Geospatial Analysis and Mapping of Regional Landslide Susceptibility: A Case Study of Eastern Tennessee, USA
Abstract
:1. Introduction
2. The Study Area
3. Data and Methods
3.1. Geospatial Data Processing
3.2. The Selection of Significant Variables
3.3. Logistic Regression
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cruden, D.M. A simple definition of a landslide. Bull. Int. Assoc. Eng. Geol. 1991, 43, 27–29. [Google Scholar] [CrossRef]
- Varnes, D.J. Slope movement types and process. In Landslides: Analysis and Control; Schuster, R.L., Krizek, R.J., Eds.; Transportation Research Board: Washington, DC, USA, 1978; pp. 11–33. [Google Scholar]
- Muhammad, M.; Idris, I.; Salazar, A.S.; Nizam, K.; Taha, M.R. GIS Based Landslide Hazard Mapping Prediction in Ulu Klang, Malaysia. ITB J. 2010, 42, 163–178. [Google Scholar] [CrossRef]
- Ayalew, L.; Yamagishi, H. The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 2005, 65, 15–31. [Google Scholar] [CrossRef]
- Ohlmacher, G.C.; Davis, J.C. Using multiple logistic regression and GIS technology to predict landslide hazard in northeast Kansas, USA. Eng. Geol. 2003, 69, 331–343. [Google Scholar] [CrossRef]
- Baeza, C.; Corominas, J. Assessment of shallow landslide susceptibility by means of multivariate statistical techniques. Earth Surf. Process. Landf. 2001, 26, 1251–1263. [Google Scholar] [CrossRef]
- Bai, S.B.; Wang, J.; Lü, G.N.; Zhou, P.G.; Hou, S.S.; Xu, S.N. GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China. Geomorphology 2010, 115, 23–31. [Google Scholar] [CrossRef]
- Dai, F.C.; Lee, C.F.; Ngai, Y.Y. Landslide risk assessment and management: An overview. Eng. Geol. 2002, 64, 65–87. [Google Scholar] [CrossRef]
- Dewitte, O.; Chung, C.J.; Cornet, Y.; Daoudi, M.; Demoulin, A. Combining spatial data in landslide reactivation susceptibility mapping: A likelihood ratio-based approach in W Belgium. Geomorphology 2010, 122, 153–166. [Google Scholar] [CrossRef]
- Kamp, U.; Growley, B.J.; Khattak, G.A.; Owen, L.A. GIS-based landslide susceptibility mapping for the 2005 Kashmir earthquake region. Geomorphology 2008, 101, 631–642. [Google Scholar] [CrossRef]
- Van Westen, C.J.; Castellanos, E.; Kuriakose, S.L. Spatial data for landslide susceptibility, hazard, and vulnerability assessment: An overview. Eng. Geol. 2008, 102, 112–131. [Google Scholar] [CrossRef]
- Wang, Z.; Cobb, J.C. A critique of probabilistic versus deterministic seismic hazard analysis with special reference to the New Madrid seismic zone. Geol. Soc. Am. Spec. Pap. 2012, 493, 259–275. [Google Scholar]
- Gritzner, M.L.; Marcus, W.; Aspinall, R.; Custer, S.G. Assessing landslide potential using GIS, soil wetness modeling and topographic attributes, Payette River, Idaho. Geomorphology 2001, 37, 149–165. [Google Scholar] [CrossRef]
- Wartman, J.; Montgomery, D.R.; Anderson, S.A.; Keaton, J.R.; Benoit, J.; dela Chapelle, J.; Gilbert, R. The 22 March 2014 Oso landslide, Washington, USA. Geomorphology 2016, 253, 275–288. [Google Scholar] [CrossRef]
- LaHusen, S.R.; Duvall, A.R.; Booth, A.M.; Montgomery, D.R. Surface roughness dating of long-runout landslides near Oso, Washington (USA), reveals persistent postglacial hillslope instability. Geology 2016, 44, 111–114. [Google Scholar] [CrossRef]
- Moon, S.; Shelef, E.; Hilley, G.E. Recent topographic evolution and erosion of the deglaciated Washington Cascades inferred from a stochastic landscape evolution model. J. Geophys. Res. F Earth Sci. 2015, 120, 856–876. [Google Scholar] [CrossRef]
- Regmi, N.R.; Giardino, J.R.; Vitek, J.D. Assessing susceptibility to landslides: Using models to understand observed changes in slopes. Geomorphology 2010, 122, 25–38. [Google Scholar] [CrossRef]
- Nandi, A.; Shakoor, A. A GIS-based landslide susceptibility evaluation using bivariate and multivariate statistical analyses. Eng. Geol. 2009, 110, 11–20. [Google Scholar] [CrossRef]
- Sabokbar, H.A.F.; Roodposhti, M.S.; Tazik, E. Landslide susceptibility mapping using geographically weighted principal component analysis. Geomorphology 2014, 226, 15–24. [Google Scholar] [CrossRef]
- Goetz, J.N.; Guthrie, R.H.; Brenning, A. Integrating physical and empirical landslide susceptibility models using generalized additive models. Geomorphology 2011, 129, 376–386. [Google Scholar] [CrossRef]
- Glade, T. Linking debris-flow hazard assessments with geomorphology. Geomorphology 2005, 66, 189–213. [Google Scholar] [CrossRef]
- Van Westen, C.J.; Rengers, N.; Soeters, R. Use of geomorphological information indirect landslide susceptibility assessment. Nat. Hazard 2003, 30, 399–419. [Google Scholar] [CrossRef]
- Chung, C.F.; Kojima, H.; Fabbri, A.G. Stability analysis of prediction models for landslide hazard mapping. In Applied Geomorphology: Theory and Practice; Allison, R.J., Ed.; John Wiley and Sons: London, UK, 2002; pp. 1–19. [Google Scholar]
- Zhou, C.H.; Lee, C.F.; Li, J.; Xu, Z.W. On the spatial relationship between landslides and causative factors on Lantau Island, Hong Kong. Geomorphology 2002, 43, 197–207. [Google Scholar] [CrossRef]
- Dai, F.C.; Lee, C.F.; Zhang, X.H. GIS-based geo-environmental evaluation for urban land-use planning: A case study. Eng. Geol. 2001, 61, 257–271. [Google Scholar] [CrossRef]
- Rodgers, J. Geologic Map of East Tennessee with Explanatory Text; USGS: Knoxville, TN, USA, 1993; Volume 58, Part II; pp. 1–177.
- NOAA, National Oceanic and Atmospheric Administration, National Centers for Environmental Information. Retrieved 10/2016, Climate at a Glance. Available online: https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/statewide/time-series/40/tavg/12/0/2000-2015?base_prd=true&begbaseyear=2000&endbaseyear=2010 (accessed on 1 April 2024).
- Meng, Q. Modeling and prediction of natural gas fracking pad landscapes in the Marcellus Shale region, USA. Landsc. Urban Plan. 2014, 121, 109–116. [Google Scholar] [CrossRef]
- Barbaccia, T.G. Road into bridge: A massive landslide causes Tennessee DOT to rethink its rebuilding. Better Roads 2012, 82, 37–39. [Google Scholar]
- Loeb, R.E.; King, S. Landslides and the urban forest. Arboric. Urban For. 2011, 37, 213–218. [Google Scholar] [CrossRef]
- Baird, D.D., Jr.; Harden, C.P. Meteorological conditions and wedge failures in the Hartford area of Interstate 40, east Tennessee. Southeast. Geogr. 1994, 34, 54–66. [Google Scholar] [CrossRef]
- Liddle, R.; Bakaletz, S. Hydrologic and aquatic impacts from a landslide in the Tennessee coal fields. In Proceedings of the 25th Annual Meetings of the American Society of Mining and Reclamation and 10th Meeting of IALR, Richmond, VA, USA, 14–19 June 2008. [Google Scholar]
- Huat, L.T.; Ali, F. Slope hazard assessment in urbanized area. Electron. J. Geotech. Eng. 2012, 17, 341–352. [Google Scholar]
- Zhang, W.; Wang, W.; Xia, Q. Landslide risk zoning based on contribution rate weight stack method. Energy Procedia 2012, 16, 178–183. [Google Scholar] [CrossRef]
- Carrara, A.; Crosta, G.; Frattini, P. Geomorphological and historical data in assessing landslide hazard. Earth Surf. Process. Landf. 2003, 28, 1125–1142. [Google Scholar] [CrossRef]
- Shaban, A.; Khawlie, M.; Bou Kheir, R.; Abdallah, C. Assessment of road instability along a typical mountainous road using GIS and aerial photos, Lebanon-eastern Mediterranean. Bull. Eng. Geol. Environ. 2001, 60, 93–101. [Google Scholar]
- Guzzetti, F.; Carrara, A.; Cardinali, M.; Reichenbach, P. Landslide hazard evaluation: A review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 1999, 31, 181–216. [Google Scholar] [CrossRef]
- Garcia-Rodriguez, M.J.; Malpica, J.A.; Benito, B.; Diaz, M. Susceptibility assessment of earthquake-triggered landslides in El Salvador using logistic regression. Geomorphology 2008, 95, 172–191. [Google Scholar] [CrossRef]
- Chang, K.T.; Chiang, S.H.; Hsu, M.L. Modeling typhoon- and earthquake- induced landslides in a mountainous watershed using logistic regression. Geomorphology 2007, 89, 335–347. [Google Scholar] [CrossRef]
- Dominguez-Cuesta, M.J.; Jimenez-Sanchez, M.; Berrezueta, E. Landslides in the Central Coalfield (Cantabrian Mountains, NW Spain): Geomorphological features, conditioning factors and methodological implications in susceptibility assessment. Geomorphology 2007, 89, 358–369. [Google Scholar] [CrossRef]
- He, Y.; Wang, W.; Zhang, L.; Chen, Y.; Chen, Y.; Chen, B.; He, X.; Zhao, Z. An identification method of potential landslide zones using InSAR data and landslide susceptibility. Geomat. Nat. Hazards Risk 2023, 14, 2185120. [Google Scholar] [CrossRef]
- Gao, B.; He, Y.; Chen, X.; Zheng, X.; Zhang, L.; Zhang, Q.; Lu, J. Landslide Risk Evaluation in Shenzhen Based on Stacking Ensemble Learning and InSAR. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2023, 16, 1–18. [Google Scholar] [CrossRef]
- Albanwan, H.; Qin, R.; Liu, J. Remote Sensing-Based 3D Assessment of Landslides: A Review of the Data, Methods, and Applications. Remote Sens. 2024, 16, 455. [Google Scholar] [CrossRef]
- Pellicani, R.; Argentiero, I.; Spilotro, G. GIS-based predictive models for regional-scale landslide susceptibility assessment and risk mapping along road corridors. Geomat. Nat. Haz. Risk 2017, 8, 1012–1033. [Google Scholar] [CrossRef]
- Mersha, T.; Meten, M. GIS-based landslide susceptibility mapping and assessment using bivariate statistical methods in Simada area, northwestern Ethiopia. Geoenviron. Disasters 2020, 7, 20. [Google Scholar] [CrossRef]
- Wang, Y.; Feng, L.; Li, S.; Ren, F.; Du, Q. A hybrid model considering spatial heterogeneity for landslide susceptibility mapping in Zhejiang Province, China. Catena 2020, 188, 104425. [Google Scholar] [CrossRef]
- Viet, H.P.; Quang, T.N.; Viet, H.P.; Thi Phuong, T.G.; An, B.N. GIS-based modeling of landslide susceptibility zonation by integrating the frequency ratio and objective–subjective weighting approach: A case study in a tropical monsoon climate region. Front. Environ. Sci. 2023, 11, 1175567. [Google Scholar] [CrossRef]
- Azarafza, M.; Azarafza, M.; Akgun, H.; Atkin, P.K.; Derakhshani, R. Deep learning-based landslide susceptibility mapping. Sci. Rep. 2021, 11, 24112. [Google Scholar] [CrossRef] [PubMed]
- John, G.; Langley, P.; John, H. Static Versus Dynamic Sampling for Data Mining; KDD: Washington, DC, USA, 1996; pp. 367–370. [Google Scholar]
- Provost, F.; Jensen, D.; Oates, T. Efficient Progressive Sampling. In Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Diego, CA, USA, 15–18 August 1999; pp. 23–32. [Google Scholar]
- Morgan, J.; Daugherty, R.; Hilchie, A.; Carey, B. Sample size and modeling accuracy of decision tree based data mining tools. Acad. Inf. Manag. Sci. J. 2003, 6, 71–99. [Google Scholar]
Factors | Source |
---|---|
Landform | National Elevation dataset, U.S. Geological Survey, 30 m grid data. |
Slope | |
Aspect | |
Elevation | |
Soil | gSSURGO datasets, U.S. Department of Agriculture, 30 m grid data. |
Clay percentage | |
Silt percentage | |
Geology | Online mineral resources spatial data, U.S. Geological Survey (shapefile). |
Geologic period | |
Bedrock type | |
Landscape | National Land Cover Database (NLCD), 2011, 30 m grid data. |
Land use land cover types | |
Percentage of tree canopy | |
Distance to roads | TIGER, U.S. Census Bureau, 2010 (shapefile). |
Climate: Mean annual rainfall | PRISM climate data, 800 m grid data. |
Sample Times | Slope | Clay Percentage | Percentage of Tree Canopy | Distance to Road |
---|---|---|---|---|
1 | 0.0126 | 0.0067 | 0.0343 | <0.0001 |
2 | 0.0884 | 0.0403 | 0.0003 | <0.0001 |
3 | 0.0776 | 0.0413 | 0.0005 | <0.0001 |
4 | 0.0081 | 0.0101 | 0.0114 | <0.0001 |
5 | 0.2346 | 0.0063 | 0.0020 | <0.0001 |
6 | 0.1408 | 0.2301 | 0.0024 | <0.0001 |
7 | 0.0501 | 0.0119 | 0.0042 | <0.0001 |
8 | 0.1836 | 0.0101 | 0.0004 | <0.0001 |
9 | 0.0025 | 0.0455 | 0.0065 | <0.0001 |
10 | 0.1903 | 0.0574 | 0.0020 | <0.0001 |
Sample Times | Elevation | Aspect | Geologic Period | Landcover | Silt | Bedrock | Rainfall |
---|---|---|---|---|---|---|---|
1 | 0.2923 | 0.2152 | 0.5000 | 0.1526 | 0.0891 | 0.9864 | 0.1631 |
2 | 0.4850 | 0.1448 | 0.1631 | 0.1542 | 0.1439 | 0.9964 | 0.1508 |
3 | 0.1448 | 0.1581 | 0.1631 | 0.1517 | 0.2933 | 0.9975 | 0.1010 |
4 | 0.3559 | 0.3535 | 0.1631 | 0.1501 | 0.0945 | 0.7800 | 0.1597 |
5 | 0.1051 | 0.3172 | 0.1631 | 0.1508 | 0.0010 | 0.0001 | 0.1786 |
6 | 0.1786 | 0.1272 | 0.1631 | 0.1512 | 0.0632 | 0.8930 | 0.0435 |
7 | 0.0859 | 0.2171 | 0.1631 | 0.1514 | 0.2209 | 0.9926 | 0.1214 |
8 | 0.4568 | 0.3645 | 0.1631 | 0.1521 | 0.1368 | 0.0880 | 0.0153 |
9 | 0.3352 | 0.4904 | 0.1631 | 0.1491 | 0.2428 | 0.0001 | 0.0051 |
10 | 0.3373 | 0.1786 | 0.1786 | 0.1511 | 0.4300 | 0.9998 | 0.0859 |
Coefficient | Estimate | p Value | Driving Impact |
---|---|---|---|
Slope | 0.0125 | 0.0005 | Positive |
Clay percentage | −0.0552 | 0.0153 | Negative |
Tree canopy | −0.0029 | 0.0004 | Negative |
Distance to road | −0.0007 | 2.61 × 10−7 | Negative |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Meng, Q.; Smith, S.A.; Rodgers, J. Geospatial Analysis and Mapping of Regional Landslide Susceptibility: A Case Study of Eastern Tennessee, USA. GeoHazards 2024, 5, 364-373. https://doi.org/10.3390/geohazards5020019
Meng Q, Smith SA, Rodgers J. Geospatial Analysis and Mapping of Regional Landslide Susceptibility: A Case Study of Eastern Tennessee, USA. GeoHazards. 2024; 5(2):364-373. https://doi.org/10.3390/geohazards5020019
Chicago/Turabian StyleMeng, Qingmin, Sara A. Smith, and John Rodgers. 2024. "Geospatial Analysis and Mapping of Regional Landslide Susceptibility: A Case Study of Eastern Tennessee, USA" GeoHazards 5, no. 2: 364-373. https://doi.org/10.3390/geohazards5020019
APA StyleMeng, Q., Smith, S. A., & Rodgers, J. (2024). Geospatial Analysis and Mapping of Regional Landslide Susceptibility: A Case Study of Eastern Tennessee, USA. GeoHazards, 5(2), 364-373. https://doi.org/10.3390/geohazards5020019