Tuning Low-Lying Excited States and Optical Properties in IndenoFluorene Diradicaloids and Longitudinally Extended Derivatives: A Computational Perspective
Abstract
:1. Introduction
2. Methods
3. Results and Discussion
3.1. Equilibrium Structure and Molecular Orbitals of IF, FF, and DIAn
3.2. IF
3.3. FF
3.4. DIAn
3.5. Heisenberg Effective Exchange Couplings
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Can, A.; Facchetti, A.; Usta, H. Indenofluorenes for organic optoelectronics: The dance of fused five- and six-membered rings enabling structural versatility. J. Mater. Chem. C 2022, 10, 8496–8535. [Google Scholar] [CrossRef]
- Frederickson, C.K.; Rose, B.D.; Haley, M.M. Explorations of the Indenofluorenes and Expanded Quinoidal Analogues. Acc. Chem. Res. 2017, 50, 977–987. [Google Scholar] [CrossRef] [PubMed]
- Casares, R.; Rodríguez-González, S.; Martínez-Pinel, Á.; Márquez, I.R.; González, M.T.; Díaz, C.; Martín, F.; Cuerva, J.M.; Leary, E.; Millán, A. Single-Molecule Conductance of Neutral Closed-Shell and Open-Shell Diradical Indenofluorenes. J. Am. Chem. Soc. 2024, 146, 29977–29986. [Google Scholar] [CrossRef] [PubMed]
- Chase, D.T.; Fix, A.G.; Kang, S.J.; Rose, B.D.; Weber, C.D.; Zhong, Y.; Zakharov, L.N.; Lonergan, M.C.; Nuckolls, C.; Haley, M.M. 6,12-Diarylindeno [1,2-b]fluorenes: Syntheses, Photophysics, and Ambipolar OFETs. J. Am. Chem. Soc. 2012, 134, 10349–10352. [Google Scholar] [CrossRef]
- Zeidell, A.M.; Jennings, L.; Frederickson, C.K.; Ai, Q.; Dressler, J.J.; Zakharov, L.N.; Risko, C.; Haley, M.M.; Jurchescu, O.D. Organic Semiconductors Derived from Dinaphtho-Fuseds-Indacenes: How Molecular Structure and Film Morphology Influence Thin-Film Transistor Performance. Chem. Mater. 2019, 31, 6962–6970. [Google Scholar] [CrossRef]
- Chase, D.T.; Rose, B.D.; McClintock, S.P.; Zakharov, L.N.; Haley, M.M. Indeno [1,2-b]fluorenes: Fully Conjugated Antiaromatic Analogues of Acenes. Angew. Chem. Int. Ed. 2011, 50, 1127–1130. [Google Scholar] [CrossRef]
- Shimizu, A.; Tobe, Y. Indeno [2,1-a]fluorene: An Air-Stable ortho-Quinodimethane Derivative. Angew. Chem. Int. Ed. 2011, 50, 6906–6910. [Google Scholar] [CrossRef]
- Shimizu, A.; Kishi, R.; Nakano, M.; Shiomi, D.; Sato, K.; Takui, T.; Hisaki, I.; Miyata, M.; Tobe, Y. Indeno [2,1-b]fluorene: A 20-π-Electron Hydrocarbon with Very Low-Energy Light Absorption. Angew. Chem. Int. Ed. 2013, 52, 6076–6079. [Google Scholar] [CrossRef]
- Miyoshi, H.; Miki, M.; Hirano, S.; Shimizu, A.; Kishi, R.; Fukuda, K.; Shiomi, D.; Sato, K.; Takui, T.; Hisaki, I.; et al. Fluoreno [2,3-b]fluorene vs Indeno [2,1-b]fluorene: Unusual Relationship between the Number of π Electrons and Excitation Energy in m-Quinodimethane-Type Singlet Diradicaloids. J. Org. Chem. 2017, 82, 1380–1388. [Google Scholar] [CrossRef]
- Fix, A.G.; Deal, P.E.; Vonnegut, C.L.; Rose, B.D.; Zakharov, L.N.; Haley, M.M. Indeno [2,1-c]fluorene: A New Electron-Accepting Scaffold for Organic Electronics. Org. Lett. 2013, 15, 1362–1365. [Google Scholar] [CrossRef]
- Jousselin-Oba, T.; Deal, P.E.; Fix, A.G.; Frederickson, C.K.; Vonnegut, C.L.; Yassar, A.; Zakharov, L.N.; Frigoli, M.; Haley, M.M. Synthesis and Properties of Benzo-Fused Indeno [2,1-c]fluorenes. Chem. Asian J. 2019, 14, 1737–1744. [Google Scholar] [CrossRef] [PubMed]
- Hayashi, H.; Barker, J.E.; Cárdenas Valdivia, A.; Kishi, R.; MacMillan, S.N.; Gómez-García, C.J.; Miyauchi, H.; Nakamura, Y.; Nakano, M.; Kato, S.; et al. Monoradicals and Diradicals of Dibenzofluoreno [3,2-b]fluorene Isomers: Mechanisms of Electronic Delocalization. J. Am. Chem. Soc. 2020, 142, 20444–20455. [Google Scholar] [CrossRef] [PubMed]
- Rudebusch, G.E.; Zafra, J.L.; Jorner, K.; Fukuda, K.; Marshall, J.L.; Arrechea-Marcos, I.; Espejo, G.L.; Ponce Ortiz, R.; Gómez-García, C.J.; Zakharov, L.N.; et al. Diindeno-fusion of an anthracene as a design strategy for stable organic biradicals. Nat. Chem. 2016, 8, 753–759. [Google Scholar] [CrossRef] [PubMed]
- Rudebusch, G.E.; Espejo, G.L.; Zafra, J.L.; Peña-Alvarez, M.; Spisak, S.N.; Fukuda, K.; Wei, Z.; Nakano, M.; Petrukhina, M.A.; Casado, J.; et al. A Biradical Balancing Act: Redox Amphoterism in a Diindenoanthracene Derivative Results from Quinoidal Acceptor and Aromatic Donor Motifs. J. Am. Chem. Soc. 2016, 138, 12648–12654. [Google Scholar] [CrossRef]
- Dressler, J.J.; Cárdenas Valdivia, A.; Kishi, R.; Rudebusch, G.E.; Ventura, A.M.; Chastain, B.E.; Gómez-García, C.J.; Zakharov, L.N.; Nakano, M.; Casado, J.; et al. Diindenoanthracene Diradicaloids Enable Rational, Incremental Tuning of Their Singlet-Triplet Energy Gaps. Chem 2020, 6, 1353–1368. [Google Scholar] [CrossRef]
- Rose, B.D.; Vonnegut, C.L.; Zakharov, L.N.; Haley, M.M. Fluoreno [4,3-c]fluorene: A Closed-Shell, Fully Conjugated Hydrocarbon. Org. Lett. 2012, 14, 2426–2429. [Google Scholar] [CrossRef]
- Casado, J. Para-Quinodimethanes: A Unified Review of the Quinoidal-Versus-Aromatic Competition and its Implications. Top. Curr. Chem. 2017, 375, 73. [Google Scholar] [CrossRef]
- George, G.; Stasyuk, A.J.; Solà, M. Prediction of the ground state for indenofluorene-type systems with Clar’s π-sextet model. Chem. Sci. 2024, 15, 13676–13687. [Google Scholar] [CrossRef]
- Punzi, A.; Dai, Y.; Dibenedetto, C.N.; Mesto, E.; Schingaro, E.; Ullrich, T.; Striccoli, M.; Guldi, D.M.; Negri, F.; Farinola, G.M.; et al. Dark State of the Thiele Hydrocarbon: Efficient Solvatochromic Emission from a Nonpolar Centrosymmetric Singlet Diradicaloid. J. Am. Chem. Soc. 2023, 145, 20229–20241. [Google Scholar] [CrossRef]
- Canola, S.; Dai, Y.; Negri, F. The Low Lying Double-Exciton State of Conjugated Diradicals: Assessment of TDUDFT and Spin-Flip TDDFT Predictions. Computation 2019, 7, 68. [Google Scholar] [CrossRef]
- Canola, S.; Casado, J.; Negri, F. The double exciton state of conjugated chromophores with strong diradical character: Insights from TDDFT calculations. Phys. Chem. Chem. Phys. 2018, 20, 24227–24238. [Google Scholar] [CrossRef] [PubMed]
- Negri, F.; Canola, S.; Dai, Y. Spectroscopy of Open-Shell Singlet Ground-State Diradicaloids: A Computational Perspective. In Diradicaloids; Wu, J., Ed.; Jenny Stanford Publishing: New York, NY, USA, 2022; pp. 145–179. [Google Scholar]
- Di Motta, S.; Negri, F.; Fazzi, D.; Castiglioni, C.; Canesi, E.V. Biradicaloid and Polyenic Character of Quinoidal Oligothiophenes Revealed by the Presence of a Low-Lying Double-Exciton State. J. Phys. Chem. Lett. 2010, 1, 3334–3339. [Google Scholar] [CrossRef]
- Dressler, J.J.; Zhou, Z.; Marshall, J.L.; Kishi, R.; Takamuku, S.; Wei, Z.; Spisak, S.N.; Nakano, M.; Petrukhina, M.A.; Haley, M.M. Synthesis of the Unknown Indeno [1,2-a]fluorene Regioisomer: Crystallographic Characterization of Its Dianion. Angew. Chem. Int. Ed. 2017, 56, 15363–15367. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Truhlar, D.G. The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: Two new functionals and systematic testing of four M06-class functionals and 12 other function. Theor. Chem. Acc. 2007, 120, 215–241. [Google Scholar] [CrossRef]
- Weigend, F.; Ahlrichs, R. Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 2005, 7, 3297. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef]
- Grimme, S.; Ehrlich, S.; Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 2011, 32, 1456–1465. [Google Scholar] [CrossRef]
- Rose, B.D.; Sumner, N.J.; Filatov, A.S.; Peters, S.J.; Zakharov, L.N.; Petrukhina, M.A.; Haley, M.M. Experimental and Computational Studies of the Neutral and Reduced States of Indeno [1,2-b]fluorene. J. Am. Chem. Soc. 2014, 136, 9181–9189. [Google Scholar] [CrossRef]
- Yamaguchi, K. The electronic structures of biradicals in the unrestricted Hartree-Fock approximation. Chem. Phys. Lett. 1975, 33, 330–335. [Google Scholar] [CrossRef]
- Nakano, M. Open-Shell-Character-Based Molecular Design Principles: Applications to Nonlinear Optics and Singlet Fission. Chem. Rec. 2017, 17, 27–62. [Google Scholar] [CrossRef]
- Yamaguchi, K.; Fukui, H.; Fueno, T. Molecular orbital (MO) theory for magnetically interacting organic compounds. Ab-initio MO calculations of the effective exchange integrals for cyclophane-type carbene dimers. Chem. Lett. 1986, 15, 625–628. [Google Scholar] [CrossRef]
- Bonačić-Koutecký, V.; Koutecký, J.; Michl, J. Neutral and Charged Biradicals, Zwitterions, Funnels in S1, and Proton Translocation: Their Role in Photochemistry, Photophysics, and Vision. Angew. Chem. Int. Ed. 1987, 26, 170–189. [Google Scholar] [CrossRef]
- Liu, W.; Canola, S.; Köhn, A.; Engels, B.; Negri, F.; Fink, R.F. A model hamiltonian tuned toward high level ab initio calculations to describe the character of excitonic states in perylenebisimide aggregates. J. Comput. Chem. 2018, 39, 1979–1989. [Google Scholar] [CrossRef]
- Martínez-Pinel, Á.; Lezama, L.; Cuerva, J.M.; Casares, R.; Blanco, V.; Cruz, C.M.; Millán, A. A Configurationally Stable Helical Indenofluorene. Org. Lett. 2024, 26, 6012–6017. [Google Scholar] [CrossRef]
- Valdivia, A.C.; Dai, Y.; Rambaldi, F.; Barker, J.E.; Dressler, J.J.; Zhou, Z.; Zhu, Y.; Wei, Z.; Petrukhina, M.A.; Haley, M.M.; et al. Orbital Nature of Carboionic Monoradicals Made from Diradicals. Chem. Eur. J. 2023, 29, e202300388. [Google Scholar] [CrossRef]
- Barker, J.E.; Frederickson, C.K.; Jones, M.H.; Zakharov, L.N.; Haley, M.M. Synthesis and Properties of Quinoidal Fluorenofluorenes. Org. Lett. 2017, 19, 5312–5315. [Google Scholar] [CrossRef]
- Vidal, E.; Zakharov, L.N.; Gómez-García, C.J.; Haley, M.M. Probing the Influence of Alkyne Substitution on the Electronic and Magnetic Properties of Diindeno [1,2-b;1′,2′-i]anthracenes. J. Org. Chem. 2024, 89, 14515–14519. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R.; Scalmani, G.; Barone, V.; Petersson, G.A.; Nakatsuji, H.; et al. Gaussian, Revision. A.03; Gaussian, Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
Compound | This Work 1 | Ground State Structure | /eV α Electrons | /eV β Electrons | E(DE State)/eV [f] |
---|---|---|---|---|---|
IF-1a | 0.68 | OS | 3.62 | 3.62 | 1.00 [0.0102] |
IF-1b | 0.25 | CS | 4.35 | - | - |
IF-2b | 0.29 | CS | 4.13 | - | - |
IF-2c | 0.25 | CS | 4.21 | - | - |
FF-1a | 0.80 | OS | 3.57 | 3.57 | 1.18 [0.0009] |
FF-1b | 0.43 | CS | 3.54 | - | - |
FF-3a | 0.71 | OS | 3.69 | 3.69 | 1.18 [0.0000] |
FF-3c | 0.33 | CS | 3.58 | - | - |
DIAn-1a | 0.87 | OS | 3.45 | 3.45 | 1.26 [0.0012] |
DIAn-1b | 0.68 | OS | 3.55 | 3.55 | 1.15 [0.0000] |
DIAn-3a | 0.77 | OS | 3.55 | 3.55 | 1.24 [0.0000] |
DIAn-3c | 0.58 | OS | 3.59 | 3.59 | 1.05 [0.0000] |
Non symmetric isomers | |||||
FF-2a | 0.41 | CS | 3.51 | - | - |
FF-2d | 0.58 | OS | 3.62 | 3.55 | 0.96 [0.0021] |
FF-4b | 0.44 | CS | 3.45 | - | - |
DIAn-2b | 0.74 | OS | 3.72 | 3.34 | 1.12 [0.0372] |
DIAn-2d | 0.65 | OS | 3.74 | 3.30 | 1.02 [0.0269] |
DIAn-4b | 0.73 | OS | 3.48 | 3.67 | 1.12 [0.0133] |
Compound | This Work 1 [ref. [18]] 2 | /kcal/mol This Work 3 [ref. [18]] 4 | /kcal/mol Experimental | kcal/mol |
---|---|---|---|---|
IF-1a | 0.68 [0.53] | −1.24 [2.04] | −4.215 5 | −1.03 |
IF-1b | 0.25 [0.03] | −20.89 [−14.12] | - | −10.25 |
IF-2b | 0.29 [0.07] | −15.23 [−10.00] | - | −7.48 |
IF-2c | 0.25 [0.02] | −17.71 [−12.25] | - | −8.70 |
Non symmetric isomers | ||||
IF-2a | 0.97 [1.00] | 2.44 [3.65] | - | 2.44 |
Compound | This Work 1 [ref. [18]] 2 | /kcal/mol This Work 3 [ref. [18]] 4 | /kcal/mol Experimental | kcal/mol |
---|---|---|---|---|
FF-1a | 0.80 [0.69] | −0.82 [2.04] | - | −0.74 |
FF-1b | 0.43 [0.31] | −9.17 [−7.23] | −9.3 5 | −4.49 |
FF-3a | 0.71 [0.55] | −3.30 [−4.91] | - | −2.93 |
FF-3c | 0.33 [0.28] | −9.32 [−8.04] | −12.6 ± 2.0 6 | −4.59 |
Non symmetric isomers | ||||
FF-2a | 0.41 [0.31] | −7.67 [−6.64] | - | −3.76 |
FF-2d | 0.58 [0.43] | −4.76 [−5.32] | - | −3.44 |
FF-4b | 0.44 [0.38] | −5.97 [−6.25] | - | −2.93 |
Compound | This Work 1 [ref. [18]] 2 | /kcal/mol This Work 3 [ref. [18]] 4 | /kcal/mol Experimental | kcal/mol |
---|---|---|---|---|
DIAn-1a | 0.87 [0.81] | −0.04 [3.05] | - | −0.04 |
DIAn-1b | 0.68 [0.51] | −3.16 [-5.49] | −4.2 5 | −2.66 |
DIAn-3a | 0.77 [0.69] | −2.17 [-4.62] | - | −2.13 |
DIAn-3c | 0.58 [0.47] | −4.92 [-6.91] | - | −4.07 |
Non symmetric isomers | ||||
DIAn-2b | 0.74 [0.61] | −2.81 [−4.69] | - | −2.60 |
DIAn-2d | 0.65 [0.49] | −4.15 [−5.75] | - | −3.48 |
DIAn-4b | 0.73 [0.59] | −3.12 [−5.46] | - | −2.89 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orza, M.; Zerbini, A.; Negri, F. Tuning Low-Lying Excited States and Optical Properties in IndenoFluorene Diradicaloids and Longitudinally Extended Derivatives: A Computational Perspective. Chemistry 2025, 7, 47. https://doi.org/10.3390/chemistry7020047
Orza M, Zerbini A, Negri F. Tuning Low-Lying Excited States and Optical Properties in IndenoFluorene Diradicaloids and Longitudinally Extended Derivatives: A Computational Perspective. Chemistry. 2025; 7(2):47. https://doi.org/10.3390/chemistry7020047
Chicago/Turabian StyleOrza, Michele, Andrea Zerbini, and Fabrizia Negri. 2025. "Tuning Low-Lying Excited States and Optical Properties in IndenoFluorene Diradicaloids and Longitudinally Extended Derivatives: A Computational Perspective" Chemistry 7, no. 2: 47. https://doi.org/10.3390/chemistry7020047
APA StyleOrza, M., Zerbini, A., & Negri, F. (2025). Tuning Low-Lying Excited States and Optical Properties in IndenoFluorene Diradicaloids and Longitudinally Extended Derivatives: A Computational Perspective. Chemistry, 7(2), 47. https://doi.org/10.3390/chemistry7020047