles communication system device. Electronics 2021, 10, 2715. [Google Scholar] [CrossRef]
- Chung, M.-A.; Yang, C.-W. A Miniaturized Planar Monopole Antenna Based on a Coupling Structure for Compact Mobile Internet of Things (IoT) and Electric Vehicles (EVs) Device Applications in 5G, LTE, WLAN, WiMAX, Sirius/XM Radio, V2X, and DSRC Wireless Systems. Int. J. Antennas Propag. 2021, 2021, 7535382. [Google Scholar] [CrossRef]
- Liu, X.; Tan, W.; Shen, Z.; Jin, C. Integrated frequency selective surface and antenna printed on a transparent substrate. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 2062–2066. [Google Scholar] [CrossRef]
- Wang, W.; Yang, S.; Fang, Z.; Sun, Q.; Chen, Y.; Zheng, Y. Compact Dual-Polarized Wideband Antenna With Dual-/Single-Band Shifting for Microbase Station Applications. IEEE Trans. Antennas Propag. 2021, 69, 7323–7332. [Google Scholar] [CrossRef]
- Hossain, A.; Islam, M.T.; Almutairi, A.F.; Singh, M.S.J.; Mat, K.; Samsuzzaman, M. An Octagonal Ring-shaped Parasitic Resonator Based Compact Ultrawideband Antenna for Microwave Imaging Applications. Sensors 2020, 20, 1354. [Google Scholar] [CrossRef] [Green Version]
- Mu, W.; Lin, H.; Wang, Z.; Li, C.; Yang, M.; Nie, W.; Wu, J. A Flower-Shaped Miniaturized UWB-MIMO Antenna with High Isolation. Electronics 2022, 11, 2190. [Google Scholar] [CrossRef]
- Chletsou, A.; Locke, J.F.; Papapolymerou, J. Vehicle Platform Effects on Performance of Flexible, Lightweight, and Dual-Band Antenna for Vehicular Communications. IEEE J. Microw. 2021, 2, 123–133. [Google Scholar] [CrossRef]
- Jang, D.; Lim, T.H.; Kim, D.; Wang, S.; Choo, H. Design of a High-Durability X-Band Patch Antenna with a CPW Feeding Network Based on a Durability Evaluation Analysis. Electronics 2022, 11, 553. [Google Scholar] [CrossRef]
- Zubir, I.A.; Othman, M.; Ullah, U.; Kamal, S.; Ab Rahman, M.F.; Hussin, R.; Omar, M.F.B.M.; Mohammed, A.S.; Ain, M.F.B.; Ahmad, Z.A. A low-profile hybrid multi-permittivity dielectric resonator antenna with perforated structure for Ku and K band applications. IEEE Access 2020, 8, 151219–151228. [Google Scholar] [CrossRef]
- Abdollahvand, M.; Forooraghi, K.; Encinar, J.A.; Atlasbaf, Z.; Martinez-de-Rioja, E. A 20/30 GHz reflectarray backed by FSS for shared aperture Ku/Ka-band satellite communication antennas. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 566–570. [Google Scholar] [CrossRef]
- Liang, T.; Wang, Z.; Dong, Y. A circularly polarized SIW slot antenna based on high-order dual-mode cavity. IEEE Antennas Wirel. Propag. Lett. 2020, 19, 388–392. [Google Scholar] [CrossRef]
- Abbas, A.; Hussain, N.; Jeong, M.-J.; Park, J.; Shin, K.S.; Kim, T.; Kim, N. A Rectangular Notch-Band UWB Antenna with Controllable Notched Bandwidth and Centre Frequency. Sensors 2020, 20, 777. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, S.; Rafique, U.; Ullah, R.; Ullah, S.; Khan, S.; Donelli, M. Double Overt-Leaf Shaped CPW-Fed Four Port UWB MIMO Antenna. Electronics 2021, 10, 3140. [Google Scholar] [CrossRef]
- Sarkar, T.; Ghosh, A.; Singh, L.; Chattopadhyay, S. DGS-integrated air-loaded wideband microstrip antenna for X-and Ku-band. IEEE Antennas Wirel. Propag. Lett. 2019, 19, 114–118. [Google Scholar] [CrossRef]
- Baladi, E.; Xu, M.Y.; Faria, N.; Nicholls, J.; Hum, S.V. Dual-band circularly polarized fully reconfigurable reflectarray antenna for satellite applications in the ku-band. IEEE Trans. Antennas Propag. 2021, 69, 8387–8396. [Google Scholar] [CrossRef]
- Lokeshwar, B.; Venkatasekhar, D.; Sudhakar, A. Dual-band low profile SIW cavity-backed antenna by using bilateral slots. Prog. Electromagn. Res. C 2020, 100, 263–273. [Google Scholar] [CrossRef]
Patch Antenna | |||
---|---|---|---|
Parameter | Value (mm) | Parameter | Value (mm) |
W1 | 1.125 | L1 | 6 |
W2 | 3.4 | L2 | 1.66 |
W3 | 1 | L3 | 2.2 |
W4 | 12.3 | L4 | 5 |
W5 | 0.2 | L5 | 12 |
W6 | 13 | L6 | 30 |
W7 | 0.2 | L7 | 11.7 |
W3 | |
---|---|
Value (mm) | Bandwidth (GHz) |
1 | 11.13–12.45; 14.97–16.27 |
0.6 | 11.11–12.43; 14.91–16.13 |
0.2 | 11.11–12.41; 14.76–15.69 |
L2 | |
---|---|
Value (mm) | Bandwidth (GHz) |
1.6 | 11.13–12.45; 14.97–16.27 |
2.3 | 11.24–12.54; 15.17–16.41 |
3 | 11.40–12.65; 15.38–16.53 |
L5 | |
---|---|
Value (mm) | Bandwidth (GHz) |
12 | 11.13–12.45; 14.97–16.27 |
11 | 11.43–12.28; 15.45–16.31 |
10 | No resonance under −10 dB |
Frequency (GHz) | Reflection Coefficient (dB) | Gain (dBi) | ||
---|---|---|---|---|
xy Plane (theta = 90) | xz Plane (phi = 90) | yz Plane (phi = 0) | ||
11.79 | −14.18 | 1.22 | 2.67 | 3.18 |
15.65 | −18.52 | 1.03 | −0.11 | 3.21 |
15.77 | −16.23 | 1.72 | −0.11 | 3.10 |
References | Frequency (GHz) | Bandwidth (%) | Gain (dBi) | Efficiency (%) | Dimension |
---|---|---|---|---|---|
Proposed | 10.87–12.76 | 15.99 | 3.34–6.08 | 50–80.8 | 30 × 13 × 0.254 mm3 |
15.19–16.02 | 5.31 | 3.50–4.65 | 50–74 | ||
[17] | 2.80–11.50 | 121 | 5.8 | 75 | 29 × 24 × 1.5 mm3 |
[18] | 4.51–15.1 | 108 | 5.35 | 85–93 | 30 × 18 × 1.6 mm3 |
[20] | 9.82–10.29 | 4.7 | 5.7 | 81.3 | 9 × 9 mm2 |
[21] | 12.2–27.1 | 75.8 | 5.65 | 90.3 | 20 × 30 × 0.813 mm3 |
[23] | 12.09–12.6 | 4.2 | 7.4 | N.A. | 22.46 × 21.95 mm2 |
[24] | 3.1–12.5 | 120 | 4.5 | N.A. | 16 × 25 × 1.52 mm3 |
[25] | 2.75–16.05 | 141 | 3.5 | N.A. | 55 × 55 mm2 |
[26] | 8.3–15.2 | 58.7 | 5–6.5 | 71–94 | 60 × 60 mm2 |
[27] | 10.8–11.8 | 7.6 | 13.98 | N.A. | 60 × 60 mm2 |
14–15.4 | 4.3 | 16.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chung, M.-A.; Tseng, K.-C.; Meiy, I.-P. Antennas in the Internet of Vehicles: Application for X Band and Ku Band in Low-Earth-Orbiting Satellites. Vehicles 2023, 5, 55-74. https://doi.org/10.3390/vehicles5010004
Chung M-A, Tseng K-C, Meiy I-P. Antennas in the Internet of Vehicles: Application for X Band and Ku Band in Low-Earth-Orbiting Satellites. Vehicles. 2023; 5(1):55-74. https://doi.org/10.3390/vehicles5010004
Chicago/Turabian StyleChung, Ming-An, Kuo-Chun Tseng, and Ing-Peng Meiy. 2023. "Antennas in the Internet of Vehicles: Application for X Band and Ku Band in Low-Earth-Orbiting Satellites" Vehicles 5, no. 1: 55-74. https://doi.org/10.3390/vehicles5010004
APA StyleChung, M. -A., Tseng, K. -C., & Meiy, I. -P. (2023). Antennas in the Internet of Vehicles: Application for X Band and Ku Band in Low-Earth-Orbiting Satellites. Vehicles, 5(1), 55-74. https://doi.org/10.3390/vehicles5010004