Compositional Dependence of DNA Partitioning in a Poly(Ethylene Glycol)–Ficoll Aqueous Two-Phase System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Tie Line Analysis
2.3. Partition Experiments
2.4. Atomic Force Microscopy
3. Results
3.1. Cation Influence on DNA Partitioning in PEG–Ficoll
3.2. ATPS Formulation Effects on DNA Localization
3.3. DNA Conformation Underlying Partitioning
4. Discussion
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zaslavsky, B.Y. Aqueous Two-Phase Partitioning: Physical Chemistry and Bioanalytical Applications; M. Dekker: New York, NY, USA, 1995. [Google Scholar]
- Albertsson, P.-Å. Partition of Cell Particles and Macromolecules, 3rd ed.; Wiley: New York, NY, USA, 1986. [Google Scholar]
- Albertsson, P.-Å. Partition studies on nucleic acids: I. Influence of electrolytes, polymer concentration and nucleic acid conformation on the partition in the dextran-polyethylene glycol system. Biochim. Biophys. Acta 1965, 103, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Masukawa, M.K.; Sato, Y.; Yu, F.; Tsumoto, K.; Yoshikawa, K.; Takinoue, M. Water-in-Water Droplets Selectively Uptake Self-Assembled DNA Nano/Microstructures: A Versatile Method for Purification in DNA Nanotechnology. ChemBioChem 2022, 23, e202200240. [Google Scholar] [CrossRef] [PubMed]
- Nakatani, N.; Sakuta, H.; Hayashi, M.; Tanaka, S.; Takiguchi, K.; Tsumoto, K.; Yoshikawa, K. Specific Spatial Localization of Actin and DNA in a Water/Water Microdroplet: Self-Emergence of a Cell-Like Structure. ChemBioChem 2018, 19, 1370–1374. [Google Scholar] [CrossRef]
- Luechau, F.; Ling, T.C.; Lyddiatt, A. Partition of plasmid DNA in polymer–salt aqueous two-phase systems. Sep. Purif. Technol. 2009, 66, 397–404. [Google Scholar] [CrossRef]
- Gomes, G.A.; Azevedo, A.M.; Aires-Barros, M.R.; Prazeres, D.M.F. Purification of plasmid DNA with aqueous two phase systems of PEG 600 and sodium citrate/ammonium sulfate. Sep. Purif. Technol. 2009, 65, 22–30. [Google Scholar] [CrossRef]
- Frerix, A.; Müller, M.; Kula, M.-R.; Hubbuch, J. Scalable recovery of plasmid DNA based on aqueous two-phase separation. Biotechnol. Appl. Biochem. 2005, 42, 57–66. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Kojima, T.; Kim, G.A.; McNerney, M.P.; Takayama, S.; Styczynski, M.P. Protocell arrays for simultaneous detection of diverse analytes. Nat. Commun. 2021, 12, 5724. [Google Scholar] [CrossRef]
- Minagawa, Y.; Nakata, S.; Date, M.; Ii, Y.; Noji, H. On-Chip Enrichment System for Digital Bioassay Based on Aqueous Two-Phase System. ACS Nano 2022, 17, 212–220. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Zhang, Y.; Chen, H.; Liu, J.; Liu, J. Enhancing the Sensitivity of DNA and Aptamer Probes in the Dextran/PEG Aqueous Two-Phase System. Anal. Chem. 2021, 93, 8577–8584. [Google Scholar] [CrossRef] [PubMed]
- Lif, T.; Frick, G.; Albertsson, P.-Å. Fractionation of nucleic acids in aqueous polymer two-phase systems. J. Mol. Biol. 1961, 3, 727–740. [Google Scholar] [CrossRef]
- Rosa, P.A.J.; Ferreira, I.F.; Azevedo, A.M.; Aires-Barros, M.R. Aqueous two-phase systems: A viable platform in the manufacturing of biopharmaceuticals. J. Chromatogr. A 2010, 1217, 2296–2305. [Google Scholar] [CrossRef]
- Ribeiro, S.C.; Monteiro, G.A.; Cabral, J.M.S.; Prazeres, D.M.F. Isolation of plasmid DNA from cell lysates by aqueous two-phase systems. Biotechnol. Bioeng. 2002, 78, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Meutelet, R.; Bisch, L.J.; Buerfent, B.C.; Müller, M.; Hubbuch, J. Partitioning behavior of short DNA fragments in polymer/salt aqueous two-phase systems. Biotechnol. J. 2024, 19, 2400394. [Google Scholar] [CrossRef] [PubMed]
- Rahimpour, F.; Feyzi, F.; Maghsoudi, S.; Hatti-Kaul, R. Purification of plasmid DNA with polymer-salt aqueous two-phase system: Optimization using response surface methodology. Biotechnol. Bioeng. 2006, 95, 627–637. [Google Scholar] [CrossRef] [PubMed]
- Nazer, B.; Dehghani, M.; Goliaei, B.; Morad, E. Partitioning of pyrimidine single stranded oligonucleotide using polyethylene glycol—Sodium sulfate aqueous two-phase systems; experimental and modeling. Fluid Phase Equilibria 2017, 432, 45–53. [Google Scholar] [CrossRef]
- Ahmed, T.; Yamanishi, C.; Kojima, T.; Takayama, S. Aqueous Two-Phase Systems and Microfluidics for Microscale Assays and Analytical Measurements. Annu. Rev. Anal. Chem. 2021, 14, 231–255. [Google Scholar] [CrossRef] [PubMed]
- Mastiani, M.; Firoozi, N.; Petrozzi, N.; Seo, S.; Kim, M. Polymer-salt aqueous two-phase system (ATPS) micro-droplets for cell encapsulation. Sci. Rep. 2019, 9, 15561. [Google Scholar] [CrossRef]
- Tavana, H.; Kaylan, K.; Bersano-Begey, T.; Luker, K.E.; Luker, G.D.; Takayama, S. Polymeric aqueous biphasic system rehydration facilitates high throughput cell exclusion patterning for cell migration studies. Adv. Funct. Mater. 2011, 21, 2920–2926. [Google Scholar] [CrossRef] [PubMed]
- Boyd, M.A.; Thavarajah, W.; Lucks, J.B.; Kamat, N.P. Robust and tunable performance of a cell-free biosensor encapsulated in lipid vesicles. Sci. Adv. 2023, 9, eadd6605. [Google Scholar] [CrossRef]
- Strulson, C.A.; Molden, R.C.; Keating, C.D.; Bevilacqua, P.C. RNA catalysis through compartmentalization. Nat. Chem. 2012, 4, 941–946. [Google Scholar] [CrossRef] [PubMed]
- Tavana, H.; Jovic, A.; Mosadegh, B.; Lee, Q.Y.; Liu, X.; Luker, K.E.; Luker, G.D.; Weiss, S.J.; Takayama, S. Nanolitre liquid patterning in aqueous environments for spatially defined reagent delivery to mammalian cells. Nat. Mater. 2009, 8, 736–741. [Google Scholar] [CrossRef] [PubMed]
- Yamanishi, C.; Oliver, C.R.; Kojima, T.; Takayama, S. Stigmatic Microscopy Enables Low-Cost, 3D, Microscale Particle Imaging Velocimetry in Rehydrating Aqueous Two-Phase Systems. Fron. Chem. 2019, 7, 311. [Google Scholar] [CrossRef] [PubMed]
- Lavrenko, P.N.; Mikryukova, O.I.; Didenko, S.A. Hydrodynamic properties and the shape of the molecules of the polysaccharide ficoll-400 in solution. Polym. Sci. 1986, 28, 576–584. [Google Scholar] [CrossRef]
- Palit, S.; Yethiraj, A. Dynamics and cluster formation in charged and uncharged Ficoll70 solutions. J. Chem. Phys. 2017, 147, 074901. [Google Scholar] [CrossRef]
- Christiansen, A.; Wittung-Stafshede, P. Quantification of Excluded Volume Effects on the Folding Landscape of Pseudomonas aeruginosa Apoazurin In Vitro. Biophys. J. 2013, 105, 1689–1699. [Google Scholar] [CrossRef] [PubMed]
- Fodeke, A.A.; Minton, A.P. Quantitative Characterization of Polymer–Polymer, Protein–Protein, and Polymer–Protein Interaction via Tracer Sedimentation Equilibrium. J. Phys. Chem. B 2010, 114, 10876–10880. [Google Scholar] [CrossRef]
- Croll, T.; Munro, P.D.; Winzor, D.J.; Trau, M.; Nielsen, L.K. Analysis of the Phase Behavior of the Aqueous Poly(ethylene glycol)-Ficoll System. Biotechnol. Prog. 2008, 19, 1269–1273. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, T.; Zhang, Y.; Lee, J.-H.; Styczynski, M.P.; Takayama, S. Nucleic Acid Partitioning in PEG-Ficoll Protocells. J. Chem. Eng. Data 2022, 67, 1964–1971. [Google Scholar] [CrossRef] [PubMed]
- Kwon, Y.-C.; Jewett, M.C. High-throughput preparation methods of crude extract for robust cell-free protein synthesis. Sci. Rep. 2015, 5, 8663. [Google Scholar] [CrossRef] [PubMed]
- Takahashi, M.K.; Tan, X.; Dy, A.J.; Braff, D.; Akana, R.T.; Furuta, Y.; Donghia, N.; Ananthakrishnan, A.; Collins, J.J. A low-cost paper-based synthetic biology platform for analyzing gut microbiota and host biomarkers. Nat. Commun. 2018, 9, 3347. [Google Scholar] [CrossRef]
- Karim, A.S.; Dudley, Q.M.; Juminaga, A.; Yuan, Y.; Crowe, S.A.; Heggestad, J.T.; Garg, S.; Abdalla, T.; Grubbe, W.S.; Rasor, B.J.; et al. In vitro prototyping and rapid optimization of biosynthetic enzymes for cell design. Nat. Chem. Biol. 2020, 16, 912–919. [Google Scholar] [CrossRef]
- Hunt, A.C.; Vögeli, B.; Hassan, A.O.; Guerrero, L.; Kightlinger, W.; Yoesep, D.J.; Krüger, A.; DeWinter, M.; Diamond, M.S.; Karim, A.S.; et al. A rapid cell-free expression and screening platform for antibody discovery. Nat. Commun. 2023, 14, 3897. [Google Scholar] [CrossRef]
- Karlikow, M.; da Silva, S.J.R.; Guo, Y.; Cicek, S.; Krokovsky, L.; Homme, P.; Xiong, Y.; Xu, T. Calderón-Peláez, M.-A.; Camacho-Ortega, S.; et al. Field validation of the performance of paper-based tests for the detection of the Zika and chikungunya viruses in serum samples. Nat. Biomed. Eng. 2022, 6, 246–256. [Google Scholar] [CrossRef]
- Salehi, A.S.M.; Shakalli Tang, M.J.; Smith, M.T.; Hunt, J.M.; Law, R.A.; Wood, D.W.; Bundy, B.C. Cell-Free Protein Synthesis Approach to Biosensing hTRβ-Specific Endocrine Disruptors. Anal. Chem. 2017, 89, 3395–3401. [Google Scholar] [CrossRef]
- Wen, K.Y.; Cameron, L.; Chappell, J.; Jensen, K.; Bell, D.J.; Kelwick, R.; Kopniczky, M.; Davies, J.C.; Filloux, A.; Freemont, P.S. A Cell-Free Biosensor for Detecting Quorum Sensing Molecules in P. aeruginosa-Infected Respiratory Samples. ACS Synth. Biol. 2017, 6, 2293–2301. [Google Scholar] [CrossRef]
- Boyer, M.E.; Stapleton, J.A.; Kuchenreuther, J.M.; Wang, C.W.; Swartz, J.R. Cell-free synthesis and maturation of [FeFe] hydrogenases. Biotechnol. Bioeng. 2007, 99, 59–67. [Google Scholar] [CrossRef]
- Lu, Y.; Welsh, J.P.; Swartz, J.R. Production and stabilization of the trimeric influenza hemagglutinin stem domain for potentially broadly protective influenza vaccines. Proc. Natl. Acad. Sci. USA 2013, 111, 125–130. [Google Scholar] [CrossRef] [PubMed]
- Tavana, H.; Mosadegh, B.; Takayama, S. Polymeric aqueous biphasic systems for non-contact cell printing on cells: Engineering heterocellular embryonic stem cell niches. Adv. Mater. 2010, 22, 2628–2631. [Google Scholar] [CrossRef]
- Tongdee, M.; Yamanishi, C.; Maeda, M.; Kojima, T.; Dishinger, J.; Chantiwas, R.; Takayama, S. One-incubation one-hour multiplex ELISA enabled by aqueous two-phase systems. Analyst 2020, 145, 3517–3527. [Google Scholar] [CrossRef]
- Torre, P.; Keating, C.D.; Mansy, S.S. Multiphase water-in-oil emulsion droplets for cell-free transcription–translation. Langmuir 2014, 30, 5695–5699. [Google Scholar] [CrossRef]
- Yee, M.F.; Emmel, G.N.; Yang, E.J.; Lee, E.; Paek, J.H.; Wu, B.M.; Kamei, D.T. Ionic liquid aqueous two-phase systems for the enhanced paper-based detection of transferrin and Escherichia coli. Front. Chem. 2018, 6, 486. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Shimanovich, U.; Michaels, T.C.; Ma, Q.; Li, J.; Knowles, T.P.; Shum, H.C. Fabrication of fibrillosomes from droplets stabilized by protein nanofibrils at all-aqueous interfaces. Nat. Commun. 2016, 7, 12934. [Google Scholar] [CrossRef] [PubMed]
- Chen, F.; Li, X.; Yu, Y.; Li, Q.; Lin, H.; Xu, L.; Shum, H.C. Phase-separation facilitated one-step fabrication of multiscale heterogeneous two-aqueous-phase gel. Nat. Commun. 2023, 14, 2793. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Lipowsky, R.; Dimova, R. Concentration dependence of the interfacial tension for aqueous two-phase polymer solutions of dextran and polyethylene glycol. Langmuir 2012, 28, 3831–3839. [Google Scholar] [CrossRef]
- Acosta, L.C.; Perez Goncalves, G.M.; Pielak, G.J.; Gorensek-Benitez, A.H. Large cosolutes, small cosolutes, and dihydrofolate reductase activity. Protein Sci. 2017, 26, 2417–2425. [Google Scholar] [CrossRef] [PubMed]
- Brandrup, J.; Immergut, E.H.; Grulke, E.A. Polymer Handbook, 4th ed.; Wiley: New York, NY, USA, 2004. [Google Scholar]
- Georgalis, Y.; Philipp, M.; Aleksandrova, R.; Krüger, J.K. Light scattering studies on Ficoll PM70 solutions reveal two distinct diffusive modes. J. Colloid Interface Sci. 2012, 386, 141–147. [Google Scholar] [CrossRef] [PubMed]
- Hansma, H.G.; Bezanilla, M.; Zenhausern, F.; Adrian, M.; Sinsheimer, R.L. Atomic force microscopy of DNA in aqueous solutions. Nucleic Acids Res. 1993, 21, 505–512. [Google Scholar] [CrossRef]
- Hansma, H.G.; Revenko, I.; Kim, K.; Laney, D.E. Atomic Force Microscopy of Long and Short Double-Stranded, Single-Stranded and Triple-Stranded Nucleic Acids. Nucleic Acids Res. 1996, 24, 713–720. [Google Scholar] [CrossRef]
- Rivetti, C.; Guthold, M.; Bustamante, C. Scanning Force Microscopy of DNA Deposited onto Mica: EquilibrationversusKinetic Trapping Studied by Statistical Polymer Chain Analysis. J. Mol. Biol. 1996, 264, 919–932. [Google Scholar] [CrossRef] [PubMed]
- Wiggins, P.A.; Van Der Heijden, T.; Moreno-Herrero, F.; Spakowitz, A.; Phillips, R.; Widom, J.; Dekker, C.; Nelson, P.C. High flexibility of DNA on short length scales probed by atomic force microscopy. Nat. Nanotechnol. 2006, 1, 137–141. [Google Scholar] [CrossRef]
- Japaridze, A.; Benke, A.; Renevey, S.; Benadiba, C.; Dietler, G. Influence of DNA Binding Dyes on Bare DNA Structure Studied with Atomic Force Microscopy. Macromolecules 2015, 48, 1860–1865. [Google Scholar] [CrossRef]
- Ziębacz, N.; Wieczorek, S.A.; Kalwarczyk, T.; Fiałkowski, M.; Hołyst, R. Crossover regime for the diffusion of nanoparticles in polyethylene glycol solutions: Influence of the depletion layer. Soft Matter 2011, 7, 7181–7186. [Google Scholar] [CrossRef]
- Polson, A.; Potgieter, G.M.; Largier, J.F.; Mears, G.E.F.; Joubert, F.J. The fractionation of protein mixtures by linear polymers of high molecular weight. Biochim. Biophys. Acta (BBA)—Gen. Subj. 1964, 82, 463–475. [Google Scholar] [CrossRef]
- Atha, D.H.; Ingham, K.C. Mechanism of precipitation of proteins by polyethylene glycols. Analysis in terms of excluded volume. J. Biol. Chem. 1981, 256, 12108–12117. [Google Scholar] [CrossRef]
- Stahl, E.; Martin, T.G.; Praetorius, F.; Dietz, H. Facile and Scalable Preparation of Pure and Dense DNA Origami Solutions. Angew. Chem. Int. Ed. 2014, 53, 12735–12740. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, T.; Verma, A.; Patterson, A.T.; Styczynski, M.P.; Takayama, S. Compositional Dependence of DNA Partitioning in a Poly(Ethylene Glycol)–Ficoll Aqueous Two-Phase System. Chemistry 2024, 6, 1680-1691. https://doi.org/10.3390/chemistry6060102
Ahmed T, Verma A, Patterson AT, Styczynski MP, Takayama S. Compositional Dependence of DNA Partitioning in a Poly(Ethylene Glycol)–Ficoll Aqueous Two-Phase System. Chemistry. 2024; 6(6):1680-1691. https://doi.org/10.3390/chemistry6060102
Chicago/Turabian StyleAhmed, Tasdiq, Adya Verma, Alexandra T. Patterson, Mark P. Styczynski, and Shuichi Takayama. 2024. "Compositional Dependence of DNA Partitioning in a Poly(Ethylene Glycol)–Ficoll Aqueous Two-Phase System" Chemistry 6, no. 6: 1680-1691. https://doi.org/10.3390/chemistry6060102
APA StyleAhmed, T., Verma, A., Patterson, A. T., Styczynski, M. P., & Takayama, S. (2024). Compositional Dependence of DNA Partitioning in a Poly(Ethylene Glycol)–Ficoll Aqueous Two-Phase System. Chemistry, 6(6), 1680-1691. https://doi.org/10.3390/chemistry6060102