Stimuli-Responsive Designer Supramolecular Polymer Gel
Abstract
:1. Introduction
2. Experimental
Materials and Reagents
Synthesis of Compound 1
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sharko, A.; Livitz, D.; De Piccoli, S.; Bishop, K.J.M.; Hermans, T.M. Insights into Chemically Fueled Supramolecular Polymers. Chem. Rev. 2022, 122, 11759–11777. [Google Scholar] [CrossRef] [PubMed]
- Xia, D.; Wang, P.; Ji, X.; Khashab, N.M.; Sessler, J.L.; Huang, F. Functional Supramolecular Polymeric Networks: The Marriage of Covalent Polymers and Macrocycle-Based Host-Guest Interactions. Chem. Rev. 2020, 120, 6070–6123. [Google Scholar] [CrossRef] [PubMed]
- Seiffert, S.; Sprakel, J. Physical Chemistry of Supramolecular Polymer Networks. Chem. Soc. Rev. 2012, 41, 909–930. [Google Scholar] [CrossRef] [PubMed]
- Wang, R.; Sing, M.K.; Avery, R.K.; Souza, B.S.; Kim, M.; Olsen, B.D. Classical Challenges in the Physical Chemistry of Polymer Networks and the Design of New Materials. Acc. Chem. Res. 2016, 49, 2786–2795. [Google Scholar] [CrossRef] [PubMed]
- Voorhaar, L.; Hoogenboom, R. Supramolecular Polymer Networks: Hydrogels and Bulk Materials. Chem. Soc. Rev. 2016, 45, 4013–4031. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhang, L.; Wang, T. Supramolecular Chirality in Self-Assembled Systems. Chem. Rev. 2015, 115, 7304–7397. [Google Scholar] [CrossRef] [PubMed]
- An, S.Y.; Arunbabu, D.; Noh, S.M.; Song, Y.K.; Oh, J.K. Recent Strategies to Develop Self-Healable Crosslinked Polymeric Networks. Chem. Commun. 2015, 51, 13058–13070. [Google Scholar] [CrossRef]
- Jiang, Z.C.; Xiao, Y.Y.; Kang, Y.; Pan, M.; Li, B.J.; Zhang, S. Shape Memory Polymers Based on Supramolecular Interactions. ACS Appl. Mater. Interfaces 2017, 9, 20276–20293. [Google Scholar] [CrossRef]
- Zhang, G.; Zhao, Q.; Zou, W.; Luo, Y.; Xie, T. Unusual Aspects of Supramolecular Networks: Plasticity to Elasticity, Ultrasoft Shape Memory, and Dynamic Mechanical Properties. Adv. Funct. Mater. 2016, 26, 931–937. [Google Scholar]
- Wu, X.; Wang, J.; Huang, J.; Yang, S. Robust, Stretchable, and Self-Healable Supramolecular Elastomers Synergistically Cross-Linked by Hydrogen Bonds and Coordination Bonds. ACS Appl. Mater. Interfaces 2019, 11, 7387–7396. [Google Scholar]
- Qu, D.-H.; Wang, Q.-C.; Zhang, Q.-W.; Ma, X.; Tian, H. Photoresponsive Host–Guest Functional Systems. Chem. Rev. 2015, 115, 7543–7588. [Google Scholar] [CrossRef]
- Liao, X.; Chen, G.; Jiang, M. Hydrogels Locked by Molecular Recognition Aiming at Responsiveness and Functionality. Polym. Chem. 2013, 4, 1733–1745. [Google Scholar] [CrossRef]
- Hart, L.R.; Harries, J.L.; Greenland, B.W.; Colquhoun, H.M.; Hayes, W. Healable Supramolecular Polymers. Polym. Chem. 2013, 4, 4860–4870. [Google Scholar] [CrossRef]
- Callari, M.; Thomas, D.S.; Stenzel, M.H. The Dual-Role of Pt (IV) Complexes as Active Drug and Crosslinker for Micelles Based on β-Cyclodextrin Grafted Polymer. J. Mater. Chem. B 2016, 4, 2114–2123. [Google Scholar] [CrossRef]
- Kaitz, J.A.; Possanza, C.M.; Song, Y.; Diesendruck, C.E.; Spiering, A.J.H.; Meijer, E.W.; Moore, J.S. Depolymerizable, Adaptive Supramolecular Polymer Nanoparticles and Networks. Polym. Chem. 2014, 5, 3788–3794. [Google Scholar] [CrossRef]
- Amabilino, D.B.; Smith, D.K.; Steed, J.W. Supramolecular Materials. Chem. Soc. Rev. 2017, 46, 2404–2420. [Google Scholar] [CrossRef] [PubMed]
- Heinzmann, C.; Weder, C.; de Espinosa, L.M. Supramolecular Polymer Adhesives: Advanced Materials Inspired by Nature. Chem. Soc. Rev. 2016, 45, 342–358. [Google Scholar] [CrossRef] [Green Version]
- Huynh, T.; Sonar, P.; Haick, H. Advanced Materials for Use in Soft Self-healing Devices. Adv. Mater. 2017, 29, 1604973. [Google Scholar] [CrossRef] [Green Version]
- Lu, W.; Le, X.; Zhang, J.; Huang, Y.; Chen, T. Supramolecular Shape Memory Hydrogels: A New Bridge between Stimuli-Responsive Polymers and Supramolecular Chemistry. Chem. Soc. Rev. 2017, 46, 1284–1294. [Google Scholar] [CrossRef]
- Webber, M.J.; Langer, R. Drug Delivery by Supramolecular Design. Chem. Soc. Rev. 2017, 46, 6600–6620. [Google Scholar] [CrossRef]
- Yan, X.; Liu, Z.; Zhang, Q.; Lopez, J.; Wang, H.; Wu, H.-C.; Niu, S.; Yan, H.; Wang, S.; Lei, T. Quadruple H-Bonding Cross-Linked Supramolecular Polymeric Materials as Substrates for Stretchable, Antitearing, and Self-Healable Thin Film Electrodes. J. Am. Chem. Soc. 2018, 140, 5280–5289. [Google Scholar] [CrossRef] [PubMed]
- Cai, Y.; Huo, L.; Sun, Y. Recent Advances in Wide-bandgap Photovoltaic Polymers. Adv. Mater. 2017, 29, 1605437. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Lei, L.; Zhu, S. Gas-Responsive Polymers. ACS Macro Lett. 2017, 6, 515–522. [Google Scholar] [CrossRef] [Green Version]
- Zhou, H.; Xue, C.; Weis, P.; Suzuki, Y.; Huang, S.; Koynov, K.; Auernhammer, G.K.; Berger, R.; Butt, H.-J.; Wu, S. Photoswitching of Glass Transition Temperatures of Azobenzene-Containing Polymers Induces Reversible Solid-to-Liquid Transitions. Nat. Chem. 2017, 9, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Han, Y.; Liu, M.; Zhong, R.; Gao, Z.; Chen, Z.; Zhang, M.; Wang, F. Photoresponsiveness of Anthracene-Based Supramolecular Polymers Regulated via a σ-Platinated 4, 4-Difluoro-4-Bora-3a, 4a-Diaza-s-Indacene Photosensitizer. Inorg. Chem. 2019, 58, 12407–12414. [Google Scholar] [CrossRef] [PubMed]
- Achilleos, D.S.; Hatton, T.A.; Vamvakaki, M. Light-Regulated Supramolecular Engineering of Polymeric Nanocapsules. J. Am. Chem. Soc. 2012, 134, 5726–5729. [Google Scholar] [CrossRef]
- Wang, X.; Hu, J.; Liu, G.; Tian, J.; Wang, H.; Gong, M.; Liu, S. Reversibly Switching Bilayer Permeability and Release Modules of Photochromic Polymersomes Stabilized by Cooperative Noncovalent Interactions. J. Am. Chem. Soc. 2015, 137, 15262–15275. [Google Scholar] [CrossRef]
- Habault, D.; Zhang, H.; Zhao, Y. Light-Triggered Self-Healing and Shape-Memory Polymers. Chem. Soc. Rev. 2013, 42, 7244–7256. [Google Scholar] [CrossRef]
- Li, F.; Hou, H.; Yin, J.; Jiang, X. Multi-Responsive Wrinkling Patterns by the Photoswitchable Supramolecular Network. ACS Macro Lett. 2017, 6, 848–853. [Google Scholar] [CrossRef]
- Gao, Z.; Han, Y.; Chen, S.; Li, Z.; Tong, H.; Wang, F. Photoresponsive Supramolecular Polymer Networks via Hydrogen Bond Assisted Molecular Tweezer/Guest Complexation. ACS Macro Lett. 2017, 6, 541–545. [Google Scholar] [CrossRef]
- Harada, A.; Takashima, Y.; Yamaguchi, H. Cyclodextrin-Based Supramolecular Polymers. Chem. Soc. Rev. 2009, 38, 875–882. [Google Scholar] [CrossRef] [PubMed]
- Rekharsky, M.V.; Inoue, Y. Complexation Thermodynamics of Cyclodextrins. Chem. Rev. 1998, 98, 1875–1918. [Google Scholar] [CrossRef] [PubMed]
- Sen, S.; Sukul, D.; Dutta, P.; Bhattacharyya, K. Slow Solvation Dynamics of Dimethylformamide in a Nanocavity. 4-Aminophthalimide in β-Cyclodextrin. J. Phys. Chem. A 2001, 105, 10635–10639. [Google Scholar] [CrossRef]
- Przybyla, M.A.; Yilmaz, G.; Becer, C.R. Natural Cyclodextrins and Their Derivatives for Polymer Synthesis. Polym. Chem. 2020, 11, 7582–7602. [Google Scholar] [CrossRef]
- Bojinova, T.; Coppel, Y.; Lauth-de Viguerie, N.; Milius, A.; Rico-Lattes, I.; Lattes, A. Complexes between β-Cyclodextrin and Aliphatic Guests as New Noncovalent Amphiphiles: Formation and Physicochemical Studies. Langmuir 2003, 19, 5233–5239. [Google Scholar] [CrossRef]
- Hibbert, D.B.; Thordarson, P. The Death of the Job Plot, Transparency, Open Science and Online Tools, Uncertainty Estimation Methods and Other Developments in Supramolecular Chemistry Data Analysis. Chem. Commun. 2016, 52, 12792–12805. [Google Scholar] [CrossRef] [Green Version]
- Thordarson, P. Determining Association Constants from Titration Experiments in Supramolecular Chemistry. Chem. Soc. Rev. 2011, 40, 1305–1323. [Google Scholar] [CrossRef]
- Karle, I.L.; Flippen-Anderson, J.L.; Uma, K.; Balaram, P. Peptide Mimics for Structural Features in Proteins: Crystal Structures of Three Heptapeptide Helices with a C-terminal 6→1 Hydrogen Bond. Int. J. Pept. Protein Res. 1993, 42, 401–410. [Google Scholar] [CrossRef]
- Kakuta, T.; Takashima, Y.; Nakahata, M.; Otsubo, M.; Yamaguchi, H.; Harada, A. Preorganized Hydrogel: Self-healing Properties of Supramolecular Hydrogels Formed by Polymerization of Host–Guest-monomers That Contain Cyclodextrins and Hydrophobic Guest Groups. Adv. Mater. 2013, 25, 2849–2853. [Google Scholar] [CrossRef]
- Suzuki, M.; Hanabusa, K. L-Lysine-Based Low-Molecular-Weight Gelators. Chem. Soc. Rev. 2009, 38, 967–975. [Google Scholar] [CrossRef]
- Roy Chowdhury, S.; Nandi, S.K.; Mondal, S.; Kumar, S.; Haldar, D. White-Light-Emitting Supramolecular Polymer Gel Based on β-CD and NDI Host-Guest Inclusion Complex. Polymers 2021, 13, 2762. [Google Scholar] [CrossRef] [PubMed]
- Kong, L.; Sun, T.; Xin, F.; Zhao, W.; Zhang, H.; Li, Z.; Li, Y.; Hou, Y.; Li, Y.; Hao, A. Lithium chloride-induced organogel transformed from precipitate based on cyclodextrin complexes. Colloids Surf. APhysicochem. Eng. Asp. 2011, 392, 156–162. [Google Scholar] [CrossRef]
- Thompson, D.; Larsson, J.A. Modeling Competitive Guest Binding to β-Cyclodextrin Molecular Printboards. J. Phys. Chem. B 2006, 110, 16640–16645. [Google Scholar] [CrossRef] [PubMed]
- Dalal, D.S.; Patil, D.R.; Tayade, Y.A. Β-Cyclodextrin: A Green and Efficient Supramolecular Catalyst for Organic Transformations. Chem. Rec. 2018, 18, 1560–1582. [Google Scholar] [CrossRef]
D−H⋯A | D⋯H (Å) | H⋯A (Å) | D⋯A (Å) | D−H⋯A (°) |
---|---|---|---|---|
N1−H1⋯O1 a | 0.860 (3) | 2.112 (3) | 2.956 (3) | 166.9 (3) |
N2−H2⋯O2 b | 0.860 (3) | 2.076 (3) | 2.903 (3) | 161.1 (3) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Douzapau, M.; Roy Chowdhury, S.; Singh, S.; Ibukun, O.J.; Haldar, D. Stimuli-Responsive Designer Supramolecular Polymer Gel. Chemistry 2023, 5, 691-702. https://doi.org/10.3390/chemistry5010048
Douzapau M, Roy Chowdhury S, Singh S, Ibukun OJ, Haldar D. Stimuli-Responsive Designer Supramolecular Polymer Gel. Chemistry. 2023; 5(1):691-702. https://doi.org/10.3390/chemistry5010048
Chicago/Turabian StyleDouzapau, M., Srayoshi Roy Chowdhury, Surajit Singh, Olamilekan Joseph Ibukun, and Debasish Haldar. 2023. "Stimuli-Responsive Designer Supramolecular Polymer Gel" Chemistry 5, no. 1: 691-702. https://doi.org/10.3390/chemistry5010048
APA StyleDouzapau, M., Roy Chowdhury, S., Singh, S., Ibukun, O. J., & Haldar, D. (2023). Stimuli-Responsive Designer Supramolecular Polymer Gel. Chemistry, 5(1), 691-702. https://doi.org/10.3390/chemistry5010048