Synthesis and Cancer Cell Targeting of a Boron-Modified Heat-Stable Enterotoxin Analog for Boron Neutron Capture Therapy (BNCT)
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of [BSH-(CH2)5-COO]3−⋅3[N(CH3)4]+
2.3. Synthesis of [BSH-(CH2)5-COOSu]2−⋅2[N(CH3)4]+
2.4. Synthesis of BSH-(CH2)5-CO- Conjugated [Mpr5,D-Lys16]-STp(5–17) Topological Isomer
2.5. GC-C Binding Activity of BSH-(CH2)5-CO- Conjugated [Mpr5,D-Lys16]-STp(5–17) Topological Isomer
2.6. Irradiation of Caco-2 Cells Bound to the [Mpr5,D-Lys16(BSH-hexanoyl)]-STp(5–17) Topological Isomer
2.7. Reversed-Phase High-Performance Liquid Chromatography (RP-HPLC)
3. Results and Discussion
3.1. Development of the STa Topological Isomer for BNCT: Design and Synthesis of BSH-(CH2)5-CO- Conjugated [Mpr5,D-Lys16]-STp(5–17) Topological Isomer
3.2. GC-C Binding Activity of [Mpr5,D-Lys16(BSH-hexanoyl)]-STp(5–17) Topological Isomer
3.3. Neutron Irradiation of Caco-2 Cells
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Smith, H.W.; Gyles, C.L. The relationship between two apparently different enterotoxins produced by enteropathogenic strains of Escherichia coli of porcine origin. J. Med. Microbiol. 1970, 3, 387–401. [Google Scholar] [CrossRef] [PubMed]
- Aimoto, S.; Takao, T.; Shimonishi, Y.; Hara, S.; Takeda, T.; Takeda, Y.; Miwatani, T. Amino-acid sequence of a heat-stable enterotoxin produced by human enterotoxigenic Escherichia coli. Eur. J. Biochem. 1982, 129, 257–263. [Google Scholar] [CrossRef]
- Takao, T.; Hitouji, T.; Aimoto, S.; Shimonishi, Y.; Hara, S.; Takeda, T.; Takeda, Y.; Miwatani, T. Amino acid sequence of a heat-stable enterotoxin isolated from enterotoxigenic Escherichia coli strain 18D. FEBS Lett. 1983, 152, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Currie, M.G.; Fok, K.F.; Kato, J.; Moore, R.J.; Hamra, F.K.; Duffin, K.L.; Smith, C.E. Guanylin: An endogenous activator of intestinal guanylate cyclase. Proc. Natl. Acad. Sci. USA 1992, 89, 947–951. [Google Scholar] [CrossRef]
- Hamra, F.K.; Forte, L.R.; Eber, S.L.; Pidhorodeckyj, N.V.; Krause, W.J.; Freeman, R.H.; Chin, D.T.; Tompkins, J.A.; Fok, K.F.; Smith, C.E.; et al. Uroguanylin: Structure and activity of a second endogenous peptide that stimulates intestinal guanylate cyclase. Proc. Natl. Acad. Sci. USA 1993, 90, 10464–10468. [Google Scholar] [CrossRef]
- Kennedy, D.J.; Greenberg, R.N.; Dunn, J.A.; Abernathy, R.; Ryerse, J.S.; Guerrant, R.L. Effects of Escherichia coli heat-stable enterotoxin STb on intestines of mice, rats, rabbits, and piglets. Infect. Immun. 1984, 46, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Shimonishi, Y.; Hidaka, Y.; Koizumi, M.; Hane, M.; Aimoto, S.; Takeda, T.; Miwatani, T.; Takeda, Y. Mode of disulfide bond formation of a heat-stable enterotoxin (STh) produced by a human strain of enterotoxigenic Escherichia coli. FEBS Lett. 1987, 215, 165–170. [Google Scholar] [CrossRef]
- Hidaka, Y.; Kubota, H.; Yoshimura, S.; Ito, H.; Takeda, Y.; Shimonishi, Y. Disulfide Linkages in a Heat-Stable Enterotoxin (STp) Produced by a Porcine Strain of Enterotoxigenic Escherichia coli. Bull. Chem. Soc. Jpn. 1988, 61, 1265–1271. [Google Scholar] [CrossRef]
- Hughes, J.M.; Murad, F.; Chang, B.; Guerrant, R.L. Role of cyclic GMP in the action of heat-stable enterotoxin of Escherichia coli. Nature 1978, 271, 755–756. [Google Scholar] [CrossRef]
- Field, M.; Graf, L.H., Jr.; Laird, W.J.; Smith, P.L. Heat-stable enterotoxin of Escherichia coli: In vitro effects on guanylate cyclase activity, cyclic GMP concentration, and ion transport in small intestine. Proc. Natl. Acad. Sci. USA 1978, 75, 2800–2804. [Google Scholar] [CrossRef]
- Garbers, D.L. Guanylyl cyclase receptors and their endocrine, paracrine, and autocrine ligands. Cell 1992, 71, 1–4. [Google Scholar] [CrossRef] [PubMed]
- Chao, A.C.; de Sauvage, F.J.; Dong, Y.J.; Wagner, J.A.; Goeddel, D.V.; Gardner, P. Activation of intestinal CFTR Cl- channel by heat-stable enterotoxin and guanylin via cAMP-dependent protein kinase. EMBO J. 1994, 13, 1065–1072. [Google Scholar] [CrossRef]
- Visweswariah, S.S.; Ramachandran, V.; Ramamohan, S.; Das, G.; Ramachandran, J. Characterization and partial purification of the human receptor for the heat-stable enterotoxin. Eur. J. Biochem. 1994, 219, 727–736. [Google Scholar] [CrossRef]
- Amarachintha, S.; Harmel-Laws, E.; Steinbrecher, K.A. Guanylate cyclase C reduces invasion of intestinal epithelial cells by bacterial pathogens. Sci. Rep. 2018, 8, 1521. [Google Scholar] [CrossRef]
- Snook, A.E.; Stafford, B.J.; Li, P.; Tan, G.; Huang, L.; Birbe, R.; Schulz, S.; Schnell, M.J.; Thakur, M.; Rothstein, J.L.; et al. Guanylyl cyclase C-induced immunotherapeutic responses opposing tumor metastases without autoimmunity. J. Natl. Cancer Inst. 2008, 100, 950–961. [Google Scholar] [CrossRef]
- Lin, J.E.; Li, P.; Pitari, G.M.; Schulz, S.; Waldman, S.A. Guanylyl cyclase C in colorectal cancer: Susceptibility gene and potential therapeutic target. Future Oncol. 2009, 5, 509–522. [Google Scholar] [CrossRef] [PubMed]
- Goto, M.; Yoshino, S.; Hiroshima, K.; Kawakami, T.; Murota, K.; Shimamoto, S.; Hidaka, Y. The Molecular Basis of Heat-Stable Enterotoxin for Vaccine Development and Cancer Cell Detection. Molecules 2023, 28, 1128. [Google Scholar] [CrossRef]
- Kusaka, S.; Hattori, Y.; Uehara, K.; Asano, T.; Tanimori, S.; Kirihata, M. Synthesis of optically active dodecaborate-containing L-amino acids for BNCT. Appl. Radiat. Isot. 2011, 69, 1768–1770. [Google Scholar] [CrossRef] [PubMed]
- Barth, R.F.; Gupta, N.; Kawabata, S. Evaluation of sodium borocaptate (BSH) and boronophenylalanine (BPA) as boron delivery agents for neutron capture therapy (NCT) of cancer: An update and a guide for the future clinical evaluation of new boron delivery agents for NCT. Cancer Commun. 2024, 44, 893–909. [Google Scholar] [CrossRef]
- Michiue, H.; Sakurai, Y.; Kondo, N.; Kitamatsu, M.; Bin, F.; Nakajima, K.; Hirota, Y.; Kawabata, S.; Nishiki, T.; Ohmori, I.; et al. The acceleration of boron neutron capture therapy using multi-linked mercaptoundecahydrododecaborate (BSH) fused cell-penetrating peptide. Biomaterials 2014, 35, 3396–3405. [Google Scholar] [CrossRef]
- Barth, R.F.; Yang, W.; Adams, D.M.; Rotaru, J.H.; Shukla, S.; Sekido, M.; Tjarks, W.; Fenstermaker, R.A.; Ciesielski, M.; Nawrocky, M.M.; et al. Molecular targeting of the epidermal growth factor receptor for neutron capture therapy of gliomas. Cancer Res. 2002, 62, 3159–3166. [Google Scholar] [PubMed]
- Sakata, N.; Murakami, Y.; Miyazawa, M.; Shimamoto, S.; Hidaka, Y. A Novel Peptide Reagent for Investigating Disulfide-Coupled Folding Intermediates of Mid-Size Proteins. Molecules 2023, 28, 3494. [Google Scholar] [CrossRef] [PubMed]
- Sakata, N.; Shimamoto, S.; Murakami, Y.; Ashida, O.; Takei, T.; Miyazawa, M.; Hidaka, Y. Mutational Analysis of Substrate Recognition in Trypsin-like Protease Cocoonase: Protein Memory Induced by Alterations in Substrate-Binding Site. Molecules 2024, 29, 5476. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, G. Contribution to education and research using a 1 W reactor at Kindai University. Ann. Nucl. Energy 2025, 210, 110852. [Google Scholar] [CrossRef]
- Trivillin, V.A.; Langle, Y.V.; Palmieri, M.A.; Pozzi, E.C.C.; Thorp, S.I.; Benitez Frydryk, D.N.; Garabalino, M.A.; Monti Hughes, A.; Curotto, P.M.; Colombo, L.L.; et al. Evaluation of local, regional and abscopal effects of Boron Neutron Capture Therapy (BNCT) combined with immunotherapy in an ectopic colon cancer model. Br. J. Radiol. 2021, 94, 20210593. [Google Scholar] [CrossRef]
- Hiroshima, K.; Sakata, N.; Konogami, T.; Shimamoto, S.; Hidaka, Y. The Cell Adhesion Activity of the Joining Peptide of Proopiomelanocortin. Molecules 2023, 28, 7754. [Google Scholar] [CrossRef]
- Shimamoto, S.; Fukutsuji, M.; Osumi, T.; Goto, M.; Toyoda, H.; Hidaka, Y. Topological Regulation of the Bioactive Conformation of a Disulfide-Rich Peptide, Heat-Stable Enterotoxin. Molecules 2020, 25, 4798. [Google Scholar] [CrossRef]
- Ghanekar, Y.; Chandrashaker, A.; Visweswariah, S.S. Cellular refractoriness to the heat-stable enterotoxin peptide is associated with alterations in levels of the differentially glycosylated forms of guanylyl cyclase C. Eur. J. Biochem. 2003, 270, 3848–3857. [Google Scholar] [CrossRef]
- Hidaka, Y.; Ohno, M.; Hemmasi, B.; Hill, O.; Forssmann, W.G.; Shimonishi, Y. In vitro disulfide-coupled folding of guanylyl cyclase-activating peptide and its precursor protein. Biochemistry 1998, 37, 8498–8507. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Okazaki, S.; Hattori, Y.; Sakata, N.; Goto, M.; Kitayama, S.; Ikeda, H.; Takei, T.; Shimamoto, S.; Hidaka, Y. Synthesis and Cancer Cell Targeting of a Boron-Modified Heat-Stable Enterotoxin Analog for Boron Neutron Capture Therapy (BNCT). Chemistry 2025, 7, 111. https://doi.org/10.3390/chemistry7040111
Okazaki S, Hattori Y, Sakata N, Goto M, Kitayama S, Ikeda H, Takei T, Shimamoto S, Hidaka Y. Synthesis and Cancer Cell Targeting of a Boron-Modified Heat-Stable Enterotoxin Analog for Boron Neutron Capture Therapy (BNCT). Chemistry. 2025; 7(4):111. https://doi.org/10.3390/chemistry7040111
Chicago/Turabian StyleOkazaki, Sota, Yoshihide Hattori, Nana Sakata, Masaya Goto, Sarino Kitayama, Hiroko Ikeda, Toshiki Takei, Shigeru Shimamoto, and Yuji Hidaka. 2025. "Synthesis and Cancer Cell Targeting of a Boron-Modified Heat-Stable Enterotoxin Analog for Boron Neutron Capture Therapy (BNCT)" Chemistry 7, no. 4: 111. https://doi.org/10.3390/chemistry7040111
APA StyleOkazaki, S., Hattori, Y., Sakata, N., Goto, M., Kitayama, S., Ikeda, H., Takei, T., Shimamoto, S., & Hidaka, Y. (2025). Synthesis and Cancer Cell Targeting of a Boron-Modified Heat-Stable Enterotoxin Analog for Boron Neutron Capture Therapy (BNCT). Chemistry, 7(4), 111. https://doi.org/10.3390/chemistry7040111