Charm Quark Evolution in the Quark–Gluon Plasma with Various Quark Contents
Abstract
1. Introduction
2. Quasiparticle Model
3. Charm Quark Evolution
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Das, S.K.; Torres-Rincon, J.M.; Rapp, R. Charm and bottom hadrons in hot hadronic matter. Phys. Rep. 2025, 1129–1131, 1–53. [Google Scholar] [CrossRef]
- Adam, J. et al. [STAR Collaboration] Centrality and transverse momentum dependence of D0-meson production at mid-rapidity in Au + Au collisions at = 200 GeV. Phys. Rev. C 2019, 99, 034908. [Google Scholar] [CrossRef]
- Acharya, S. et al. [ALICE Collaboration] The ALICE experiment: A journey through QCD. Eur. Phys. J. C 2024, 84, 813. [Google Scholar] [CrossRef]
- Tumasyan, A. et al. [The CMS Collaboration] Study of charm hadronization with prompt baryons in proton–proton and lead–lead collisions at = 5.02 TeV. J. High Energy Phys. 2024, 2024, 128. [Google Scholar] [CrossRef]
- Andronic, A.; Braun-Munzinger, P.; Köhler, M.K.; Mazeliauskas, A.; Redlich, K.; Stachel, J.; Vislavicius, V. The multiple-charm hierarchy in the statistical hadronization model. J. High Energy Phys. 2021, 2021, 35. [Google Scholar] [CrossRef]
- Apolinário, L.; Lee, Y.-J.; Winn, M. Heavy quarks and jets as probes of the QGP. Prog. Part. Nucl. Phys. 2022, 127, 103990. [Google Scholar] [CrossRef]
- Capellino, F.; Dubla, A.; Floerchinger, S.; Grossi, E.; Kirchner, A.; Masciocchi, S. Fluid dynamics of charm quarks in the quark–gluon plasma. Phys. Rev. D 2023, 108, 116011. [Google Scholar] [CrossRef]
- Zhao, J.; Aichelin, J.; Gossiaux, P.B.; Beraudo, A.; Cao, S.; Fan, W.; He, M.; Minissale, V.; Song, T.; Vitev, I.; et al. Hadronization of heavy quarks. Phys. Rev. C 2024, 109, 054912. [Google Scholar] [CrossRef]
- Altenkort, L. et al. [HotQCD Collaboration] Quark mass dependence of heavy quark diffusion coefficient from lattice QCD. Phys. Rev. Lett. 2024, 132, 051902. [Google Scholar] [CrossRef]
- Andronic, A.; Gossiaux, P.B.; Petreczky, P.; Rapp, R.; Strickland, M.; Blaizot, J.P.; Brambilla, N.; Braun-Munzinger, P.; Chen, B.; Delorme, S.; et al. Comparative study of quarkonium transport in hot QCD matter. Eur. Phys. J. A 2024, 60, 88. [Google Scholar] [CrossRef]
- Mykhaylova, V.; Bluhm, M.; Redlich, K.; Sasaki, C. Quark-flavor dependence of the shear viscosity in a quasiparticle model. Phys. Rev. D 2019, 100, 034002. [Google Scholar] [CrossRef]
- Mykhaylova, V.; Sasaki, C. Impact of quark quasiparticles on transport coefficients in hot QCD. Phys. Rev. D 2021, 103, 014007. [Google Scholar] [CrossRef]
- Auvinen, J.; Eskola, K.J.; Huovinen, P.; Niemi, H.; Paatelainen, R.; Petreczky, P. Temperature dependence of η/s of strongly interacting matter: Effects of the equation of state and the parametric form of (η/s)(T). Phys. Rev. C 2020, 102, 044911. [Google Scholar] [CrossRef]
- Song, T.; Grishmanovskii, I.; Soloveva, O.; Bratkovskaya, E. Thermal production of charm quarks in relativistic heavy-ion collisions. Phys. Rev. C 2024, 110, 034906. [Google Scholar] [CrossRef]
- Sambataro, M.L.; Greco, V.; Parisi, G.; Plumari, S. Quasi particle model vs lattice QCD thermodynamics: Extension to Nf = 2 + 1 + 1 flavors and momentum dependent quark masses. Eur. Phys. J. C 2024, 84, 881. [Google Scholar] [CrossRef]
- Levai, P.; Vogt, R. Thermal charm production by massive gluons and quarks. Phys. Rev. C 1997, 56, 2707–2717. [Google Scholar] [CrossRef][Green Version]
- Pisarski, R.D. Renormalized fermion propagator in hot gauge theories. Nucl. Phys. A 1989, 498, 423c–428c. [Google Scholar] [CrossRef]
- Borsányi, S.; Fodor, Z.; Hoelbling, C.; Katz, S.D.; Krieg, S.; Szabó, K.K. Full result for the QCD equation of state with 2 + 1 flavors. Phys. Lett. B 2014, 730, 99–104. [Google Scholar] [CrossRef]
- Borsányi, S.; Fodor, Z.; Guenther, J.; Kampert, K.H.; Katz, S.D.; Kawanai, T.; Kovacs, T.G.; Mages, S.W.; Pasztor, A.; Pittler, F.; et al. Calculation of the axion mass based on high-temperature lattice quantum chromodynamics. Nature 2016, 539, 69–71. [Google Scholar] [CrossRef]
- Biró, T.S.; van Doorn, E.; Müller, B.; Thoma, M.H.; Wang, X.-N. Parton equilibration in relativistic heavy ion collisions. Phys. Rev. C 1993, 48, 1275–1284. [Google Scholar] [CrossRef]
- Zhang, B.-W.; Ko, C.M.; Liu, W. Thermal charm production in a quark–gluon plasma in Pb–Pb collisions at = 5.5 TeV. Phys. Rev. C 2008, 77, 024901. [Google Scholar] [CrossRef]
- Mykhaylova, V. Reviewing the production rate of charm quarks in effective kinetic theory. J. Subat. Part. Cosmol. 2025, 3, 100031. [Google Scholar] [CrossRef]
- Mykhaylova, V. Production rate of charm quarks in the quasiparticle approach. Acta Phys. Polon. Suppl. 2024, 17, 6-A10. [Google Scholar] [CrossRef]
- Song, T.; Zhao, J.; Grishmanovskii, I. Heavy quark potential and thermal charm production in heavy-ion collisions. arXiv 2024, arXiv:2411.07383. [Google Scholar] [CrossRef]
- Braun-Munzinger, P.; Redlich, K. Charmonium production from the secondary collisions at LHC energy. Eur. Phys. J. C 2000, 16, 519–525. [Google Scholar] [CrossRef]
- Kadam, G.P.; Mishra, H. Dissipative properties of hot and dense hadronic matter in an excluded-volume hadron resonance gas model. Phys. Rev. C 2015, 92, 035203. [Google Scholar] [CrossRef]
- Bjorken, J.D. Highly relativistic nucleus–nucleus collisions: The central rapidity region. Phys. Rev. D 1983, 27, 140–151. [Google Scholar] [CrossRef]
- Shou, Q.-Y.; Ma, Y.-G.; Zhang, S.; Zhu, J.-H.; Mao, Y.-X.; Pei, H.; Yin, Z.-B.; Zhang, X.-M.; Zhou, D.-C.; Peng, X.-Y.; et al. Properties of QCD matter: A review of selected results from ALICE experiment. Nucl. Sci. Tech. 2024, 35, 219. [Google Scholar] [CrossRef]
- Sinyukov, Y.M.; Shapoval, V.; Adzhymambetov, M. Space–time structure of particle emission and femtoscopy scales in ultrarelativistic heavy-ion collisions. Universe 2023, 9, 433. [Google Scholar] [CrossRef]
- Kasza, G.; Csörgő, T. Lifetime estimations from RHIC Au + Au data. Int. J. Mod. Phys. A 2019, 34, 1950147. [Google Scholar] [CrossRef]
- Cimerman, J.; Karpenko, I.; Tomášik, B.; Huovinen, P. Next-generation multifluid hydrodynamic model for nuclear collisions at from a few GeV to a hundred GeV. Phys. Rev. C 2023, 107, 044902. [Google Scholar] [CrossRef]
- Mykhaylova, V.; Redlich, K.; Sasaki, C. Charm Quark Kinetics in Heavy-Ion Collisions. Unpublished work. 2025. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mykhaylova, V. Charm Quark Evolution in the Quark–Gluon Plasma with Various Quark Contents. Physics 2025, 7, 39. https://doi.org/10.3390/physics7030039
Mykhaylova V. Charm Quark Evolution in the Quark–Gluon Plasma with Various Quark Contents. Physics. 2025; 7(3):39. https://doi.org/10.3390/physics7030039
Chicago/Turabian StyleMykhaylova, Valeriya. 2025. "Charm Quark Evolution in the Quark–Gluon Plasma with Various Quark Contents" Physics 7, no. 3: 39. https://doi.org/10.3390/physics7030039
APA StyleMykhaylova, V. (2025). Charm Quark Evolution in the Quark–Gluon Plasma with Various Quark Contents. Physics, 7(3), 39. https://doi.org/10.3390/physics7030039