Hydrogen Production from Methane Cracking by Molten Catalysts: A Review and New Perspectives
Abstract
1. Introduction
2. Principle and Characteristics of Molten Catalysts
2.1. Catalytic Mechanism
2.2. Reaction Dynamics
3. Catalyst Type
3.1. Molten Metal
3.1.1. Ni-Based
3.1.2. Cu-Based Alloy
3.1.3. Other Catalysts
3.2. Molten Salt
4. Economic and Environmental Benefits
5. Conclusion and Prospects
- Operando DFT-ML co-design revealing d-orbital modulation thresholds for CH4 →H2 transition states (ΔE < 1.2 eV);
- Eutectic engineering of ZnCl2-NaCl-KCl molten salts (Tm increase 600 °C) coupled with plasmonic excitation (λ = 800 nm) to overcome thermodynamic penalties;
- Carbon valorization 3.0 strategies converting turbostratic by-products into graphene-enhanced cement (compressive strength increases 40%) or microbial fuel cell anodes (watt density > 2 W/m2);
- Reactor designs integrating microwave-assisted cracking (ηenergy increase 25%) with semi-continuous carbon skimming (separation efficiency > 98%);
- Technoeconomic recalibration valuing carbon credits ($50/ton) and grid-balancing H2 storage premiums.
Author Contributions
Funding
Conflicts of Interest
References
- Li, G.; Xu, S.; Tang, Y.; Wang, Y.; Lou, J.; Zhang, Q.; Zheng, X.; Li, J.; Iqbal, B.; Cheng, P.; et al. Spartina alterniflora invasion altered soil greenhouse gas emissions via affecting labile organic carbon in a coastal wetland. Appl. Soil Ecol. 2024, 203, 105615. [Google Scholar] [CrossRef]
- Cui, M.; Wang, J.; Zhang, X.; Wang, C.; Li, G.; Wan, J.S.H.; Du, D. Warming significantly inhibited the competitive advantage of native plants in interspecific competition under phosphorus deposition. Plant Soil 2023, 486, 503–518. [Google Scholar] [CrossRef]
- Bankole, O.O.; Danso, F.; Zhang, N.; Zhang, J.; Zhang, K.; Dong, W.; Lu, C.; Zhang, X.; Li, G.; Raheem, A.; et al. Integrated Effects of Straw Incorporation and N Application on Rice Yield and Greenhouse Gas Emissions in Three Rice-Based Cropping Systems. Agronomy 2024, 14, 490. [Google Scholar] [CrossRef]
- Raza, S.; Irshad, A.; Margenot, A.; Zamanian, K.; Li, N.; Ullah, S.; Mehmood, K.; Khan, M.A.; Siddique, N.; Zhou, J.; et al. Inorganic carbon is overlooked in global soil carbon research: A bibliometric analysis. Geoderma 2024, 443, 116831. [Google Scholar] [CrossRef]
- Khan, I.; Tariq, M.; Alabbosh, K.F.; Rehman, A.; Jalal, A.; Khan, A.A.; Farooq, M.; Li, G.; Iqbal, B.; Ahmad, N.; et al. Soil microplastics: Impacts on greenhouse gasses emissions, carbon cycling, microbial diversity, and soil characteristics. Appl. Soil. Ecol. 2024, 197, 105343. [Google Scholar] [CrossRef]
- Zhang, J.; Ren, M.; Li, X.; Hao, Q.; Chen, H.; Ma, X. Ni-based catalysts prepared for CO2 reforming and decomposition of methane. Energy Convers. Manag. 2020, 205, 112419. [Google Scholar] [CrossRef]
- Dantas, S.C.; Escritori, J.C.; Soares, R.R.; Hori, C.E. Effect of different promoters on Ni/CeZrO2 catalyst for autothermal reforming and partial oxidation of methane. Chem. Eng. J. 2010, 156, 380–387. [Google Scholar] [CrossRef]
- Catumba, B.D.; Sales, M.B.; Borges, P.T.; Filho, M.N.R.; Lopes, A.A.S.; Rios, M.A.D.S.; Desai, A.S.; Bilal, M.; Santos, J.C.S.D. Sustainability and challenges in hydrogen production: An advanced bibliometric analysis. Int. J. Hydrogen Energy 2023, 48, 7975–7992. [Google Scholar] [CrossRef]
- Avargani, V.M.; Zendehboudi, S.; Saady, N.M.C.; Dusseault, M.B. A comprehensive review on hydrogen production and utilization in North America: Prospects and challenges. Energy Convers. Manag. 2022, 269, 115927. [Google Scholar] [CrossRef]
- Santos, D.M.F.; Sequeira, C.A.C.; Figueiredo, J.L. Hydrogen production by alkaline water electrolysis. Química Nova 2013, 36, 1176–1193. [Google Scholar] [CrossRef]
- Dagle, R.A.; Dagle, V.; Bearden, M.D.; Holladay, J.D.; Krause, T.R.; Ahmed, S. An Overview of Natural Gas Conversion Technologies for Co-Production of Hydrogen and Value-Added Solid Carbon Products; U.S. Department of Energy Office of Scientific and Technical Information: Oak Ridge, TN, USA, 2017. [CrossRef]
- Hang, Z.A.; Zhou, Y.X.; Zhang, K.K.; Liu, M.Y.; Yang, M.K.; Zhan, J.J.; Liu, T.; Zhou, Y. Research Progress on Methane Pyrolysis Process for Hydrogen and Carbon Materials. Low-Carbonization Sci. Chem. Eng. 2024, 49, 1–11. [Google Scholar] [CrossRef]
- Al-Rumaihi, A.; Shahbaz, M.; McKay, G.; Mackey, H.; Al-Ansari, T. A review of pyrolysis technologies and feedstock: A blending approach for plastic and biomass towards optimum biochar yield. Renew. Sustain. Energy Rev. 2022, 167, 112715. [Google Scholar] [CrossRef]
- Cui, K. Research Status of Hydrogen Production from Methane Catalytic Cracking. Guangzhou Chem. Ind. 2022, 50, 44–46. [Google Scholar]
- Bayat, N.; Rezaei, M.; Meshkani, F. Methane decomposition over Ni–Fe/Al2O3 catalysts for production of COx-free hydrogen and carbon nanofiber. Int. J. Hydrogen Energy 2016, 41, 1574–1584. [Google Scholar] [CrossRef]
- Bayat, N.; Rezaei, M.; Meshkani, F. Hydrogen and carbon nanofibers synthesis by methane decomposition over Ni–Pd/Al2O3 catalyst. Int. J. Hydrogen Energy 2016, 41, 5494–5503. [Google Scholar] [CrossRef]
- Timmerberg, S.; Kaltschmitt, M.; Finkbeiner, M. Hydrogen and hydrogen-derived fuels through methane decomposition of natural gas–GHG emissions and costs. Energy Convers. Manag. X 2020, 7, 100043. [Google Scholar] [CrossRef]
- Prabowo, J.; Lai, L.; Chivers, B.; Burke, D.; Dinh, A.H.; Ye, L.; Wang, Y.; Wang, Y.; Wei, L.; Chen, Y. Solid carbon co-products from hydrogen production by methane pyrolysis: Current understandings and recent progress. Carbon 2024, 216, 118507. [Google Scholar] [CrossRef]
- Mohammed, S.; Eljack, F.; Al-Sobhi, S.; Kazi, M.-K. A systematic review: The role of emerging carbon capture and conversion technologies for energy transition to clean hydrogen. J. Clean. Prod. 2024, 447, 141506. [Google Scholar] [CrossRef]
- Sharma, S.; Ivanov, A.S.; Margulis, C.J. A Brief Guide to the Structure of High-Temperature Molten Salts and Key Aspects Making Them Different from Their Low-Temperature Relatives, the Ionic Liquids. J. Phys. Chem. B 2021, 125, 6359–6372. [Google Scholar] [CrossRef]
- McConnachie, M.; Konarova, M.; Smart, S. Literature review of the catalytic pyrolysis of methane for hydrogen and carbon production. Int. J. Hydrogen Energy 2023, 48, 25660–25682. [Google Scholar] [CrossRef]
- Zaghloul, N.; Kodama, S.; Sekiguchi, H. Hydrogen Production by Methane Pyrolysis in a Molten-Metal Bubble Column. Chem. Eng. Technol. 2021, 44, 1986–1993. [Google Scholar] [CrossRef]
- Tian, M.Y.; Wang, Y.; Sun, X.; Fu, J.; Lu, L.; Li, H. Research Progress on Liquid Metal Catalysts for Methane Cracking to Produce Hydrogen. Low-Carbonization Sci. Chem. Eng. 2025, 50, 148–156. [Google Scholar] [CrossRef]
- Sánchez-Bastardo, N.; Schlögl, R.; Ruland, H. Methane Pyrolysis for Zero-Emission Hydrogen Production: A Potential Bridge Technology from Fossil Fuels to a Renewable and Sustainable Hydrogen Economy. Ind. Eng. Chem. Res. 2021, 60, 11855–11881. [Google Scholar] [CrossRef]
- Grabke, H.J. Evidence on the surface concentration of carbon on gamma iron from the kinetics of the carburization in CH4−H2. Metall. Trans. 1970, 1, 2972–2975. [Google Scholar] [CrossRef]
- Cao, M.J.; Nie, L.F.; Li, S.D.; Chen, Y.F. Research progress on hydrogen production from catalytic cracking of methane. Appl. Chem. Eng. 2023, 52, 2218–2224. [Google Scholar]
- Patlolla, S.R.; Katsu, K.; Sharafian, A.; Wei, K.; Herrera, O.E.; Mérida, W. A review of methane pyrolysis technologies for hydrogen production. Renew. Sustain. Energy Rev. 2023, 181, 113323. [Google Scholar] [CrossRef]
- Msheik, M.; Rodat, S.; Abanades, S. Methane Cracking for Hydrogen Production: A Review of Catalytic and Molten Media Pyrolysis. Energies 2021, 14, 3107. [Google Scholar] [CrossRef]
- Liao, J.S.; Liu, J.X.; Wang, S.S.; Chen, B.; Chen, J.J.; Wei, J.J.; Ye, Z.B.; Gou, F.J. Kinetics of Methane Decomposition in the Catalytic Liquid Metal Reactor for Hydrogen Production. Acta Chim. Sin. High. Educ. Inst. 2024, 45, 62–68. [Google Scholar]
- Busillo, E.; Damizia, M.; De Filippis, P.; de Caprariis, B. Methane pyrolysis in molten media: The interplay of physical properties and catalytic activity on carbon and hydrogen production. J. Anal. Appl. Pyrolysis 2024, 183, 106752. [Google Scholar] [CrossRef]
- McConnachie, M.; Yan, P.; Konarova, M.; Smart, S. Methane pyrolysis in molten salt slurry systems: Evaluation of activity and mechanism in binary salt mixtures with molybdenum disulfide suspensions. Int. J. Hydrogen Energy 2024, 81, 1172–1180. [Google Scholar] [CrossRef]
- Gunarayu, M.R.; Patah, M.F.A.; Daud, W.M.A.W. Advancements in methane pyrolysis: A comprehensive review of parameters and molten catalysts in bubble column reactors. Renew. Sustain. Energy Rev. 2025, 210, 115197. [Google Scholar] [CrossRef]
- Musamali, R.; Isa, Y.M. Decomposition of Methane to Carbon and Hydrogen: A Catalytic Perspective. Energy Technol. 2019, 7, 1800593. [Google Scholar] [CrossRef]
- Neuschitzer, D.; Scheiblehner, D.; Antrekowitsch, H.; Wibner, S.; Sprung, A. Methane Pyrolysis in a Liquid Metal Bubble Column Reactor for CO2-Free Production of Hydrogen. Energies 2023, 16, 7058. [Google Scholar] [CrossRef]
- Pérez, B.J.L.; Jiménez, J.A.M.; Bhardwaj, R.; Goetheer, E.; van Sint Annaland, M.; Gallucci, F. Methane pyrolysis in a molten gallium bubble column reactor for sustainable hydrogen production: Proof of concept & techno-economic assessment. Int. J. Hydrogen Energy 2021, 46, 4917–4935. [Google Scholar] [CrossRef]
- Geißler, T.; Abánades, A.; Heinzel, A.; Mehravaran, K.; Müller, G.; Rathnam, R.K.; Rubbia, C.; Salmieri, D.; Stoppel, L.; Stückrad, S.; et al. Hydrogen production via methane pyrolysis in a liquid metal bubble column reactor with a packed bed. Chem. Eng. J. 2016, 299, 192–200. [Google Scholar] [CrossRef]
- Toncu, D.C.; Toncu, G.; Soleimani, S. On methane pyrolysis special applications. IOP Conf. Ser. Mater. Sci. Eng. 2015, 95, 012026. [Google Scholar] [CrossRef]
- Becker, T.; Richter, M.; Agar, D.W. Methane pyrolysis: Kinetic studies and mechanical removal of carbon deposits in reactors of different materials. Int. J. Hydrogen Energy 2023, 48, 2112–2129. [Google Scholar] [CrossRef]
- Schultz, I.; Agar, D.W. Decarbonisation of fossil energy via methane pyrolysis using two reactor concepts: Fluid wall flow reactor and molten metal capillary reactor. Int. J. Hydrogen Energy 2015, 40, 11422–11427. [Google Scholar] [CrossRef]
- Mohagheghian, S.; Elbing, B.R. Characterization of Bubble Size Distributions within a Bubble Column. Fluids 2018, 3, 13. [Google Scholar] [CrossRef]
- Rahimi, N.; Kang, D.; Gelinas, J.; Menon, A.; Gordon, M.J.; Metiu, H.; McFarland, E.W. Solid carbon production and recovery from high temperature methane pyrolysis in bubble columns containing molten metals and molten salts. Carbon 2019, 151, 181–191. [Google Scholar] [CrossRef]
- Maalej, S.; Benadda, B.; Otterbein, M. Influence of Pressure on the Hydrodynamics and Mass Transfer Parameters of an Agitated Bubble Reactor. Chem. Eng. Technol. 2001, 24, 77–84. [Google Scholar] [CrossRef]
- Daeneke, T.; Khoshmanesh, K.; Mahmood, N.; de Castro, I.A.; Esrafilzadeh, D.; Barrow, S.J.; Dickey, M.D.; Kalantar-zadeh, K. Liquid metals: Fundamentals and applications in chemistry. Chem. Soc. Rev. 2018, 47, 4073–4111. [Google Scholar] [CrossRef]
- Yang, X.-F.; Wang, A.; Qiao, B.; Li, J.; Liu, J.; Zhang, T. Single-Atom Catalysts: A New Frontier in Heterogeneous Catalysis. Acc. Chem. Res. 2013, 46, 1740–1748. [Google Scholar] [CrossRef]
- Fan, Z.; Weng, W.; Zhou, J.; Gu, D.; Xiao, W. Catalytic decomposition of methane to produce hydrogen: A review. J. Energy Chem. 2021, 58, 415–430. [Google Scholar] [CrossRef]
- Upham, D.C.; Agarwal, V.; Khechfe, A.; Snodgrass, Z.R.; Gordon, M.J.; Metiu, H.; McFarland, E.W. Catalytic molten metals for the direct conversion of methane to hydrogen and separable carbon. Science 2017, 358, 917–921. [Google Scholar] [CrossRef]
- Zeng, J.; Tarazkar, M.; Pennebaker, T.; Gordon, M.J.; Metiu, H.; McFarland, E.W. Catalytic Methane Pyrolysis with Liquid and Vapor Phase Tellurium. ACS Catal. 2020, 10, 8223–8230. [Google Scholar] [CrossRef]
- Seo, J.-C.; Park, S.; Park, G.; Lee, Y.; Han, S.J.; Kim, S.K. Catalytic CH4 pyrolysis promoted by the interface of a molten metal–salt hybrid system. Gas Sci. Eng. 2023, 115, 205017. [Google Scholar] [CrossRef]
- Chen, L.; Song, Z.; Zhang, S.; Chang, C.-K.; Chuang, Y.-C.; Peng, X.; Dun, C.; Urban, J.J.; Guo, J.; Chen, J.-L.; et al. Ternary NiMo-Bi liquid alloy catalyst for efficient hydrogen production from methane pyrolysis. Science 2023, 381, 857–861. [Google Scholar] [CrossRef]
- Erbasan, A.; Ustunel, H.; Toffoli, D.; Gokalp, I.; Kardas, G.; Celik, G. Insights into Reaction Mechanisms in Liquid Metals from Density Functional Theory: CH4 Pyrolysis in BiNiX (X = Cu, Al) Molten Metals as a Case Study. ACS Appl. Energy Mater. 2024, 7, 3220–3233. [Google Scholar] [CrossRef]
- Palmer, C.; Tarazkar, M.; Kristoffersen, H.H.; Gelinas, J.; Gordon, M.J.; McFarland, E.W.; Metiu, H. Methane Pyrolysis with a Molten Cu–Bi Alloy Catalyst. ACS Catal. 2019, 9, 8337–8345. [Google Scholar] [CrossRef]
- Scheiblehner, D.; Neuschitzer, D.; Wibner, S.; Sprung, A.; Antrekowitsch, H. Hydrogen production by methane pyrolysis in molten binary copper alloys. Int. J. Hydrogen Energy 2023, 48, 6233–6243. [Google Scholar] [CrossRef]
- Takahashi, K.; Ogino, Y. Liquid tellurium as a catalyst for the dehydrogention of several polynuclear hydrocarbons. Chem. Lett. 2006, 7, 423–425. [Google Scholar] [CrossRef]
- Steinberg, M. Fossil fuel decarbonization technology for mitigating global warming. Int. J. Hydrogen Energy 1999, 24, 771–777. [Google Scholar] [CrossRef]
- Wang, K.; Li, W.S.; Zhou, X.P. Hydrogen generation by direct decomposition of hydrocarbons over molten magnesium. J. Mol. Catal. A Chem. 2008, 283, 153–157. [Google Scholar] [CrossRef]
- Geißler, T.; Plevan, M.; Abánades, A.; Heinzel, A.; Mehravaran, K.; Rathnam, R.K.; Rubbia, C.; Salmieri, D.; Stoppel, L.; Stückrad, S.; et al. Experimental investigation and thermo-chemical modeling of methane pyrolysis in a liquid metal bubble column reactor with a packed bed. Int. J. Hydrogen Energy 2015, 40, 14134–14146. [Google Scholar] [CrossRef]
- Plevan, M.; Geißler, T.; Abánades, A.; Mehravaran, K.; Rathnam, R.K.; Rubbia, C.; Salmieri, D.; Stoppel, L.; Stückrad, S.; Wetzel, T. Thermal cracking of methane in a liquid metal bubble column reactor: Experiments and kinetic analysis. Int. J. Hydrogen Energy 2015, 40, 8020–8033. [Google Scholar] [CrossRef]
- Abánades, A.; Rathnam, R.K.; Geißler, T.; Heinzel, A.; Mehravaran, K.; Müller, G.; Plevan, M.; Rubbia, C.; Salmieri, D.; Stoppel, L.; et al. Development of methane decarbonisation based on liquid metal technology for CO2-free production of hydrogen. Int. J. Hydrogen Energy 2016, 41, 8159–8167. [Google Scholar] [CrossRef]
- Maestre, V.M.; Ortiz, A.; Ortiz, I. Challenges and prospects of renewable hydrogen-based strategies for full decarbonization of stationary power applications. Renew. Sustain. Energy Rev. 2021, 152, 111628. [Google Scholar] [CrossRef]
- Wi, T.-G.; Park, Y.-J.; Lee, U.; Kang, Y.-B. Methane pyrolysis rate measurement using electromagnetic levitation techniques for turquoise hydrogen production: Liquid In, Ga, Bi, Sn, and Cu as catalysts. Chem. Eng. J. 2023, 460, 141558. [Google Scholar] [CrossRef]
- Kim, T.; Lee, J.; Ko, Y.; Chong, G.-H.; Kang, D.; Kwon, H. Catalytic molten Zn-Bi alloys for methane pyrolysis. Chem. Eng. J. 2025, 509, 161304. [Google Scholar] [CrossRef]
- Kang, D.; Rahimi, N.; Gordon, M.J.; Metiu, H.; McFarland, E.W. Catalytic methane pyrolysis in molten MnCl2-KCl. Appl. Catal. B Environ. 2019, 254, 659–666. [Google Scholar] [CrossRef]
- Kang, D.; Palmer, C.; Mannini, D.; Rahimi, N.; Gordon, M.J.; Metiu, H.; McFarland, E.W. Catalytic Methane Pyrolysis in Molten Alkali Chloride Salts Containing Iron. ACS Catal. 2020, 10, 7032–7042. [Google Scholar] [CrossRef]
- McConnachie, M.; Sheil, A.; Konarova, M.; Smart, S. Evaluation of heterogeneous metal-sulfide molten salt slurry systems for hydrogen production through methane pyrolysis. Int. J. Hydrogen Energy 2024, 49, 981–991. [Google Scholar] [CrossRef]
- Wang, C.; Zhan, F.; Wang, S.; Wei, Y.; Ji, J. Molten salts coupled Ni/Al2O3 for hydrogen from CH4 pyrolysis at mild temperature in bubble-cap reactor. Fuel 2024, 368, 131612. [Google Scholar] [CrossRef]
- Chan, Y.H.; Chan, Z.P.; Lock, S.S.M.; Yiin, C.L.; Foong, S.Y.; Wong, M.K.; Ishak, M.A.; Quek, V.C.; Ge, S.; Lam, S.S. Thermal pyrolysis conversion of methane to hydrogen (H2): A review on process parameters, reaction kinetics and techno-economic analysis. Chin. Chem. Lett. 2024, 35, 109329. [Google Scholar] [CrossRef]
- Parkinson, B.; Patzschke, C.F.; Nikolis, D.; Raman, S.; Dankworth, D.C.; Hellgardt, K. Methane pyrolysis in monovalent alkali halide salts: Kinetics and pyrolytic carbon properties. Int. J. Hydrogen Energy 2021, 46, 6225–6238. [Google Scholar] [CrossRef]
- Muradov, N. Hydrogen via methane decomposition: An application for decarbonization of fossil fuels. Int. J. Hydrogen Energy 2001, 26, 1165–1175. [Google Scholar] [CrossRef]
- Muradov, N. Thermocatalytic CO2-Free Production of Hydrogen from Hydrocarbon Fuels, Proceedings of the 2000. Hydrog. Program Rev. 2000, NREL/CP-570-28890. Available online: https://www1.eere.energy.gov/hydrogenandfuelcells/pdfs/28890t.pdf (accessed on 26 March 2025).
- Dahl, J.K.; Weimer, A.W.; Krantz, W.B. Sensitivity analysis of the rapid decomposition of methane in an aerosol flow reactor. Int. J. Hydrogen Energy 2004, 29, 57–65. [Google Scholar] [CrossRef]
- Dahl, J.K.; Barocas, V.H.; Clough, D.E.; Weimer, A.W. Intrinsic kinetics for rapid decomposition of methane in an aerosol flow reactor. Int. J. Hydrogen Energy 2002, 27, 377–386. [Google Scholar] [CrossRef]
- Reshetenko, T.V.; Avdeeva, L.B.; Ismagilov, Z.R.; Chuvilin, A.L.; Ushakov, V.A. Carbon capacious Ni-Cu-Al2O3 catalysts for high-temperature methane decomposition. Appl. Catal. A General. 2003, 247, 51–63. [Google Scholar] [CrossRef]
- Fukada, S.; Nakamura, N.; Monden, J.; Nishikawa, M. Experimental study of cracking methane by Ni/SiO2 catalyst. J. Nucl. Mater. 2004, 329–333, 1365–1369. [Google Scholar] [CrossRef]
- Trommer, D.; Hirsch, D.; Steinfeld, A. Kinetic investigation of the thermal decomposition of CH4 by direct irradiation of a vortex-flow laden with carbon particles. Int. J. Hydrogen Energy 2004, 29, 627–633. [Google Scholar] [CrossRef]
- Zein, S.H.S.; Mohamed, A.R.; Sai, P.S.T. Kinetic Studies on Catalytic Decomposition of Methane to Hydrogen and Carbon over Ni/TiO2 Catalyst. Ind. Eng. Chem. Res. 2004, 43, 4864–4870. [Google Scholar] [CrossRef]
- Muradov, N.; Smith, F.; T-Raissi, A. Catalytic activity of carbons for methane decomposition reaction. Catal. Today 2005, 102–103, 225–233. [Google Scholar] [CrossRef]
- Abanades, S.; Flamant, G. Solar hydrogen production from the thermal splitting of methane in a high temperature solar chemical reactor. Sol. Energy 2006, 80, 1321–1332. [Google Scholar] [CrossRef]
- Abanades, S.; Flamant, G. Experimental study and modeling of a high-temperature solar chemical reactor for hydrogen production from methane cracking. Int. J. Hydrogen Energy 2007, 32, 1508–1515. [Google Scholar] [CrossRef]
- Wyss, J.; Martinek, J.; Kerins, M.; Dahl, J.K.; Weimer, A.; Lewandowski, A.; Bingham, C. Rapid Solar-thermal Decarbonization of Methane in a Fluid-wall Aerosol Flow Reactor -- Fundamentals and Application. Int. J. Chem. React. Eng. 2007, 5, 1. [Google Scholar] [CrossRef]
- Homayonifar, P.; Saboohi, Y.; Firoozabadi, B. Numerical simulation of nano-carbon deposition in the thermal decomposition of methane. Int. J. Hydrogen Energy 2008, 33, 7027–7038. [Google Scholar] [CrossRef]
- Pinilla, J.L.; Suelves, I.; Lázaro, M.J.; Moliner, R. Kinetic study of the thermal decomposition of methane using carbonaceous catalysts. Chem. Eng. J. 2008, 138, 301–306. [Google Scholar] [CrossRef]
- Abbas, H.F.; Daud, W.M.A.W. Thermocatalytic decomposition of methane using palm shell based activated carbon: Kinetic and deactivation studies. Fuel Process. Technol. 2009, 90, 1167–1174. [Google Scholar] [CrossRef]
- Rodat, S.; Abanades, S.; Coulié, J.; Flamant, G. Kinetic modelling of methane decomposition in a tubular solar reactor. Chem. Eng. J. 2009, 146, 120–127. [Google Scholar] [CrossRef]
- Rodat, S.; Abanades, S.; Sans, J.-L.; Flamant, G. Hydrogen production from solar thermal dissociation of natural gas: Development of a 10kW solar chemical reactor prototype. Sol. Energy. 2009, 83, 1599–1610. [Google Scholar] [CrossRef]
- Borghei, M.; Karimzadeh, R.; Rashidi, A.; Izadi, N. Kinetics of methane decomposition to COx-free hydrogen and carbon nanofiber over Ni–Cu/MgO catalyst. Int. J. Hydrogen Energy 2010, 35, 9479–9488. [Google Scholar] [CrossRef]
- Amin, A.; Epling, W.; Croiset, E. Reaction and Deactivation Rates of Methane Catalytic Cracking over Nickel. Ind. Eng. Chem. Res. 2011, 50, 12460–12470. [Google Scholar] [CrossRef]
- Patrianakos, G.; Kostoglou, M.; Konstandopoulos, A. One-dimensional model of solar thermal reactors for the co-production of hydrogen and carbon black from methane decomposition. Int. J. Hydrogen Energy 2011, 36, 189–202. [Google Scholar] [CrossRef]
- Uddin, M.N.; Daud, W.M.A.W.; Abbas, H.F. Kinetics and deactivation mechanisms of the thermal decomposition of methane in hydrogen and carbon nanofiber Co-production over Ni-supported Y zeolite-based catalysts. Energy Convers. Manag. 2014, 87, 796–809. [Google Scholar]
- Abanades, S.; Kimura, H.; Otsuka, H. Kinetic investigation of carbon-catalyzed methane decomposition in a thermogravimetric solar reactor. Int. J. Hydrogen Energy 2015, 40, 10744–10755. [Google Scholar] [CrossRef]
- Ashik, U.P.M.; Daud, W.M.A.W.; Abbas, H.F. Methane decomposition kinetics and reaction rate over Ni/SiO2 nanocatalyst produced through co-precipitation cum modified Stöber method. Int. J. Hydrogen Energy 2017, 42, 938–952. [Google Scholar] [CrossRef]
- Paxman, D.; Trottier, S.; Flynn, M.R.; Kostiuk, L.; Secanell, M. Experimental and numerical analysis of a methane thermal decomposition reactor. Int. J. Hydrogen Energy 2017, 42, 25166–25184. [Google Scholar] [CrossRef]
- Keipi, T.; Li, T.; Løvås, T.; Tolvanen, H.; Konttinen, J. Methane thermal decomposition in regenerative heat exchanger reactor: Experimental and modeling study. Energy 2017, 135, 823–832. [Google Scholar] [CrossRef]
- Catalan, L.J.J.; Rezaei, E. Coupled hydrodynamic and kinetic model of liquid metal bubble reactor for hydrogen production by noncatalytic thermal decomposition of methane. Int. J. Hydrogen Energy 2020, 45, 2486–2503. [Google Scholar] [CrossRef]
- da Costa Labanca, A.R. Carbon black and hydrogen production process analysis. Int. J. Hydrogen Energy 2020, 45, 25698–25707. [Google Scholar] [CrossRef]
- Kerscher, F.; Stary, A.; Gleis, S.; Ulrich, A.; Klein, H.; Spliethoff, H. Low-carbon hydrogen production via electron beam plasma methane pyrolysis: Techno-economic analysis and carbon footprint assessment. Int. J. Hydrogen Energy 2021, 46, 19897–19912. [Google Scholar] [CrossRef]
- Riley, J.; Atallah, C.; Siriwardane, R.; Stevens, R. Technoeconomic analysis for hydrogen and carbon Co-Production via catalytic pyrolysis of methane. Int. J. Hydrogen Energy 2021, 46, 20338–20358. [Google Scholar] [CrossRef]
- Pruvost, F.; Cloete, S.; Cloete, J.H.; Dhoke, C.; Zaabout, A. Techno-Economic assessment of natural gas pyrolysis in molten salts. Energy Convers. Manag. 2022, 253, 115187. [Google Scholar] [CrossRef]
- Tabat, M.E.; Omoarukhe, F.O.; Güleç, F.; Adeniyi, D.E.; Mukherjee, A.; Okoye, P.U.; Ogbaga, C.C.; Epelle, E.I.; Akande, O.; Okolie, J.A. Process design, exergy, and economic assessment of a conceptual mobile autothermal methane pyrolysis unit for onsite hydrogen production. Energy Convers. Manag. 2023, 278, 116707. [Google Scholar] [CrossRef]
- Cheon, S.; Byun, M.; Lim, D.; Lee, H.; Lim, H. Parametric Study for Thermal and Catalytic Methane Pyrolysis for Hydrogen Production: Techno-Economic and Scenario Analysis. Energies 2021, 14, 6102. [Google Scholar] [CrossRef]
Reactor Configuration | Reaction Medium | Range of Operating Conditions/Variables Tested | Range of CH4 Conversion and H2 yield or Selectivity Reported | Ref. |
---|---|---|---|---|
Molten salt bubbling reactor | MnCl2(x)-KCl(100-x) mixtures (where x = 0, 17, 33, 50, 67, 100 mol%) | Temperature: 700–1050 °C Feed gas flow rate: 5–20 sccm Feed gas composition: 50–50 mol% Ar–CH4, 100 mol% CH4 | (i) CH4 conversion: ∼0–55% (ii) H2 selectivity: ∼0.9–0.99 | [62] |
Molten salt bubbling reactor | Alkali halide (NaBr, KBr, KCl, NaCl, NaBr-KBr) salts | Temperature: 850–1000 °C CH4 flow rate: 15 mL/min Bubble residence time: 0.36–0.40 s | CH4 conversion: 4.4–6.2% | [67] |
Catalyst System | Temp. (°C) | H2 Yield (mmol/gcat/h) | Stability (h) | Carbon Structure | Key Advantage |
---|---|---|---|---|---|
Ni-Bi Eutectic | 950 | 18.7 | 1000 | Buoyant flakes | Continuous skimming |
Ga-In-Sn | 900 | 12.3 | 8000 | Hollow spheres | Low evaporation |
Na2CO3-K2CO3 | 850 | 9.8 | 500 | Amorphous powder | Low-cost regeneration |
Fe-SiC Composite | 1100 | 22.1 | 300 | Graphitic shells | High activity |
Reactor | Catalyst | Operating Conditions | Study Type | Kinetic Model | Pre-Exponential Rate Constant | Activation Energy (kJ/mol) | Reaction Order | Ref. |
---|---|---|---|---|---|---|---|---|
Bench-scale fluidized bed reactor | (i) Carbon black (BP-2000), (ii) Activated carbon (KBB) | T:600–950 °C, τ: 1 s Feed gas:CH4 | Both | Equation (9) | BP-2000: 4.3 × 109, KBB: 4.9 × 108 | (i) BP-2000: 236, (ii) KBB: 200 | 1 | [68,69] |
Fluid-wall graphite aerosol flow reactor | Not applicable | T:1260–1871°C, P: 1 atm, τ: 0.9–1.5 s, Feed gas: NG with >95% CH4/H2 | Model | Equation (9) | 6 × 1011 | 208 | 4.4 | [70,71] |
Not reported | Ni–Cu–Al2O3 | T: 587–677 °C P: 1 atm τ: 0.1–10 s Feed gas: CH4 T: 500–800 °C | Both | Not re- ported | Not reported | 65 to 75 | Not reported | [72] |
Quartz-glass tube catalyst column | Ni–SiO2 | T: 500–800 °C P: 1 atm Feed gas: CH4/Ar or H2 | Both | Equation (9) | 3.09 × 1011 | 29.5 | 1 | [73] |
(i) Mixed flow reactor (MFR) (ii) Plug flow reactor (PFR) | Carbon | T: 627–787 °C P: 1 atm Feed gas: CH4/Ar | Both | Equation (9) | MFR: 7.54 × 106, PFR: 1.07 × 106 | MFR: 162, PFR: 147 | 1 | [74] |
Fixed bed reactor | Ni–TiO2 | T: 550–900 °C P: 1 atm Feed gas: CH4/Ar | Both | Equation (9) | 2.23 × 103 | 60 | 1 | [75] |
Microreactor | (i) Carbon black (CB): BP-120, Regal-330, Vulcan-XC72 and BP-2000, (ii) Activated carbon (AC): coconut, hardwood, lignite, peat, and petroleum coke | T: 850 °C P: 1 atm τ: 0.1 s Feed gas: CH4 (99.99%) | Both | Equation (9) | Not reported | CB: 205–236 AC: 160–201 | 0.5 | [76] |
Fluid-wall high temperature solar chemical reactor | Not applicable | T: 1290–1540 °C P: 1 atm τ: <0.5 s Feed gas: CH4/Ar | Both | Equation (9) | 2 × 108 | 147 | 1 | [77] |
Fluid-wall high temperature solar chemical reactor | Not applicable | T: 1227–1727 °C P: 1 atm τ: <0.5 s Feed gas: CH4/Ar | Both | Equation (9) | (i) 2.5 × 107 to 4.5 × 107, (i) 2: 5 × 1010 to 9 × 1010, (iii) 4.5 × 1013 to 5.5 × 1013, (iv) 3.5 × 1012 to 5 × 1012 | (i) 147 (ii) 250 (iii) 350 (iv) 250 | (i) 1 (ii) 1 (iii) 1 (iv) 1.5 | [78] |
Fluid-wall aerosol flow reactor | Not applicable | T: 1427–1862 °C τ: 0.01–0.02 s Feed gas: CH4/Ar | Both | Equation (9) | 5.8 × 108 ± 1.7 × 109 | 155.6 ± 125.8 | 7.2 ± 6.9 | [79] |
Tubular reactor | Not applicable | T: 607–1371 °C P: 1 atm | Model | Equation (9) | 6 × 1011 | 250 | 1 | [80] |
Electrobalance reactor | (i) Carbon black (BP-2000) (ii) Activated carbon, CG Norit | T: 800–950 °C P: 1 atm Feed gas: CH4 | Both | Equation (9) | Not reported | CB: 238, CG Norit: 141 | 0.5 | [81] |
Electrobalance reactor | Palm shell-based activated carbon | T: 800–950 °C P: 1 atm Feed gas: CH4/N2 | Both | Equation (9) | 1 × 1010 | 210 | 0.5 | [82] |
Tubular solar plug flow chemical reactor | Not applicable | T: 1227–2027 °C P: 0.3–0.4 atm τ: 0.012–0.035 s Feed gas: CH4/Ar | Both | Equation (9) | 6.6 × 1013 | 370 | 1 | [83] |
Tubular solar plug flow chemical reactor | Not applicable | T: 1397–1467 °C P: 0.3–0.4 atm τ: 0.012–0.035 s Feed gas: CH4/Ar | Both | Equation (9) | 1.47 × 108 | 205 | 1 | [84] |
Quartz tub | Ni–Cu/MgO | T: 550–650 °C PCH4: 0.059–0.110 atm PH2: 0.036–0.088 atm PN2: 0.802–0.905 atm Feed gas: CH4/ H2/N2 | Both | Equation (10) | 8.133 × 103 | 75 | n: 1 m: −0.8 | [85] |
Electrobalance reactor | Ni-porous and non-porous Al2O3 | T: 500–650 °C P: 1 atm Feed gas: CH4/N2 or CH4/H2 | Both | Equation (11) | Porous: 4.64 × 107 Non-porous: 1 × 107 | Porous: 88 Non-porous: 75 | 1 | [86] |
Tubular solar plug flow chemical reactor | Carbon | T: 1397–1497 °C P: 1 atm τ: <0.5 s Feed gas: CH4/Ar | Model | Equation (9) | Homo: 1 × 1014 Hetero: 2.5 × 103 | Homo: 400 Hetero: 150 | 1 | [87] |
Fixed bed reactor | Ni–Y zeolite | T: 500–650 °C PCH4: 0.2–0.5 atm τ: <0.5 s | Both | Equation (9) | 1.5367 × 104 | 61.8 | 2.65 | [88] |
Thermogravimetric solar reactor | (i) Carbon black (SB-900 in pellet form) (ii) Carbon black (SB-905 in powder form) (iii) Carbon black (SB-285 in powder form) (iv) Activated carbon | T: 900–1200 °C P: 1 atm τ: <0.5 s Feed gas: CH4/A | Both | SB-900: 0.2952 SB-905: 0.7929 SB-285: 5.4739 Darco: 8.059 × 10−3 | SB-900: 63 SB-905: 67 SB-285: 85 Darco: 31 | SB-900: 0.78 SB-905: 0.90 SB-285: 1.03 Darco: 0.57 | [89] | |
Fixed bed reactor | Ni–TiO2 | T: 550–650 °C PCH4: 0.2–0.8 atm τ: 1.5 s | Both | Equation (9) | 8.073 × 104 | 61.13 | 1.4 | [90] |
(i) Mixed flow reactor (MFR) (ii) Plug flow reactor (PFR) (iii) Combined perfectly into a mixed reactor with bypass (CPMR) | Not applicable | T: 750–1100 °C P: 1 atm τ: 120–1700 s Feed gas: CH4/N2 | Both | Equation (9) | MFR: 3.2 × 107 PFR: 1.2 × 105 CPMR: 5.4 × 1015 | MFR: 231.7 PFR: 177.8 CPMR: 420.7 | 1 | [91] |
Regenerative heat exchanger reactor modelled as plug flow reactor and constant pressure reactor model | Not applicable | T: 797–1177 °C P: 1 atm τ: 6–21 s Feed gas: CH4/N2 | Both | Equation (11) | Forward: 8.57 × 1012 Backward: 1.12 × 109 | Forward: 337.12 Backward: 243.16 | Forward: 1.123 Backward: 0.9296 | [92] |
Regenerative heat exchanger reactor modelled as plug flow reactor and constant pressure reactor model | Not applicable | T: 797–1177 °C P: 1 atm τ: 6–21 s Feed gas: CH4/N2 | Model | Equation (12) | 4.4875 × 1010 | 284.95 | 1.0809 | [93] |
Tubular reactors of different materials (i) High-alloy steel (253 MA) (ii) Aluminum oxide (AlSint) (iii) Silicon carbide (SiC) (iv) Quartz glass (Quartz) | Not applicable | T: 1068–1300 °C P: 1.5 atm Feed gas: CH4/ N2 | Both | Homo: Equations (9) and (12) Hetero: Equation (9) | 253 MA, homo: 4.65 × 109 AlSint, homo: 2.73 × 106 SiC, homo: 3.50 × 107 Quartz, homo: 7.32 × 105 Global, homo, 2-p-fit: 5.97 × 107 Global, homo, 3-p-fit: 1.25 × 1014 Global, homo, 2-t-fit with homo-hetero: 1.23 × 105 Global, hetero, 2-t-fit with homo-hetero: 5.22 × 105 | 253 MA, homo: 271.03 AlSint, homo: 185.88 SiC, homo: 215.65 Quartz, homo: 172.70 Global, homo, 2-p-fit: 221.87 Global, homo, 3-p-fit: 403.99 Global, homo, 2-t-fit with homo-hetero: 153.33 Global, hetero, 2-t-fit with homo-hetero: 358.43 | 253 MA, homo: 1 AlSint, homo: 1 SiC, homo: 1 Quartz, homo: 1 Global, homo, 2-p-fit: 1 Global, homo, 3-p-fit: 2.438 Global, homo, 2-t-fit with homo-hetero: 1 Global, hetero, 2-t-fit with homo-hetero: 1 | [38] |
CH4 Pyrolysis Technology | Capacity of H2 Plant | Case Scenario | LCOH/Other Economic Indicators | Ref |
---|---|---|---|---|
Plasma reactor | 833.4 kg/h | (i) Various energy requirements of the plasma reactor (1.31–2.8 kWh/Nm3 H2) (ii) Varying electricity tariffs, installation costs and NG prices (USD 69–100/MWh, USD 80–111 million, and USD 7.82–8.76/MMBtu, respectively) (iii) Benchmark: SMR | (i) LCOH: ∼USD 0–5.2/kg H2 (considering carbon sales at USD 0.25–1.75/kg) (ii) LCOH: ∼USD 0–5.7/kg H2 (considering carbon sales at USD 0.25–2/kg) (iii) LCOH: USD 2.08–2.66/kg H2 | [94] |
Molten gallium bubble column reactor | 21 kilotonnes per annum (ktpa)/2.7 t/h | (i) Heat supplied by the combustion of produced carbon (with and without CCS) (ii) Heat supplied by the combustion of produced H2 (iii) Heat supplied by the combustion of NG (with and without CCS) (iv) Heat supplied by electricity (v) Benchmark: SMR (with and without CCS) | (i) LCOH: 2.94–2.95 €/kg H2 (ii) LCOH: 4.03 €/kg H2 (iii) LCOH: 3.47–3.53 €/kg H2 (iv) LCOH: 3.16 €/kg H2 (v) LCOH: 2.86–3.36 €/kg H2 | [35] |
Electron beam plasma reactor | 9 ton/h | (i) Electricity supplied by electricity generation from produced H2 (ii) Electricity supplied by renewable energy input (iii) Benchmark: SMR (with and without CCS) (iv) Benchmark: Water electrolysis | (i) LCOH: 5.00 €/kg H2 (ii) LCOH: 2.55 €/kg H2 (iii) LCOH: 1.00–1.18 €/kg H2 (iv) LCOH: 4.31 €/kg H2 | [95] |
Catalytic fluidized bed reactor | 216 ns per day | (i) Heat supplied by the combustion of produced H2 (ii) Heat supplied by the combustion of CH4 (iii) Benchmark: SMR with CCS | (i) For cases (i) and (ii): LCOH (without considering carbon sales): USD 2.94–3.1/kg H2 ∗LCOH (after considering carbon sales): USD 0/kg H2 (ii) For case (iii): LCOH: USD 2.2/kg H2 | [96] |
Molten salt (50–50 mol% MnCl2-KCl) bubble column reactor | 2.7 ton/h | (i) Various operating pressures (5, 12, 32 bar) ∗ (ii) Various approach temperatures to pyrolysis at 1000 °C ∗ (iii) Additional costs for salt handling∗ (iv) H2 sales price in the case of no revenue from the produced carbon H2 sales price was assumed to be 1.6 €/kg H2. | (i) LCOC: 312 €/ton C (ii) LCOC: 306 €/ton C (iii) LCOC: ∼379 €/ton C (iv) LCOH: 2.38–2.62 €/kg H2 | [97] |
Microwave plasma autothermal mobile methane pyrolysis unit | 12.7 kg/h | Reaction pressure of 2.5 bar and reaction temperature of 800 °C | LCOH: USD 1.3–1.47/kg H2, NPV: 3.76–4.35 mil USD, ROI: 45.57% | [98] |
Thermal and catalytic methane pyrolysis | (i) 0.17–2.00 kmol/h (ii) 0.12–1.85 kmol/h (iii) 0.29–3.49 kmol/h (iv) 0.20–3.23 kmol/h | (i) Thermal methane pyrolysis (Temperature: 800–1100 °C) (ii) Catalytic methane pyrolysis (Temperature: 750–900 °C) (iii) Additional carbon gasification (Temperature: 800–1100 °C) (iv) Additional water–gas shift (WGS) reaction (Temperature: 750–900 °C) | (i) 2.14 USD/kg H2 (ii) 3.66 USD/kg H2 (iii) 3.53 USD/kg H2 (iv) 3.82 USD/kg H2 | [99] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Xu, Q.; Zhu, C.; Cheng, H.; Zou, X.; Lu, X.; Sun, C. Hydrogen Production from Methane Cracking by Molten Catalysts: A Review and New Perspectives. Chemistry 2025, 7, 138. https://doi.org/10.3390/chemistry7050138
Yu X, Xu Q, Zhu C, Cheng H, Zou X, Lu X, Sun C. Hydrogen Production from Methane Cracking by Molten Catalysts: A Review and New Perspectives. Chemistry. 2025; 7(5):138. https://doi.org/10.3390/chemistry7050138
Chicago/Turabian StyleYu, Xiaoyang, Qian Xu, Chuncheng Zhu, Hongwei Cheng, Xingli Zou, Xionggang Lu, and Chenteng Sun. 2025. "Hydrogen Production from Methane Cracking by Molten Catalysts: A Review and New Perspectives" Chemistry 7, no. 5: 138. https://doi.org/10.3390/chemistry7050138
APA StyleYu, X., Xu, Q., Zhu, C., Cheng, H., Zou, X., Lu, X., & Sun, C. (2025). Hydrogen Production from Methane Cracking by Molten Catalysts: A Review and New Perspectives. Chemistry, 7(5), 138. https://doi.org/10.3390/chemistry7050138