Geospatial Insights into Greece’s Desertification Vulnerability: A Composite Indicator Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. The Methodology
- Soil Texture. Composition and structure of the soil.
- Rock Fragment. Presence and distribution of rock fragments within the soil.
- Soil Depth. Thickness of the soil layer.
- Parent Material. Geological material from which the soil is derived.
- Drainage. Ability of soil to remove excess water.
- Slope Gradient: Steepness of the terrain.
- Rainfall. Precipitation distribution.
- Aridity Index. Degree of dryness in the climate.
- Aspect. Direction a slope faces and its impact on microclimates.
- Fire Risk. Likelihood and severity of wildfires.
- Erosion Protection. Effectiveness of vegetation in preventing soil erosion.
- Drought Resistance. Ability of vegetation to withstand periods of water scarcity.
- Plant Cover. Extent and density of vegetation cover the area.
- Policy.
- Land Use Intensity. The degree of human impact on the land through activities such as agriculture or urbanization.
3. Results and Discussion
4. Conclusions
- It allows for the simultaneous demonstration, computation, visualization, and evaluation of numerous desertification indicators.
- It presents resulting desertification risk in a concise, comparable, reproducible, and holistic manner.
- It directly correlates data input with the sensitivity of the output results.
- It incorporates transdisciplinary criteria and evaluation processes, involving experts, administrators, professionals, farmers, and decision-makers, ensuring that input from each group is integral to the tool’s successful application.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Tsesmelis, D.E.; Vasilakou, C.G.; Kalogeropoulos, K.; Stathopoulos, N.; Alexandris, S.G.; Zervas, E.; Oikonomou, P.D.; Karavitis, C.A. Chapter 46—Drought Assessment Using the Standardized Precipitation Index (SPI) in GIS Environment in Greece. In Computers in Earth and Environmental Sciences; Pourghasemi, H.R., Ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 619–633. ISBN 978-0-323-89861-4. [Google Scholar]
- Tsesmelis, D.E.; Karavitis, C.A.; Kalogeropoulos, K.; Tsatsaris, A.; Zervas, E.; Vasilakou, C.G.; Stathopoulos, N.; Skondras, N.A.; Alexandris, S.G.; Chalkias, C.; et al. Development and Application of Water and Land Resources Degradation Index (WLDI). Earth 2021, 2, 515–531. [Google Scholar] [CrossRef]
- Tsesmelis, D.E.; Karavitis, C.A.; Oikonomou, P.D.; Alexandris, S.; Kosmas, C. Assessment of the Vulnerability to Drought and Desertification Characteristics Using the Standardized Drought Vulnerability Index (SDVI) and the Environmentally Sensitive Areas Index (ESAI). Resources 2019, 8, 6. [Google Scholar] [CrossRef]
- Politi, N.; Vlachogiannis, D.; Sfetsos, A.; Nastos, P.T. High Resolution Projections for Extreme Temperatures and Precipitation over Greece. Clim. Dyn. 2023, 61, 633–667. [Google Scholar] [CrossRef]
- Varlas, G.; Stefanidis, K.; Papaioannou, G.; Panagopoulos, Y.; Pytharoulis, I.; Katsafados, P.; Papadopoulos, A.; Dimitriou, E. Unravelling Precipitation Trends in Greece since 1950s Using ERA5 Climate Reanalysis Data. Climate 2022, 10, 12. [Google Scholar] [CrossRef]
- Karavitis, C.A.; Tsesmelis, D.E.; Skondras, N.A.; Stamatakos, D.; Alexandris, S.; Fassouli, V.; Vasilakou, C.G.; Oikonomou, P.D.; Gregorič, G.; Grigg, N.S.; et al. Linking Drought Characteristics to Impacts on a Spatial and Temporal Scale. Water Policy 2014, 16, 1172–1197. [Google Scholar] [CrossRef]
- Karavitis, C.A.; Chortaria, C.; Alexandris, S.; Vasilakou, C.G.; Tsesmelis, D.E. Development of the Standardised Precipitation Index for Greece. Urban Water J. 2012, 9, 401–417. [Google Scholar] [CrossRef]
- Detsis, V.; Briassoulis, H.; Kosmas, C. The Socio-Ecological Dynamics of Human Responses in a Land Degradation-Affected Region: The Messara Valley (Crete, Greece). Land 2017, 6, 45. [Google Scholar] [CrossRef]
- Karavitis, C.A.; Alexandris, S.; Tsesmelis, D.E.; Athanasopoulos, G. Application of the Standardized Precipitation Index (SPI) in Greece. Water 2011, 3, 787–805. [Google Scholar] [CrossRef]
- Tsiros, I.X.; Nastos, P.; Proutsos, N.D.; Tsaousidis, A. Variability of the Aridity Index and Related Drought Parameters in Greece Using Climatological Data over the Last Century (1900–1997). Atmospheric Res. 2020, 240, 104914. [Google Scholar] [CrossRef]
- Polykretis, C.; Alexakis, D.D.; Grillakis, M.G.; Agapiou, A.; Cuca, B.; Papadopoulos, N.; Sarris, A. Assessment of Water-Induced Soil Erosion as a Threat to Cultural Heritage Sites: The Case of Chania Prefecture, Crete Island, Greece. Big Earth Data 2022, 6, 561–579. [Google Scholar] [CrossRef]
- Polykretis, C.; Grillakis, M.G.; Manoudakis, S.; Seiradakis, K.D.; Alexakis, D.D. Spatial Variability of Water-Induced Soil Erosion under Climate Change and Land Use/Cover Dynamics: From Assessing the Past to Foreseeing the Future in the Mediterranean Island of Crete. Geomorphology 2023, 439, 108859. [Google Scholar] [CrossRef]
- Stefanidis, S.; Alexandridis, V.; Ghosal, K. Assessment of Water-Induced Soil Erosion as a Threat to Natura 2000 Protected Areas in Crete Island, Greece. Sustainability 2022, 14, 2738. [Google Scholar] [CrossRef]
- Kosmas, C.S.; Danalatos, N.G. Climate Change, Desertification and the Mediterranean Region. In Soil Responses to Climate Change; Rounsevell, M.D.A., Loveland, P.J., Eds.; Springer Berlin Heidelberg: Berlin/Heidelberg, Germany, 1994; pp. 25–38. ISBN 978-3-642-79220-5. [Google Scholar]
- Kosmas, C.; Danalatos, N.; Cammeraat, L.H.; Chabart, M.; Diamantopoulos, J.; Farand, R.; Gutierrez, L.; Jacob, A.; Marques, H.; Martinez-Fernandez, J.; et al. The Effect of Land Use on Runoff and Soil Erosion Rates under Mediterranean Conditions. Catena 1997, 29, 45–59. [Google Scholar] [CrossRef]
- Kosmas, C.; Danalatos, N.G.; Gerontidis, S. The Effect of Land Parameters on Vegetation Performance and Degree of Erosion under Mediterranean Conditions. Catena 2000, 40, 3–17. [Google Scholar] [CrossRef]
- UNEP Rio Declaration—Rio Declaration on Environment and Development—United Nations Environment Programme (UNEP). Available online: https://www.un.org/esa/dsd/agenda21/Agenda%2021.pdf (accessed on 27 November 2016).
- Davis, D.K. The Arid Lands: History, Power, Knowledge; MIT Press: Cambridge, MA, USA, 2016; ISBN 978-0-262-03452-4. [Google Scholar]
- Herrmann, S.M.; Hutchinson, C.F. The Changing Contexts of the Desertification Debate. J. Arid Environ. 2005, 63, 538–555. [Google Scholar] [CrossRef]
- Binns, T. Is Desertification a Myth? Geography 1990, 75, 106–113. [Google Scholar]
- D’Odorico, P.; Carr, J.; Dalin, C.; Dell’Angelo, J.; Konar, M.; Laio, F.; Ridolfi, L.; Rosa, L.; Suweis, S.; Tamea, S.; et al. Global Virtual Water Trade and the Hydrological Cycle: Patterns, Drivers, and Socio-Environmental Impacts. Environ. Res. Lett. 2019, 14, 053001. [Google Scholar] [CrossRef]
- Briassoulis, H. Combating Land Degradation and Desertification: The Land-Use Planning Quandary. Land 2019, 8, 27. [Google Scholar] [CrossRef]
- Tsolis, V.; Barouchas, P. Biochar as Soil Amendment: The Effect of Biochar on Soil Properties Using VIS-NIR Diffuse Reflectance Spectroscopy, Biochar Aging and Soil Microbiology—A Review. Land 2023, 12, 1580. [Google Scholar] [CrossRef]
- Peters, D.P.; Havstad, K.M.; Archer, S.R.; Sala, O.E. Beyond Desertification: New Paradigms for Dryland Landscapes. Front. Ecol. Environ. 2015, 13, 4–12. [Google Scholar] [CrossRef]
- Vlachos, E.C. Drought Management Interfaces. In Proceedings of the Annual American Society of Civil Engineers Conference, Las Vegas, NV, USA, 26–30 April 1982; p. 15. [Google Scholar]
- Akinyemi, F.O.; Ghazaryan, G.; Dubovyk, O. Assessing UN Indicators of Land Degradation Neutrality and Proportion of Degraded Land for Botswana Using Remote Sensing Based National Level Metrics. Land Degrad. Dev. 2021, 32, 158–172. [Google Scholar] [CrossRef]
- Angelstam, P.; Persson, R.; Schlaepfer, R. The Sustainable Forest Management Vision and Biodiversity: Barriers and Bridges for Implementation in Actual Landscapes. Ecol. Bull. 2004, 51, 29–49. [Google Scholar]
- Kosmas, C.; Tsara, M.; Moustakas, N.; Karavitis, C. Identification of Indicators for Desertification. Ann. Arid Zone 2003, 42, 393–416. [Google Scholar]
- Grainger, A. Are Global Environmental Uncertainties Inevitable? Measuring Desertification for the SDGs. Sustainability 2022, 14, 4063. [Google Scholar] [CrossRef]
- Jalam, A.M.; Sharaai, A.H.; Ariffin, M.; Zainudin, N.; Musa, H.D. Closing the Policy-Practice Gaps in Nigeria’s Desertification Interventions: A Qualitative Document Analysis of Sustainable Practice. J. Environ. Policy Plan. 2021, 23, 381–398. [Google Scholar] [CrossRef]
- Ismayilov, M.J.; Zamanov, F.Z. Determination of the Dynamics and Development Trends of Geosystems. J. Geol. Geogr. Geoecology 2024, 33, 77–87. [Google Scholar] [CrossRef]
- Oikonomou, P.D. Methodologies for Transforming Data to Information and Advancing the Understanding of Water Resources Systems towards Integrated Water Resources Management. Ph.D. Dissertation, Colorado State University, Department of Civil & Environmental Engineering, Fort Collins, CO, USA, 2017. [Google Scholar]
- Ascher, W. Why Governments Waste Natural Resources: Policy Failures in Developing Countries; JHU Press: Baltimore, MD, USA, 1999; ISBN 978-0-8018-6096-6. [Google Scholar]
- Ten Brink, P. ten The Economics of Ecosystems and Biodiversity in National and International Policy Making; Routledge: Informa, UK, 2012; ISBN 978-1-136-53873-5. [Google Scholar]
- Adam, F. Encyclopedia of Decision Making and Decision Support Technologies; Humphreys, P., Ed.; Information Science Reference: Hershey, PA, USA, 2008; ISBN 978-1-59904-843-7. [Google Scholar]
- Aissi, H.; Roy, B. Robustness in Multi-Criteria Decision Aiding. In Trends in Multiple Criteria Decision Analysis; Ehrgott, M., Figueira, J.R., Greco, S., Eds.; International Series in Operations Research & Management Science; Springer US: Boston, MA, USA, 2010; pp. 87–121. ISBN 978-1-4419-5904-1. [Google Scholar]
- Akbari, M.; Shalamzari, M.J.; Memarian, H.; Gholami, A. Monitoring Desertification Processes Using Ecological Indicators and Providing Management Programs in Arid Regions of Iran. Ecol. Indic. 2020, 111, 106011. [Google Scholar] [CrossRef]
- Uzuner, Ç.; Dengiz, O. Desertification Risk Assessment in Turkey Based on Environmentally Sensitive Areas. Ecol. Indic. 2020, 114, 106295. [Google Scholar] [CrossRef]
- Kosmas, C.; Kairis, O.; Karavitis, C.; Ritsema, C.; Salvati, L.; Acikalin, S.; Alcalá, M.; Alfama, P.; Atlhopheng, J.; Barrera, J.; et al. Evaluation and Selection of Indicators for Land Degradation and Desertification Monitoring: Methodological Approach. Environ. Manag. 2014, 54, 951–970. [Google Scholar] [CrossRef] [PubMed]
- Tilman, D.; Downing, J.A. Biodiversity and Stability in Grasslands. In Ecosystem Management; Springer New York: New York, NY, USA, 1996; pp. 3–7. ISBN 978-0-387-94667-2. [Google Scholar]
- Basso, F.; Bove, E.; Dumontet, S.; Ferrara, A.; Pisante, M.; Quaranta, G.; Taberner, M. Evaluating Environmental Sensitivity at the Basin Scale through the Use of Geographic Information Systems and Remotely Sensed Data: An Example Covering the Agri Basin (Southern Italy)1Funded by MEDALUS III EEC Project. Basso and Pisante Had Mainly Developed Agronomical and Field Level Data; Dumontet the Evaluation of Soil Responses; Bove and Quaranta Socio-Economic Aspects; Ferrara and Taberner the Other Parts as Well as the Layers Structure and the Definition and the Validation of the Model.1. Catena 2000, 40, 19–35. [Google Scholar] [CrossRef]
- Kosmas, C.; Kirkby, M.; Geeson, N. Manual on: Key Indicators of Desertification and Mapping Environmentally Sensitive Areas to Desertification; European Commission, Energy, Environment and Sustainable Development: Brussels, Belgium, 1999; pp. 87–88. [Google Scholar]
- Oikonomou, P.D.; Waskom, R.M. Assessing Drought Vulnerability in Northeast Colorado. AGU Fall Meet. Abstr. 2018, H51H-1404. [Google Scholar]
- Geist, H. The Causes and Progression of Desertification; Gower Publishing, Ltd.: Aldershot, UK, 2005. [Google Scholar]
- Danfeng, S.; Dawson, R.; Baoguo, L. Agricultural Causes of Desertification Risk in Minqin, China. J. Environ. Manag. 2006, 79, 348–356. [Google Scholar] [CrossRef]
- Sivakumar, M.V.K. Interactions between Climate and Desertification. Agric. For. Meteorol. 2007, 142, 143–155. [Google Scholar] [CrossRef]
- Tsadilas, C.D. Impact of Climate Change on the Primary Agricultural Sector of Greece: Adaptation Policies and Measures. Earth 2023, 4, 758–775. [Google Scholar] [CrossRef]
- Lal, R. Restoring Soil Quality to Mitigate Soil Degradation. Sustainability 2015, 7, 5875–5895. [Google Scholar] [CrossRef]
- Lal, R. Encyclopedia of Soil Science, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2017; ISBN 978-1-315-16186-0. [Google Scholar]
- Borrelli, P.; Robinson, D.A.; Fleischer, L.R.; Lugato, E.; Ballabio, C.; Alewell, C.; Meusburger, K.; Modugno, S.; Schütt, B.; Ferro, V.; et al. An Assessment of the Global Impact of 21st Century Land Use Change on Soil Erosion. Nat. Commun. 2017, 8, 2013. [Google Scholar] [CrossRef] [PubMed]
- Panagos, P.; Standardi, G.; Borrelli, P.; Lugato, E.; Montanarella, L.; Bosello, F. Cost of Agricultural Productivity Loss Due to Soil Erosion in the European Union: From Direct Cost Evaluation Approaches to the Use of Macroeconomic Models. Land Degrad. Dev. 2018, 29, 471–484. [Google Scholar] [CrossRef]
- Bakker, M.M.; Govers, G.; Kosmas, C.; Vanacker, V.; van Oost, K.; Rounsevell, M. Soil Erosion as a Driver of Land-Use Change. Agric. Ecosyst. Environ. 2005, 105, 467–481. [Google Scholar] [CrossRef]
- Kairis, O.; Karavitis, C.; Kounalaki, A.; Salvati, L.; Kosmas, C. The Effect of Land Management Practices on Soil Erosion and Land Desertification in an Olive Grove. Soil Use Manag. 2013, 29, 597–606. [Google Scholar] [CrossRef]
- Stern, D.I.; Common, M.S.; Barbier, E.B. Economic Growth and Environmental Degradation: The Environmental Kuznets Curve and Sustainable Development. World Dev. 1996, 24, 1151–1160. [Google Scholar] [CrossRef]
- Tsesmelis, D.E.; Karavitis, C.A.; Kalogeropoulos, K.; Zervas, E.; Vasilakou, C.G.; Skondras, N.A.; Oikonomou, P.D.; Stathopoulos, N.; Alexandris, S.G.; Tsatsaris, A.; et al. Evaluating the Degradation of Natural Resources in the Mediterranean Environment Using the Water and Land Resources Degradation Index, the Case of Crete Island. Atmosphere 2022, 13, 135. [Google Scholar] [CrossRef]
- Geeson, N.A.; Brandt, C.J.; Thornes, J.B. Mediterranean Desertification: A Mosaic of Processes and Responses; John Wiley & Sons: Hoboken, NJ, USA, 2003; ISBN 978-0-470-85686-4. [Google Scholar]
- Hoffman, M.T. Water Scarcity, Land Degradation and Desertification in the Mediterranean Region: Environmental and Security Aspects. Afr. J. Range Forage Sci. 2009, 26, 193–194. [Google Scholar] [CrossRef]
- Bolan, S.; Padhye, L.P.; Jasemizad, T.; Govarthanan, M.; Karmegam, N.; Wijesekara, H.; Amarasiri, D.; Hou, D.; Zhou, P.; Biswal, B.K.; et al. Impacts of Climate Change on the Fate of Contaminants through Extreme Weather Events. Sci. Total Environ. 2024, 909, 168388. [Google Scholar] [CrossRef] [PubMed]
- Koulelis, P.P.; Proutsos, N.; Solomou, A.D.; Avramidou, E.V.; Malliarou, E.; Athanasiou, M.; Xanthopoulos, G.; Petrakis, P.V. Effects of Climate Change on Greek Forests: A Review. Atmosphere 2023, 14, 1155. [Google Scholar] [CrossRef]
- Reynolds, J.F. Desertification. In Encyclopedia of Biodiversity, 2nd ed.; Levin, S.A., Ed.; Academic Press: Waltham, MA, USA, 2013; pp. 479–494. ISBN 978-0-12-384720-1. [Google Scholar]
- UN Secretariat. Desertification: An Overview. In Desertification: Its Causes and Consequences; Pergamon Press of the Conference on Desertification: New York, NY, USA, 1977. [Google Scholar]
- Kosmas, C.; Tsara, M.; Moustakas, N.; Kosma, D.; Yassoglou, N. Environmentally Sensitive Areas and Indicators Of Desertification. In Desertification in the Mediterranean Region. A Security Issue; Kepner, W.G., Rubio, J.L., Mouat, D.A., Pedrazzini, F., Eds.; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2006; Volume 3, pp. 525–547. ISBN 978-1-4020-3758-0. [Google Scholar]
- Salvati, L. Economic Causes and Consequences of Land Degradation and Desertification Risk in Southern Europe: Integrating Micro-Macro Approaches into a Geographical Perspective. Int. J. Ecol. Econ. Stat. 2010, 18, 20–63. [Google Scholar]
- Mani, Z.A.; Goniewicz, K. Adapting Disaster Preparedness Strategies to Changing Climate Patterns in Saudi Arabia: A Rapid Review. Sustainability 2023, 15, 14279. [Google Scholar] [CrossRef]
- Karavitis, C.A.; Tsesmelis, D.E.; Oikonomou, P.D.; Kairis, O.; Kosmas, C.; Fassouli, V.; Ritsema, C.; Hessel, R.; Jetten, V.; Moustakas, N.; et al. A Desertification Risk Assessment Decision Support Tool (DRAST). Catena 2020, 187, 104413. [Google Scholar] [CrossRef]
- Benassi, F.; Cividino, S.; Cudlin, P.; Alhuseen, A.; Lamonica, G.R.; Salvati, L. Population Trends and Desertification Risk in a Mediterranean Region, 1861-2017. Land Use Policy 2020, 95, 104626. [Google Scholar] [CrossRef]
- Kairis, O.; Karamanos, A.; Voloudakis, D.; Kapsomenakis, J.; Aratzioglou, C.; Zerefos, C.; Kosmas, C. Identifying Degraded and Sensitive to Desertification Agricultural Soils in Thessaly, Greece, under Simulated Future Climate Scenarios. Land 2022, 11, 395. [Google Scholar] [CrossRef]
- Karamesouti, M.; Panagos, P.; Kosmas, C. Model-Based Spatio-Temporal Analysis of Land Desertification Risk in Greece. Catena 2018, 167, 266–275. [Google Scholar] [CrossRef]
- Halbac-Cotoara-Zamfir, R.; Smiraglia, D.; Quaranta, G.; Salvia, R.; Salvati, L.; Giménez-Morera, A. Land Degradation and Mitigation Policies in the Mediterranean Region: A Brief Commentary. Sustainability 2020, 12, 8313. [Google Scholar] [CrossRef]
- Egidi, G.; Salvati, L.; Cudlin, P.; Salvia, R.; Romagnoli, M. A New ‘Lexicon’ of Land Degradation: Toward a Holistic Thinking for Complex Socioeconomic Issues. Sustainability 2020, 12, 4285. [Google Scholar] [CrossRef]
- Schirpke, U.; Tasser, E.; Borsky, S.; Braun, M.; Eitzinger, J.; Gaube, V.; Getzner, M.; Glatzel, S.; Gschwantner, T.; Kirchner, M.; et al. Past and Future Impacts of Land-Use Changes on Ecosystem Services in Austria. J. Environ. Manag. 2023, 345, 118728. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez-Hidalgo, J.C.; Trullenque-Blanco, V.; Beguería, S.; Peña-Angulo, D. Seasonal Precipitation Changes in the Western Mediterranean Basin: The Case of the Spanish Mainland, 1916–2015. Int. J. Climatol. 2024, 44, 1800–1815. [Google Scholar] [CrossRef]
- Ciric, D.; Nieto, R.; Losada, L.; Drumond, A.; Gimeno, L. The Mediterranean Moisture Contribution to Climatological and Extreme Monthly Continental Precipitation. Water 2018, 10, 519. [Google Scholar] [CrossRef]
- Benabdelouahab, T.; Gadouali, F.; Boudhar, A.; Lebrini, Y.; Hadria, R.; Salhi, A. Analysis and Trends of Rainfall Amounts and Extreme Events in the Western Mediterranean Region. Theor. Appl. Climatol. 2020, 141, 309–320. [Google Scholar] [CrossRef]
- Le Houérou, H.N. Climate Change, Drought and Desertification. J. Arid Environ. 1996, 34, 133–185. [Google Scholar] [CrossRef]
- Deitch, M.J.; Sapundjieff, M.J.; Feirer, S.T. Characterizing Precipitation Variability and Trends in the World’s Mediterranean-Climate Areas. Water 2017, 9, 259. [Google Scholar] [CrossRef]
- Lionello, P. The Climate of the Mediterranean Region: From the Past to the Future; Elsevier: Amsterdam, The Netherlands, 2012; ISBN 978-0-12-416042-2. [Google Scholar]
- Tsesmelis, D.E.; Leveidioti, I.; Karavitis, C.A.; Kalogeropoulos, K.; Vasilakou, C.G.; Tsatsaris, A.; Zervas, E. Spatiotemporal Application of the Standardized Precipitation Index (SPI) in the Eastern Mediterranean. Climate 2023, 11, 95. [Google Scholar] [CrossRef]
- Bhadra, R.; Neupane, B.; Khadka, U.R. Induced Impacts of Climate Change on Livelihood and Migration in Upper Himalayas: A Case of Mustang, Nepal. In Handbook of Climate Change Management: Research, Leadership, Transformation; Luetz, J.M., Ayal, D., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 2229–2269. ISBN 978-3-030-57281-5. [Google Scholar]
- Rodriguez-Iturbe, I. Ecohydrology: A Hydrologic Perspective of Climate-Soil-Vegetation Dynamies. Water Resour. Res. 2000, 36, 3–9. [Google Scholar] [CrossRef]
- Sarwar, A.; Bastiaanssen, W.G.M. Long-Term Effects of Irrigation Water Conservation on Crop Production and Environment in Semiarid Areas. J. Irrig. Drain. Eng. 2001, 127, 331–338. [Google Scholar] [CrossRef]
- Twisa, S.; Buchroithner, M.F. Seasonal and Annual Rainfall Variability and Their Impact on Rural Water Supply Services in the Wami River Basin, Tanzania. Water 2019, 11, 2055. [Google Scholar] [CrossRef]
- McEvoy, J.; Bathke, D.; Burkardt, N.; Cravens, A.; Haigh, T.; Hall, K.; Hayes, M.; Jedd, T.; Poděbradská, M.; Wickham, E.; et al. Ecological Drought: Accounting for the Non-Human Impacts of Water Shortage in the Upper Missouri Headwaters Basin, Montana, USA. Resources 2018, 7, 14. [Google Scholar] [CrossRef]
- Abrahams, A.D.; Parsons, A.J.; Wainwright, J. Effects of Vegetation Change on Interrill Runoff and Erosion, Walnut Gulch, Southern Arizona. Geomorphology 1995, 13, 37–48. [Google Scholar] [CrossRef]
- Hossain, A.; Krupnik, T.J.; Timsina, J.; Mahboob, M.G.; Chaki, A.K.; Farooq, M.; Bhatt, R.; Fahad, S.; Hasanuzzaman, M. Agricultural Land Degradation: Processes and Problems Undermining Future Food Security. In Environment, Climate, Plant and Vegetation Growth; Fahad, S., Hasanuzzaman, M., Alam, M., Ullah, H., Saeed, M., Ali Khan, I., Adnan, M., Eds.; Springer International Publishing: Cham, Switzerland, 2020; pp. 17–61. ISBN 978-3-030-49732-3. [Google Scholar]
- Venkatesh, K.; John, R.; Chen, J.; Xiao, J.; Amirkhiz, R.G.; Giannico, V.; Kussainova, M. Optimal Ranges of Social-Environmental Drivers and Their Impacts on Vegetation Dynamics in Kazakhstan. Sci. Total Environ. 2022, 847, 157562. [Google Scholar] [CrossRef]
- Ferreira, C.S.S.; Seifollahi-Aghmiuni, S.; Destouni, G.; Ghajarnia, N.; Kalantari, Z. Soil Degradation in the European Mediterranean Region: Processes, Status and Consequences. Sci. Total Environ. 2022, 805, 150106. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Fu, B.; Liu, Y.; Zhao, W.; Wang, S. Vulnerability Assessment of the Global Water Erosion Tendency: Vegetation Greening Can Partly Offset Increasing Rainfall Stress. Land Degrad. Dev. 2019, 30, 1061–1069. [Google Scholar] [CrossRef]
- Yang, H.; Zehnder, A.J.B. Water Scarcity and Food Import: A Case Study for Southern Mediterranean Countries. World Dev. 2002, 30, 1413–1430. [Google Scholar] [CrossRef]
- Hamad, K.O.; Surucu, A. Land Degradation Sensitivity and Desertification Risk in Harrir Region, Northern Iraq. Heliyon 2024, 10, e27123. [Google Scholar] [CrossRef]
- Zeng, H.; Wu, B.; Zhang, M.; Zhang, N.; Elnashar, A.; Zhu, L.; Zhu, W.; Wu, F.; Yan, N.; Liu, W. Dryland Ecosystem Dynamic Change and Its Drivers in Mediterranean Region. Curr. Opin. Environ. Sustain. 2021, 48, 59–67. [Google Scholar] [CrossRef]
- Hellenic Statistical Authority 2021 Population-Housing Census. Available online: https://www.statistics.gr/en/2021-census-pop-hous (accessed on 21 March 2024).
- Stathopoulos, N.; Skrimizeas, P.; Kalogeropoulos, K.; Louka, P.; Tragaki, A. Statistical Analysis and Spatial correlation of rainfall in Greece for a 20-year time period. In Proceedings of the 14th International Conference on Meteorology, Climatology and Atmospheric Physics, COMECAP 2018, Democritus University of Thrace—Hellenic Meteorological Society, Alexandroupolis, Greece, 15–17 October 2018. [Google Scholar] [CrossRef]
- Feidas, H.; Karacostas, T.; Zanis, P. The Wonderful Weather of Greece. In The Geography of Greece: Managing Crises and Building Resilience; Darques, R., Sidiropoulos, G., Kalabokidis, K., Eds.; Springer International Publishing: Cham, Switzerland, 2024; pp. 413–429. ISBN 978-3-031-29819-6. [Google Scholar]
- Georgoulias, A.K.; Akritidis, D.; Kalisoras, A.; Kapsomenakis, J.; Melas, D.; Zerefos, C.S.; Zanis, P. Climate Change Projections for Greece in the 21st Century from High-Resolution EURO-CORDEX RCM Simulations. Atmospheric Res. 2022, 271, 106049. [Google Scholar] [CrossRef]
- Kostopoulou, E.; Giannakopoulos, C. Projected Changes in Extreme Wet and Dry Conditions in Greece. Climate 2023, 11, 49. [Google Scholar] [CrossRef]
- Lampropoulos, V.; Panagiotopoulou, M.; Stratigea, A. Assessing the Performance of Current Strategic Policy Directions towards Unfolding the Potential of the Culture–Tourism Nexus in the Greek Territory. Heritage 2021, 4, 3157–3185. [Google Scholar] [CrossRef]
- Apostolopoulos, Y.; Sonmez, S. Greek Tourism on the Brink: Restructuring or Stagnation and Decline? In Mediterranean Tourism; Routledge: London, UK, 2001; ISBN 978-1-315-81238-0. [Google Scholar]
- Hellenic Statistical Authority. Agriculture Livestock; Hellenic Statistical Authority: Piraeus, Greece, 2022; p. 64. [Google Scholar]
- Feloni, E.; Nastos, P.T. Evaluating Rainwater Harvesting Systems for Water Scarcity Mitigation in Small Greek Islands under Climate Change. Sustainability 2024, 16, 2592. [Google Scholar] [CrossRef]
- Papadopoulou, C.-A.; Papadopoulou, M.P.; Laspidou, C. Implementing Water-Energy-Land-Food-Climate Nexus Approach to Achieve the Sustainable Development Goals in Greece: Indicators and Policy Recommendations. Sustainability 2022, 14, 4100. [Google Scholar] [CrossRef]
- Tsakiris, G.; Vangelis, H. Towards a Drought Watch System Based on Spatial SPI. Water Resour. Manag. 2004, 18, 1–12. [Google Scholar] [CrossRef]
Type | Category | ESAI Values |
---|---|---|
Critical | C3 | >1.53 |
« | C2 | 1.42–1.53 |
« | C1 | 1.38–1.41 |
Fragile | F3 | 1.33–1.37 |
« | F2 | 1.27–1.32 |
« | F1 | 1.23–1.26 |
Potential | P | 1.17–1.22 |
Non affected | N | <1.17 |
Index | SOC | NDVI | NDWI | ESAI |
---|---|---|---|---|
SOC | 1 | 0.28 | 0.3 | 0.11 |
NDVI | 0.28 | 1 | 0.54 | −0.13 |
NDWI | 0.3 | 0.54 | 1 | −0.33 |
ESAI | 0.11 | −0.13 | −0.33 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalogeropoulos, K.; Tsesmelis, D.E.; Tsatsaris, A.; Zervas, E.; Karavitis, C.A.; Vasilakou, C.G.; Barouchas, P.E. Geospatial Insights into Greece’s Desertification Vulnerability: A Composite Indicator Approach. GeoHazards 2024, 5, 374-392. https://doi.org/10.3390/geohazards5020020
Kalogeropoulos K, Tsesmelis DE, Tsatsaris A, Zervas E, Karavitis CA, Vasilakou CG, Barouchas PE. Geospatial Insights into Greece’s Desertification Vulnerability: A Composite Indicator Approach. GeoHazards. 2024; 5(2):374-392. https://doi.org/10.3390/geohazards5020020
Chicago/Turabian StyleKalogeropoulos, Kleomenis, Dimitrios E. Tsesmelis, Andreas Tsatsaris, Efthimios Zervas, Christos A. Karavitis, Constantia G. Vasilakou, and Pantelis E. Barouchas. 2024. "Geospatial Insights into Greece’s Desertification Vulnerability: A Composite Indicator Approach" GeoHazards 5, no. 2: 374-392. https://doi.org/10.3390/geohazards5020020
APA StyleKalogeropoulos, K., Tsesmelis, D. E., Tsatsaris, A., Zervas, E., Karavitis, C. A., Vasilakou, C. G., & Barouchas, P. E. (2024). Geospatial Insights into Greece’s Desertification Vulnerability: A Composite Indicator Approach. GeoHazards, 5(2), 374-392. https://doi.org/10.3390/geohazards5020020