Citric Acid-Catalyzed Three-Component Synthesis of (E)-3-Aryl-2-styryl-2,3-dihydroquinazoline-4(1H)-ones and Their Mild Oxidation with I2/DMSO System into (E)-3-Aryl-2-styrylquinazolin-4(3H)-ones
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Instruments
2.2. General Procedure for the Synthesis of (E)-3-Aryl-2-styryl-2,3-dihydroquinazolin-4(1H)-one derivatives 4a–e
2.2.1. 3-(4-Methoxyphenyl)-2-styryl-2,3-dihydroquinazolin-4(1H)-one (4a)
2.2.2. 3-Phenyl-2-styryl-2,3-dihydroquinazolin-4(1H)-one (4b)
2.2.3. 3-(3,4-Dimethoxyphenyl)-2-styryl-2,3-dihydroquinazolin-4(1H)-one (4c)
2.2.4. 3-(4-Methoxyphenyl)-2-(2-methoxystyryl)-2,3-dihydroquinazolin-4(1H)-one (4d)
2.2.5. 3-(4-Bromophenyl)-2-styryl-2,3-dihydroquinazolin-4(1H)-one (4e)
2.3. General Procedure for the Synthesis of (E)-3-Aryl-2-styrylquinazolin-4(3H)-one derivatives 5a–d
2.3.1. 3-(4-Methoxyphenyl)-2-styrylquinazolin-4(3H)-one (5a)
2.3.2. 3-Phenyl-2-styrylquinazolin-4(3H)-one (5b)
2.3.3. 3-(3,4-Dimethoxyphenyl)-2-styrylquinazolin-4(3H)-one (5c)
2.3.4. 3-(4-Methoxyphenyl)-2-(2-methoxystyryl)-quinazolin-4(3H)-one (5d)
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- He, D.; Wang, M.; Zhao, S.; Shu, Y.; Zeng, H.; Xiao, C.; Lu, C.; Liu, Y. Pharmaceutical prospects of naturally occurring quinazolinone and its derivatives. Fitoterapia 2017, 119, 136–149. [Google Scholar] [CrossRef]
- Hameed, A.; Al-Rashida, M.; Uroos, M.; Ali, S.A.; Arshia; Ishtiaq, M.; Khan, K.M. Quinazoline and quinazolinone as important medicinal scaffolds: A comparative patent review (2011–2016). Expert Opin. Ther. Pat. 2018, 28, 281–297. [Google Scholar] [CrossRef]
- Alsibaee, A.M.; Al-Yousef, H.M.; Al-Salem, H.S. Quinazolinones, the winning horse in drug discovery. Molecules 2023, 28, 978. [Google Scholar] [CrossRef]
- Tiwary, B.K.; Pradhan, K.; Nanda, A.K.; Chakraborty, R. Implication of Quinazoline-4(3H)-Ones in Medicinal Chemistry: A Brief Review. J. Chem. Biol. Ther. 2015, 1, 1000104. [Google Scholar]
- Mahato, A.; Srivastava, B.; Nithya, S. Chemistry Structure Activity Relationship and Biological Activity of Quinazoline-4 (3H)-One Derivatives. Inventi Rapid Med. Chem. 2011, 2, 13–19. [Google Scholar]
- Kaur, J.; Kaur, S.; Muskan; Kaur, N.; Kumar, V.; Anand, A. Unveiling the Therapeutic Potential of Quinazolinone Derivatives in Cancer Treatment: A Comprehensive Exploration. ChemistrySelect 2024, 9, e202401366. [Google Scholar] [CrossRef]
- Upadhyay, R.; Tandel, P.; Patel, A.B. Halogen-based quinazolin-4 (3H)-one derivatives as MCF-7 breast cancer inhibitors: Current developments and structure–activity relationship. Arch. Pharm. 2024, 358, e2400740. [Google Scholar] [CrossRef]
- Ugale, V.G.; Bari, S.B. Quinazolines: New horizons in anticonvulsant therapy. Eur. J. Med. Chem. 2014, 80, 447–501. [Google Scholar] [CrossRef]
- Utreja, D.; Salotra, R.; Kaur, G.; Sharma, S.; Kaushal, S. Chemistry of quinolines and their agrochemical potential. Curr. Org. Chem. 2022, 26, 1895–1913. [Google Scholar] [CrossRef]
- An, L.; Yang, L.; Yan, T.; Yi, M.; Liu, S.; Li, H.; Bao, X. Synthesis and agricultural antimicrobial evaluation of new quinazoline derivatives containing both a piperazine linker and the N-acetyl moiety. Pest Manag. Sci. 2024, 80, 5307–5321. [Google Scholar] [CrossRef]
- Ma, J.; Li, P.; Li, X.; Shi, Q.; Wan, Z.; Hu, D.; Jin, L.; Song, B. Synthesis and antiviral bioactivity of novel 3-((2-((1E,4E)-3-oxo-5-arylpenta-1,4-dien-1-yl) phenoxy) methyl)-4(3H)-quinazolinone derivatives. J. Agric. Food Chem. 2014, 62, 8928–8934. [Google Scholar] [CrossRef]
- Xing, Z.; Wu, W.; Miao, Y.; Tang, Y.; Zhou, Y.; Zheng, L.; Fu, Y.; Song, Z.; Peng, Y. Recent advances in quinazolinones as an emerging molecular platform for luminescent materials and bioimaging. Org. Chem. Front. 2021, 8, 1867–1889. [Google Scholar] [CrossRef]
- Selvam, T.P.; Kumar, P.V. Quinazoline marketed drugs. Res. Pharm. 2015, 1. Available online: https://updatepublishing.com/journal/index.php/rip/article/view/204 (accessed on 30 January 2025).
- Inger, J.A.; Mihan, E.R.; Kolli, J.U.; Lindsley, C.W.; Bender, A.M. DARK classics in chemical neuroscience: Methaqualone. ACS Chem. Neurosci. 2023, 14, 340–350. [Google Scholar] [CrossRef]
- Ma, C.; Li, Y.; Niu, S.; Zhang, H.; Liu, X.; Che, Y. N-hydroxypyridones, phenylhydrazones, and a quinazolinone from Isaria farinosa. J. Nat. Prod. 2011, 74, 32–37. [Google Scholar] [CrossRef]
- Zi-Jun, C.A.I.; Kuang, Y.Q.; Dan, P.A.N.; Wei, L.I.U.; Jiang, J.H. Synthesis and characterization of a novel ELF-97-based fluorescent probe for hydrogen peroxide detection. Chin. J. Anal. Chem. 2015, 43, 1671–1675. [Google Scholar]
- Sonousi, A.; Hassan, R.A.; Osman, E.O.; Abdou, A.M.; Emam, S.H. Design and synthesis of novel quinazolinone-based derivatives as EGFR inhibitors with antitumor activity. J. Enzyme Inhib. Med. Chem. 2022, 37, 2644–2659. [Google Scholar] [CrossRef]
- Welch, W.M.; Ewing, F.E.; Huang, J.; Menniti, F.S.; Pagnozzi, M.J.; Kelly, K.; Seymour, P.A.; Guanowsky, V.; Guhan, S.; Guinn, M.R.; et al. Atropisomeric quinazolin-4-one derivatives are potent noncompetitive α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor antagonists. Bioorg. Med. Chem. Lett. 2001, 11, 177–181. [Google Scholar] [CrossRef]
- Jiang, J.B.; Hesson, D.P.; Dusak, B.A.; Dexter, D.L.; Kang, G.J.; Hamel, E. Synthesis and biological evaluation of 2-styrylquinazolin-4 (3H)-ones, a new class of antimitotic anticancer agents which inhibit tubulin polymerization. J. Med. Chem. 1990, 33, 1721–1728. [Google Scholar] [CrossRef]
- Satpute, D.P.; Shirwadkar, U.; Tharalla, A.K.; Shinde, S.D.; Vaidya, G.N.; Joshi, S.; Vatsa, P.P.; Jain, A.; Singh, A.A.; Garg, R.; et al. Discovery of fluorinated 2-Styryl-4(3H)-quinazolinone as potential therapeutic hit for oral cancer. Bioorg. Med. Chem. 2023, 81, 117193. [Google Scholar]
- Seger, C.; Vajrodaya, S.; Greger, H.; Hofer, O. Structure elucidation and synthesis of a new bioactive quinazolone derivative obtained from Glycosmis Cf. Chlorosperma. Chem. Pharm. Bull. 1998, 46, 1926–1928. [Google Scholar] [CrossRef]
- Connolly, D.J.; Cusack, D.; O’Sullivan, T.P.; Guiry, P.J. Synthesis of quinazolinones and quinazolines. Tetrahedron 2005, 61, 10153–10202. [Google Scholar] [CrossRef]
- Khan, I.; Ibrar, A.; Abbas, N.; Saeed, A. Recent advances in the structural library of functionalized quinazoline and quinazolinone scaffolds: Synthetic approaches and multifarious applications. Eur. J. Med. Chem. 2014, 76, 193–244. [Google Scholar] [CrossRef]
- Khan, I.; Ibrar, A.; Ahmed, W.; Saeed, A. Synthetic approaches, functionalization and therapeutic potential of quinazoline and quinazolinone skeletons: The advances continue. Eur. J. Med. Chem. 2015, 90, 124–169. [Google Scholar] [CrossRef]
- Maiden, T.M.M.; Harrity, J.P.A. Recent developments in transition metal catalysis for quinazolinone synthesis. Org. Biomol. Chem. 2016, 14, 8014–8025. [Google Scholar] [CrossRef]
- Reddy, M.M.; Sivaramakrishna, A. Remarkably flexible quinazolinones—Synthesis and biological applications. J. Heterocycl. Chem. 2020, 57, 942–954. [Google Scholar] [CrossRef]
- Kumar, P.; Tomar, V.; Joshi, R.K.; Nemiwal, M. Nanocatalyzed synthetic approach for quinazoline and quinazolinone derivatives: A review (2015–present). Synth. Commun. 2022, 52, 795–826. [Google Scholar] [CrossRef]
- Lodhi, A.; Maheria, K.C. Solid acid catalysed synthesis of biologically potent quinazolinones: Environmentally benign approaches. Sustain. Chem. Pharm. 2023, 36, 101265. [Google Scholar] [CrossRef]
- Borah, B.; Swain, S.; Patat, M.; Chowhan, L.R. Recent advances and prospects in the organocatalytic synthesis of quinazolinones. Front. Chem. 2022, 10, 991026. [Google Scholar] [CrossRef]
- Peng, J.-B.; Geng, H.-Q.; Wang, W.; Qi, X.; Ying, J.; Wu, X.-F. Palladium-catalyzed four-component carbonylative synthesis of 2,3-disubstituted quinazolin-4(3H)-ones: Convenient methaqualone preparation. J. Catal. 2018, 365, 10–13. [Google Scholar] [CrossRef]
- Wang, L.C.; Du, S.; Chen, Z.; Wu, X.F. FeCl3-Mediated Synthesis of 2-(Trifluoromethyl) quinazolin-4(3H)-ones from Isatins and Trifluoroacetimidoyl Chlorides. Org. Lett. 2020, 22, 5567–5571. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, L.C.; Zhang, J.; Wu, X.F. Palladium-catalyzed three-component carbonylative synthesis of 2-(trifluoromethyl) quinazolin-4(3H)-ones from trifluoroacetimidoyl chlorides and amines. Org. Chem. Front. 2020, 7, 2499–2504. [Google Scholar] [CrossRef]
- Wang, L.C.; Zhang, Y.; Chen, Z.; Wu, X.F. Palladium-Catalyzed Carbonylative Synthesis of 2-(Trifluoromethyl) quinazolin-4(3H)-ones from Trifluoroacetimidoyl Chlorides and Nitro Compounds. Adv. Synth. Catal. 2021, 363, 1417–1426. [Google Scholar] [CrossRef]
- Abbas, S.Y.; El-Bayouki, K.A.; Basyouni, W.M. Utilization of isatoic anhydride in the syntheses of various types of quinazoline and quinazolinone derivatives. Synth. Commun. 2016, 46, 993–1035. [Google Scholar] [CrossRef]
- Baghbanzadeh, M.; Salehi, P.; Dabiri, M.; Kozehgary, G. Water-accelerated synthesis of novel bis-2,3-dihydroquinazolin-4(1H)-one derivatives. Synthesis 2006, 2006, 344–348. [Google Scholar] [CrossRef]
- Narasimhulu, M.; Lee, Y.R. Ethylenediamine diacetate-catalyzed three-component reaction for the synthesis of 2, 3-dihydroquinazolin-4(1H)-ones and their spirooxindole derivatives. Tetrahedron 2011, 67, 9627–9634. [Google Scholar] [CrossRef]
- Chen, B.H.; Li, J.T.; Chen, G.F. Efficient synthesis of 2,3-disubstituted-2,3-dihydroquinazolin-4(1H)-ones catalyzed by dodecylbenzenesulfonic acid in aqueous media under ultrasound irradiation. Ultrason. Sonochem. 2015, 23, 59–65. [Google Scholar] [CrossRef]
- Mehta, H.B.; Dixit, B.C.; Dixit, R.B. L-Proline catalyzed one-pot multi-component synthesis of 2-(1,3-diphenyl-1H-pyrazol-4-yl) quinazolin-4(3H)-one derivatives and their biological studies. Chin. Chem. Lett. 2014, 25, 741–744. [Google Scholar] [CrossRef]
- Ramesh, K.; Karnakar, K.G.K.H.V.; Satish, G.; Reddy, K.H.V.; Nageswar, Y.V.D. Tandem supramolecular synthesis of substituted 2-aryl-2,3-dihydroquinazolin-4(1H)-ones in the presence of β-cyclodextrin in water. Tetrahedron Lett. 2012, 53, 6095–6099. [Google Scholar] [CrossRef]
- Darvatkar, N.B.; Bhilare, S.V.; Deorukhkar, A.R.; Raut, D.G.; Salunkhe, M.M. [bmim] HSO4: An efficient and reusable catalyst for one-pot three-component synthesis of 2,3-dihydro-4(1H)-quinazolinones. Green Chem. Lett. Rev. 2010, 3, 301–306. [Google Scholar] [CrossRef]
- Karimi-Jaberi, Z.; Arjmandi, R. Acetic acid-promoted, efficient, one-pot synthesis of 2,3-dihydroquinazolin-4(1H)-ones. Monatsh. Chem. 2011, 142, 631–635. [Google Scholar] [CrossRef]
- Mane, R.; Yaraguppi, D.A.; Ashok, A.K.; Gangadharappa, B.; Chandrakala, K.B.; Kamanna, K. Glutamic acid-catalyzed synthesis of dihydroquinazolinone: Anticancer activity, electrochemical behavior, molecular docking, dynamics, simulations and drug-likeness studies. Res. Chem. Intermed. 2024, 50, 3271–3303. [Google Scholar] [CrossRef]
- Fahimi, N.; Sardarian, A.R. Citric acid: A green bioorganic catalyst for one-pot three-component synthesis of 2,3-dihydroquinazoline-4 (1H)-ones. Curr. Organocatal. 2016, 3, 39–44. [Google Scholar] [CrossRef]
- Jatav, V.; Mishra, P.; Kashaw, S.; Stables, J.P. Synthesis and CNS depressant activity of some novel 3-[5-substituted 1,3,4-thiadiazole-2-yl]-2-styryl quinazoline-4(3H)-ones. Eur. J. Med. Chem. 2008, 43, 135–141. [Google Scholar] [CrossRef] [PubMed]
- Raffa, D.; Edler, M.C.; Daidone, G.; Maggio, B.; Merickech, M.; Plescia, S.; Schillaci, D.; Bai, R.; Hamel, E. Synthesis, cytotoxicity, and inhibitory effects on tubulin polymerization of a new 3-heterocyclo substituted 2-styrylquinazolinones. Eur. J. Med. Chem. 2004, 39, 299–304. [Google Scholar] [CrossRef] [PubMed]
- Ovchinnikova, I.G.; Kim, G.A.; Matochkina, E.G.; Kodess, M.I.; Barykin, N.V.; El´tsov, O.S.; Nosova, E.V.; Rusinov, G.L.; Charushin, V.N. Synthesis, photochemical and luminescent properties of (E)-2-(2-hydroxyarylethylene)-3-phenylquinazolin-4(3H)-ones. Russ. Chem. Bull. 2014, 63, 2467–2477. [Google Scholar] [CrossRef]
- Baghbanzadeh, M.; Molnar, M.; Damm, M.; Reidlinger, C.; Dabiri, M.; Kappe, C.O. Parallel microwave synthesis of 2-styrylquinazolin-4(3H)-ones in a high-throughput platform using HPLC/GC vials as reaction vessels. J. Comb. Chem. 2009, 11, 676–684. [Google Scholar] [CrossRef]
- Srinivasa Reddy, B.; Naidu, A.; Dubey, P.K. PEG-600-mediated, green and efficient, tandem syntheses of N-subtituted-2-styrylquinazolin-4-ones. Green Chem. Lett. Rev. 2013, 6, 254–261. [Google Scholar] [CrossRef]
- Trashakhova, T.V.; Nosova, E.V.; Valova, M.S.; Slepukhin, P.A.; Lipunova, G.N.; Charushin, V.N. Synthesis and photophysical properties of 2-styrylquinazolin-4-ones. Russ. J. Org. Chem. 2011, 47, 753–761. [Google Scholar] [CrossRef]
- Kumar, D.; Jadhavar, P.S.; Nautiyal, M.; Sharma, H.; Meena, P.K.; Adane, L.; Pancholia, S.; Chakraborti, A.K. Convenient synthesis of 2,3-disubstituted quinazolin-4(3H)-ones and 2-styryl-3-substituted quinazolin-4 (3H)-ones: Applications towards the synthesis of drugs. RSC Adv. 2015, 5, 30819–30825. [Google Scholar] [CrossRef]
- Dabiri, M.; Baghbanzadeh, M.; Delbari, A.S. Novel and efficient one-Pot tandem synthesis of 2-Styryl-Substituted 4 (3H)-Quinazolinones. J. Comb. Chem. 2008, 10, 700–703. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Ren, D.; Ma, Y.; Wang, W.; Wu, H. CuO nanoparticles catalyzed simple and efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones and quinazolin-4(3H)-ones under ultrasound irradiation in aqueous ethanol under ultrasound irradiation in aqueous ethanol. Tetrahedron 2014, 70, 5274–5282. [Google Scholar] [CrossRef]
- Naz, S.; Gul, A.; Zia, M. Toxicity of copper oxide nanoparticles: A review study. IET Nanobiotechn. 2020, 14, 1–13. [Google Scholar] [CrossRef]
- Naz, S.; Gul, A.; Zia, M.; Javed, R. Synthesis, biomedical applications, and toxicity of CuO nanoparticles. Appl. Microbiol. Biotechnol. 2023, 107, 1039–1061. [Google Scholar] [CrossRef] [PubMed]
- Fiume, M.M.; Heldreth, B.A.; Bergfeld, W.F.; Belsito, D.V.; Hill, R.A.; Klaassen, C.D.; Liebler, D.C.; Marks, J.G., Jr.; Shank, R.C.; Slaga, T.J.; et al. Safety assessment of citric acid, inorganic citrate salts, and alkyl citrate esters as used in cosmetics. Int. J. Toxicol. 2014, 33 (Suppl. 2), 16S–46S. [Google Scholar] [CrossRef]
- Rosado-Solano, D.N.; Barón-Rodríguez, M.A.; Sanabria-Florez, P.L.; Luna-Parada, L.K.; Puerto-Galvis, C.E.; Zorro-González, A.F.; Kouznetsov, V.V.; Vargas-Méndez, L.Y. Synthesis, biological evaluation and in silico computational studies of 7-chloro-4-(1H-1,2,3-triazol-1-yl)quinoline derivatives. Search for new controlling agents against Spodoptera frugiperda (Lepidoptera: Noctuidae) larvae. J. Agric. Food Chem. 2019, 67, 9210–9219. [Google Scholar] [CrossRef]
- Villamizar-Mogotocoro, A.F.; Bonilla-Castañeda, S.M.; Kouznetsov, V.V. Green conditions for the efficient two-step synthesis of new 6-arylphenanthridines from 2-bromoacetoanilides based on microwave-assisted Suzuki-Miyaura cross-coupling and modified Pictet-Spengler dehydrogenative cyclization in a zinc chloride/[Bmim]BF4 mixture. Green Chem. 2022, 24, 7996–8004. [Google Scholar]
- Becerra-Anaya, S.J.; Merchán Arenas, D.R.; Kouznetsov, V.V. A simple and effective protocol for the Pechmann reaction to obtain 4-methylcoumarin derivatives using a high-speed mixer ball mill process. Chemistry 2023, 5, 1077–1088. [Google Scholar] [CrossRef]
- Cioc, R.C.; Ruijter, E.; Orru, R.V. Multicomponent reactions: Advanced tools for sustainable organic synthesis. Green Chem. 2016, 16, 2958–2975. [Google Scholar] [CrossRef]
- Shen, X.; Hong, G.; Wang, L. Recent Advances in Green Multi-Component Reactions for Heterocyclic Compound Construction. Org. Biomol. Chem. 2025, 23, 2059–2078. [Google Scholar] [CrossRef]
- Gupta, A.D.; Sepay, N.; Mallik, A.K. An efficient microwave-assisted synthesis of 2,3-dihydroquinazolin-4(1H)-ones by a three component reaction under catalyst-and solvent-free conditions. Eur. Chem. Bull. 2016, 5, 185–188. [Google Scholar]
- Rupnar, B.D.; Kachave, T.R.; Jawale, P.D.; Shisodia, S.U.; Pawar, R.P. Green and efficient synthesis of 2,3-dihydroquinazolin-4(1H)-ones in aqueous medium using ZnFe2O4 catalyst under microwave irradiation. J. Iran. Chem. Soc. 2017, 14, 1853–1858. [Google Scholar] [CrossRef]
- Dutta, A.; Sarma, D. Base promoted metal-free approach towards synthesis of quinazolin-4(3H)-ones and 2,3-dihydroquinazolin-4(1H)-ones under microwave irradiation. Sustain. Chem. Pharm. 2021, 20, 100402. [Google Scholar] [CrossRef]
- Peña-Solórzano, D.; Guilombo, C.E.G.; Ochoa-Puentes, C. Rapid and eco-friendly high yield synthesis of dihydroquinazolinones mediated by urea/zinc chloride eutectic mixture. Sustain. Chem. Pharm. 2019, 14, 100167. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Lu, H.Y.; Yang, S.H.; Gao, J.W. Synthesis of 2,3-dihydroquinazolin-4(1H)-ones by three-component coupling of isatoic anhydride, amines, and aldehydes catalyzed by magnetic Fe3O4 nanoparticles in water. J. Comb. Chem. 2010, 12, 643–646. [Google Scholar] [CrossRef]
- Mahdavi, M.; Pedrood, K.; Safavi, M.; Saeedi, M.; Pordeli, M.; Ardestani, S.K.; Emami, S.; Adib, M.; Foroumadi, A.; Shafiee, A. Synthesis and anticancer activity of N-substituted 2-arylquinazolinones bearing trans-stilbene scaffold. Eur. J. Med. Chem. 2015, 95, 492–499. [Google Scholar] [CrossRef] [PubMed]
- Dabiri, M.; Salehi, P.; Bahramnejad, M.; Alizadeh, M. A practical and versatile approach toward a one-pot synthesis of 2,3-disubstituted 4(3H)-quinazolinones. Monatsh. Chem. 2010, 141, 877–881. [Google Scholar] [CrossRef]
- Monga, A.; Bagchi, S.; Sharma, A. Iodine/DMSO oxidations: A contemporary paradigm in C–N bond chemistry. New J. Chem. 2018, 42, 1551–1576. [Google Scholar] [CrossRef]
- Wang, J.Q.; Zuo, Z.Y.; He, W. Recent advances of green catalytic system I2/DMSO in C–C and C–Heteroatom bonds formation. Catalysts 2022, 12, 821. [Google Scholar] [CrossRef]
- Singhal, R.; Choudhary, S.P.; Malik, B.; Pilania, M. I2/DMSO-mediated oxidative C–C and C–heteroatom bond formation: A sustainable approach to chemical synthesis. RSC Adv. 2024, 14, 5817–5845. [Google Scholar] [CrossRef]
- Peñaranda Gómez, A.; Puerto Galvis, C.E.; Macías, M.A.; Ochoa-Puentes, C.; Kouznetsov, V.V. I2/DMSO-Promoted the synthesis of chromeno[4,3-b]quinolines through an imine formation/aza-Diels-Alder/aromatization tandem reaction under metal-catalyst and photosensitizer-free conditions. Synthesis 2022, 54, 1857–1869. [Google Scholar]
- Wen, S.; Du, Y.; Liu, Y.; Cui, X.; Liu, Q.; Zhou, H. Access to 2-Arylquinazolin-4(3H)-ones through Intramolecular Oxidative C (sp3)− H/N− H Cross-Coupling Mediated by I2/DMSO. Eur. J. Org. Chem. 2022, 2022, e202101187. [Google Scholar] [CrossRef]
Entry | Citric Acid (mol%) | Dissolvent | t, °C | T (h) | Yield, % |
---|---|---|---|---|---|
1 | 40 | Methanol | 60 | 2 | 76 |
2 | 40 | Methanol | 100 b | 10 min | 40 |
3 | 40 | Methanol | 160 b | 15 min | 20 |
4 | 20 | Methanol | 60 | 2 | 80 |
5 | -- | Urea/ZnCl2 | 110 | 1 | 20 c |
Comp. | R1 | R2 | R3 | Mp., °C | Yield, % |
---|---|---|---|---|---|
4a | OMe | H | H | 234–236 | 80 |
4b | H | H | H | 192–194 | 54 |
4c | OMe | OMe | H | 227–228 | 70 |
4d | OMe | H | OMe | 162–164 | 61 |
4e | Br | H | H | 183–185 | 30 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kouznetsov, V.V.; Peñaranda Gómez, A.; Puerto Galvis, C.E. Citric Acid-Catalyzed Three-Component Synthesis of (E)-3-Aryl-2-styryl-2,3-dihydroquinazoline-4(1H)-ones and Their Mild Oxidation with I2/DMSO System into (E)-3-Aryl-2-styrylquinazolin-4(3H)-ones. Chemistry 2025, 7, 42. https://doi.org/10.3390/chemistry7020042
Kouznetsov VV, Peñaranda Gómez A, Puerto Galvis CE. Citric Acid-Catalyzed Three-Component Synthesis of (E)-3-Aryl-2-styryl-2,3-dihydroquinazoline-4(1H)-ones and Their Mild Oxidation with I2/DMSO System into (E)-3-Aryl-2-styrylquinazolin-4(3H)-ones. Chemistry. 2025; 7(2):42. https://doi.org/10.3390/chemistry7020042
Chicago/Turabian StyleKouznetsov, Vladimir V., Angélica Peñaranda Gómez, and Carlos E. Puerto Galvis. 2025. "Citric Acid-Catalyzed Three-Component Synthesis of (E)-3-Aryl-2-styryl-2,3-dihydroquinazoline-4(1H)-ones and Their Mild Oxidation with I2/DMSO System into (E)-3-Aryl-2-styrylquinazolin-4(3H)-ones" Chemistry 7, no. 2: 42. https://doi.org/10.3390/chemistry7020042
APA StyleKouznetsov, V. V., Peñaranda Gómez, A., & Puerto Galvis, C. E. (2025). Citric Acid-Catalyzed Three-Component Synthesis of (E)-3-Aryl-2-styryl-2,3-dihydroquinazoline-4(1H)-ones and Their Mild Oxidation with I2/DMSO System into (E)-3-Aryl-2-styrylquinazolin-4(3H)-ones. Chemistry, 7(2), 42. https://doi.org/10.3390/chemistry7020042