Comparative Study of Greener Alkene Epoxidation Using a Polymer-Supported Mo(VI) Complex: Performance Evaluation and Optimisation via Response Surface Methodology
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Polymer-Supported Mo(Vi) Catalyst
2.3. Characterisation of Polymer-Supported Mo(VI) Catalyst
2.3.1. Fourier Transform Infrared (FTIR) Spectroscopy Analysis
2.3.2. Determination of Molybdenum Content
2.3.3. Scanning Electron Microscopy (SEM)
2.3.4. BET Surface Area, Pore Volume, and Pore Diameter Determination
2.3.5. Average Particle Size Measurement
2.4. Experimental Design
2.5. Statistical Analysis
2.6. Batch Epoxidation Studies
2.7. Method of Analysis
3. Results and Discussion
3.1. Development of Regression Model and Adequacy Checking
3.2. Effect of Process Variables and Their Interactions
3.2.1. Effect of Feed Molar Ratio (FMR)
3.2.2. Effect of Reaction Temperature
3.2.3. Effect of Catalyst Loading
3.2.4. Effect of Reaction Time
3.3. Optimisation Study of Reaction Variables
3.4. Optimum Conditions Validation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Haag, R.; Roller, S. Polymeric Supports for the Immobilisation of Catalysts. In Immobilized Catalysts; Kirschning, A., Ed.; Springer: Berlin/Heidelberg, Germany, 2004; Volume 242, pp. 1–42. [Google Scholar]
- Leadbeater, N.E.; Marco, M. Preparation of Polymer-Supported Ligands and Metal Complexes for Use in Catalysis. Chem. Rev. 2002, 102, 3217–3274. [Google Scholar] [CrossRef] [PubMed]
- Clapham, B.; Reger, T.S.; Janda, K.D. Polymer-supported catalysis in synthetic organic chemistry. Tetrahedron 2001, 57, 4637–4662. [Google Scholar]
- Sherrington, D.C. Polymer-supported reagents, catalysts, and sorbents: Evolution and exploitation—A personalized view. J. Polym. Sci. A Polym. Chem. 2001, 39, 2364–2377. [Google Scholar]
- Shen, Y.; Jiang, P.; Zhang, J.; Bian, G.; Zhang, P.; Dong, Y.; Zhang, W. Highly dispersed molybdenum incorporated hollow mesoporous silica spheres as an efficient catalyst on epoxidation of olefins. Mol. Catal. 2017, 433, 212–223. [Google Scholar]
- Bisio, C.; Gallo, A.; Psaro, R.; Tiozzo, C.; Guidotti, M.; Carniato, F. Tungstenocene-grafted silica catalysts for the selective epoxidation of alkenes. Appl. Catal. A Gen. 2019, 581, 133–142. [Google Scholar]
- Cai, L.; Chen, C.; Wang, W.; Gao, X.; Kuang, X.; Jiang, Y.; Li, L.; Wu, G. Acid-free epoxidation of soybean oil with hydrogen peroxide to epoxidized soybean oil over titanium silicalite-1 zeolite supported cadmium catalysts. J. Ind. Eng. Chem. 2020, 91, 191–200. [Google Scholar]
- Wu, Z.; He, Z.; Zhou, D.; Yang, Y.; Lu, X.; Xia, Q. One-step synthesis of bi-functional zeolite catalyst with highly exposed octahedral Co for efficient epoxidation of bulky cycloalkenes. Mater. Lett. 2020, 280, 128549. [Google Scholar]
- Lueangchaichaweng, W.; Singh, B.; Mandelli, D.; Carvalho, W.A.; Fiorilli, S.; Pescarmona, P.P. High surface area, nanostructured boehmite and alumina catalysts: Synthesis and application in the sustainable epoxidation of alkenes. Appl. Catal. A Gen. 2019, 571, 180–187. [Google Scholar]
- Mikolajska, E.; Calvino-Casilda, V.; Bañares, M.A. Real-time Raman monitoring of liquid-phase cyclohexene epoxidation over alumina-supported vanadium and phosphorous catalysts. Appl. Catal. A Gen. 2012, 421–422, 164–171. [Google Scholar]
- Borugadda, V.B.; Goud, V.V. Epoxidation of Castor Oil Fatty Acid Methyl Esters (COFAME) as a Lubricant base Stock Using Heterogeneous Ion-exchange Resin (IR-120) as a Catalyst. Energy Proced. 2014, 54, 75–84. [Google Scholar]
- Peng, C.; Lu, X.H.; Ma, X.T.; Shen, Y.; Wei, C.C.; He, J.; Zhou, D.; Xia, Q.H. Highly efficient epoxidation of cyclohexene with aqueous H2O2 over powdered anion-resin supported solid catalysts. J. Mol. Catal. A-Chem. 2016, 423, 393–399. [Google Scholar] [CrossRef]
- Otake, K.; Ahn, S.; Knapp, J.; Hupp, J.T.; Notestein, J.M.; Farha, O.K. Vapor-Phase Cyclohexene Epoxidation by Single-Ion Fe(III) Sites in Metal–Organic Frameworks. Inorg. Chem. 2021, 60, 2457–2463. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Q.; Bai, C.; Zhang, W.; Li, Y.; Zhang, G.; Zhang, F.; Fan, X. Catalytic Epoxidation of Olefins with Graphene Oxide Supported Copper (Salen) Complex. Ind. Eng. Chem. Res. 2014, 53, 4232–4238. [Google Scholar] [CrossRef]
- Mohammed, M.L.; Patel, D.; Mbeleck, R.; Niyogi, D.; Sherrington, D.C.; Saha, B. Optimisation of alkene epoxidation catalysed by polymer supported Mo(VI) complexes and application of artificial neural network for the prediction of catalytic performances. Appl. Catal. A-Gen. 2013, 466, 142–152. [Google Scholar] [CrossRef]
- Tada, M.; Muratsugu, S.; Kinoshita, M.; Sasaki, T.; Iwasawa, Y. Alternative selective oxidation pathways for aldehyde oxidation and alkene epoxidation on a SiO2-supported Ru-monomer complex catalyst. J. Am. Chem. Soc. 2010, 132, 713–724. [Google Scholar] [CrossRef]
- Sharma, A.S.; Sharma, V.S.; Kaur, H.; Varma, R.S. Supported heterogeneous nanocatalysts in sustainable, selective and eco-friendly epoxidation of olefins. Green Chem. 2020, 22, 5902–5936. [Google Scholar] [CrossRef]
- Mohammed, M.L.; Saha, B. Greener and sustainable approach for the synthesis of commercially important epoxide building blocks using polymer-supported Mo(VI) complexes as catalysts. In Ion Exchange and Solvent Extraction, 1st ed.; SenGupta, A.K., Ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group LLC.: Milton Park, UK, 2016; p. 33. [Google Scholar]
- Gupta, K.C.; Sutar, A.K.; Lin, C.C. Polymer-supported Schiff base complexes in oxidation reactions. Coord. Chem. Rev. 2009, 253, 1926–1946. [Google Scholar] [CrossRef]
- Mbeleck, R.; Mohammed, M.L.; Ambroziak, K.; Sherrington, D.C.; Saha, B. Efficient epoxidation of cyclododecene and dodecene catalysed by polybenzimidazole supported Mo(VI) complex. Catal. Today 2015, 256, 287–293. [Google Scholar] [CrossRef]
- Mohammed, M.L.; Saha, B. Recent Advances in Greener and Energy Efficient Alkene Epoxidation Processes. Energies 2022, 15, 2858. [Google Scholar] [CrossRef]
- Mbeleck, R.; Ambroziak, K.; Saha, B.; Sherrington, D.C. Stability and recycling of polymer-supported Mo(VI) alkene epoxidation catalysts. React. Funct. Polym. 2007, 67, 1448–1457. [Google Scholar] [CrossRef]
- Schaus, S.E.; Brandes, B.D.; Larrow, J.F.; Tokunaga, M.; Hansen, K.B.; Gould, A.E.; Furrow, M.E.; Jacobsen, E.N. Highly Selective Hydrolytic Kinetic Resolution of Terminal Epoxides Catalyzed by Chiral (salen)CoIII Complexes. Practical Synthesis of Enantioenriched Terminal Epoxides and 1,2-Diols. J. Am. Chem. Soc. 2002, 124, 1307–1315. [Google Scholar] [PubMed]
- Grivani, G.; Tangestaninejad, S.; Habibi, M.H.; Mirkhani, V. Epoxidation of alkenes by a highly reusable and efficient polymer-supported molybdenum carbonyl catalyst. Catal. Commun. 2005, 6, 375–378. [Google Scholar]
- Grivani, G.; Tangestaninejad, S.; Habibi, M.H.; Mirkhani, V.; Moghadam, M. Epoxidation of alkenes by a readily prepared and highly active and reusable heterogeneous molybdenum-based catalyst. Appl. Catal. A Gen. 2006, 299, 131–136. [Google Scholar]
- Yahya, S.N.; Lin, C.K.; Ramli, M.R.; Jaafar, M.; Ahmad, Z. Effect of cross-link density on optoelectronic properties of thermally cured. Mater. Des. 2013, 47, 416–423. [Google Scholar]
- Bader, R.A. Synthesis and viscoelastic characterization of novel hydrogels generated via photopolymerization of 1,2-epoxy-5-hexene modified poly(vinyl alcohol) for use in tissue replacement. Acta Biomater. 2008, 4, 967–975. [Google Scholar] [CrossRef] [PubMed]
- García, R.; Martínez, M.; Aracil, J. Enzymatic esterification of an acid with an epoxide using immobilized lipase from Mucor miehei as catalyst: Optimization of the yield and isomeric excess of ester by statistical analysis. J. Ind. Microbiol. Biotechnol. 2002, 28, 173–179. [Google Scholar] [PubMed]
- Allgaier, J.; Hövelmann, C.H.; Wei, Z.; Staropoli, M.; Pyckhout-Hintzen, W.; Lühmann, N.; Willbold, S. Synthesis and rheological behavior of poly(1,2-butylene oxide) based supramolecular architectures. RSC Adv. 2016, 6, 6093–6106. [Google Scholar] [CrossRef]
- Bian, F.; Lin, S. Preparation of epoxy-based silicone prepolymers with applications in UV-curable coatings. Pigment. Resin Technol. 2024, 53, 650–658. [Google Scholar]
- Tzevi, R.; Novakov, P.; Troev, K.; Roundhill, D.M. Synthesis of poly(oxyethylene phosphonate)s bearing oxirane groups in the side chain. J. Polym. Sci. A Polym. Chem. 1997, 35, 625–630. [Google Scholar]
- Santacesaria, E.; Tesser, R.; Di Serio, M.; Turco, R.; Russo, V.; Verde, D. A biphasic model describing soybean oil epoxidation with H2O2 in a fed-batch reactor. Chem. Eng. J. 2011, 173, 198–209. [Google Scholar]
- The Many Uses and Hazards of Peracetic Acid. Available online: https://synergist.aiha.org/201612-peracetic-acid-uses-and-hazards (accessed on 12 July 2023).
- Kollar, J. Epoxidation Process. U.S. Patent Number US53617966A, 11 July 1967. [Google Scholar]
- Salavati-Niasari, M.; Esmaeili, E.; Seyghalkar, H.; Bazarganipour, M. Cobalt(II) Schiff base complex on multi-wall carbon nanotubes (MWNTs) by covalently grafted method: Synthesis, characterization and liquid phase epoxidation of cyclohexene by air. Inorg. Chim. Acta 2011, 375, 11–19. [Google Scholar]
- Patel, D.; Kellici, S.; Saha, B. Green process engineering as the key to future processes. Processes 2014, 2, 311–332. [Google Scholar] [CrossRef]
- Mohammed, M.L.; Mbeleck, R.; Saha, B. Efficient and selective molybdenum based heterogeneous catalyst for alkene epoxidation using batch and continuous reactors. Polym. Chem. 2015, 6, 7308–7319. [Google Scholar]
- Paglia, L.; Genova, V.; Bracciale, M.P.; Bartili, C.; Marra, F.; Natali, M.; Pulci, G. Thermochemical characterization of polybenzimidazole with and without nano-ZrO2 for ablative materials application. J. Therm. Anal. Calorim. 2020, 142, 2149–2161. [Google Scholar]
- Leinonen, S.; Sherrington, D.C.; Sneddon, A.; Mcloughlin, D.; Corker, J.; Canevali, C.; Morazzoni, F.; Reedijk, J.; Spratt, S.B.D. Molecular Structural and Morphological Characterization of Polymer-Supported Mo(VI) Alkene Epoxidation Catalysts. J. Catal. 1999, 2, 251–266. [Google Scholar] [CrossRef]
- Yuan, J.; Huang, J.; Wu, G.; Tong, J.; Xie, G.-Y.; Duan, J.-A.; Qin, M. Multiple responses optimization of ultrasonic-assisted extraction by response surface methodology (RSM) for rapid analysis of bioactive compounds in the flower head of Chrysanthemum morifolium Ramat. Ind. Crop Prod. 2015, 74, 192–199. [Google Scholar]
- Aboelazayem, O.; Gadalla, M.; Saha, B. Biodiesel production from waste cooking oil via supercritical methanol: Optimisation and reactor simulation. Renew. Energ. 2018, 124, 144–154. [Google Scholar]
- Khajeh, M. Optimization of microwave-assisted extraction procedure for zinc and copper determination in food samples by Box-Behnken design. J. Food Compos. Anal. 2009, 22, 343–346. [Google Scholar]
- Jaliliannosrati, H.; Amin, N.A.S.; Talebian-Kiakalaieh, A. Microwave assisted biodiesel production from Jatropha curcas L. seed by two-step in situ process: Optimization using response surface methodology. Bioresour. Technol. 2013, 136, 565–573. [Google Scholar]
- Onyenkeadi, V.; Aboelazayem, O.; Saha, B. Systematic multivariate optimisation of butylene carbonate synthesis via CO2 utilisation using graphene-inorganic nanocomposite catalysts. Catal. Today 2020, 346, 10–22. [Google Scholar]
- Aboelazayem, O.; El-Gendy, N.S.; Abdel-Rehim, A.A.; Ashour, F.; Sadek, M.A. Biodiesel production from castor oil in Egypt: Process optimisation, kinetic study, diesel engine performance and exhaust emissions analysis. Energy 2018, 157, 843–852. [Google Scholar]
- El-Gendy, N.S.; El-Gharabawy, A.A.S.A.; Amr, S.S.A.; Ashour, F.H. Response surface optimization of an alkaline transesterification of waste cooking oil. Int. J. ChemTech Res. 2015, 8, 385–398. [Google Scholar]
- El-Gendy, N.S.; Deriase, S.F.; Hamdy, A. The Optimization of Biodiesel Production from Waste Frying Corn Oil Using Snails Shells as a Catalyst. Energ. Source Part A 2014, 36, 623–637. [Google Scholar]
- Long, X.; Cai, L.; Li, W. RSM-based assessment of pavement concrete mechanical properties under joint action of corrosion, fatigue, and fiber content. Constr. Build. Mater. 2019, 197, 406–420. [Google Scholar]
- Mohammadifard, H.; Amiri, M.C. On tailored synthesis of nano CaCO3 particles in a colloidal gas aphron system and evaluating their performance with response surface methodology for heavy metals removal from aqueous solutions. J. Water Environ. Nanotechnol 2018, 3, 141–149. [Google Scholar]
- Ambroziak, K.; Mbeleck, R.; Saha, B.; Sherrington, D.C. Greener and Sustainable Method for Alkene Epoxidations by Polymer-Supported Mo(VI) Catalysts. Int. J. Chem. React. Eng. 2010, 8, 1–13. [Google Scholar]
- Bhuiyan, M.M.R.; Mohammed, M.L.; Saha, B. Greener and Efficient Epoxidation of 1,5-Hexadiene with tert-Butyl Hydroperoxide (TBHP) as an Oxidising Reagent in the Presence of Polybenzimidazole Supported Mo(VI) Catalyst. Reactions 2022, 3, 537–552. [Google Scholar] [CrossRef]
- Mohammed, M.L.; Mbeleck, R.; Patel, D.; Niyogi, D.; Sherrington, D.C.; Saha, B. Greener and efficient epoxidation of 4-vinyl-1-cyclohexene with polystyrene 2-(aminomethyl)pyridine supported Mo(VI) catalyst in batch and continuous reactors. Chem. Eng. Res. Des. 2015, 94, 194–203. [Google Scholar]
- Olaniyan, B.; Saha, B. Multiobjective Optimization for the Greener Synthesis of Chloromethyl Ethylene Carbonate by CO2 and Epichlorohydrin via Response Surface Methodology. Energies 2020, 13, 741. [Google Scholar] [CrossRef]
- Bhuiyan, M.M.R.; Saha, B. Optimisation of greener and more efficient 1,7-octadiene epoxidation catalysed by a polymer-supported Mo(VI) complex via response surface methodology. React. Chem. Eng. 2024, 9, 1036–1046. [Google Scholar]
Catalyst Properties | PBI.Mo Catalyst |
---|---|
BET surface area | 18.44 m2/g |
Pore volume | 0.021986 cm3/g |
Mo loading (mmol Mo g−1 resin) | 0.825 |
Average pore diameter | 21.595 Å |
Average particle size | 210–295 μm |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 2230.55 | 14 | 159.33 | 15.69 | <0.0001 | Significant |
A-FMR | 75.00 | 1 | 75.00 | 7.39 | 0.0167 | Significant |
B-Temperature | 25.35 | 1 | 25.35 | 2.50 | 0.1364 | Not significant |
C-Catalyst loading | 236.47 | 1 | 236.47 | 23.29 | 0.0003 | Significant |
D-Time | 1008.52 | 1 | 1008.52 | 99.34 | <0.0001 | Significant |
AB | 31.58 | 1 | 31.58 | 3.11 | 0.0996 | Not significant |
AC | 10.18 | 1 | 10.18 | 1.00 | 0.3337 | Not significant |
AD | 0.1024 | 1 | 0.1024 | 0.0101 | 0.9214 | Not significant |
BC | 13.80 | 1 | 13.80 | 1.36 | 0.2631 | Not significant |
BD | 20.39 | 1 | 20.39 | 2.01 | 0.1783 | Not significant |
CD | 1.12 | 1 | 1.12 | 0.1107 | 0.7443 | Not significant |
A2 | 17.20 | 1 | 17.20 | 1.69 | 0.2141 | Not significant |
B2 | 5.30 | 1 | 5.30 | 0.5223 | 0.4817 | Not significant |
C2 | 7.11 | 1 | 7.11 | 0.7005 | 0.4167 | Not significant |
D2 | 681.87 | 1 | 681.87 | 67.17 | <0.0001 | Significant |
Residual | 142.13 | 14 | 10.15 | |||
Lack of fit | 107.22 | 10 | 10.72 | 1.23 | 0.4557 | Not significant |
Pure error | 34.91 | 4 | 8.73 | |||
Cor total | 2372.68 | 28 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | Significance |
---|---|---|---|---|---|---|
Model | 12,671.98 | 14 | 905.14 | 159.75 | <0.0001 | Significant |
A-FMR | 159.21 | 1 | 159.21 | 28.10 | 0.0001 | Significant |
B-Temperature | 349.38 | 1 | 349.38 | 61.66 | <0.0001 | Very significant |
C-Catalyst loading | 78.69 | 1 | 78.69 | 13.89 | 0.0023 | Significant |
D-Time | 9250.19 | 1 | 9250.19 | 1632.59 | <0.0001 | Very significant |
AB | 2.82 | 1 | 2.82 | 0.4981 | 0.4919 | Not significant |
AC | 27.62 | 1 | 27.62 | 4.87 | 0.0445 | Significant |
AD | 41.60 | 1 | 41.60 | 7.34 | 0.0169 | Significant |
BC | 1.77 | 1 | 1.77 | 0.3122 | 0.5852 | Not significant |
BD | 26.16 | 1 | 26.16 | 4.62 | 0.0496 | Significant |
CD | 4.75 | 1 | 4.75 | 0.8388 | 0.3753 | Not significant |
A2 | 180.06 | 1 | 180.06 | 31.78 | <0.0001 | Very significant |
B2 | 95.46 | 1 | 95.46 | 16.85 | 0.0011 | Significant |
C2 | 64.31 | 1 | 64.31 | 11.35 | 0.0046 | Significant |
D2 | 2710.34 | 1 | 2710.34 | 478.36 | <0.0001 | Very significant |
Residual | 79.32 | 14 | 5.67 | |||
Lack of fit | 79.32 | 10 | 7.93 | |||
Pure error | 0.0000 | 4 | 0.0000 | |||
Cor total | 12,751.31 | 28 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhuiyan, M.M.R.; Saha, B. Comparative Study of Greener Alkene Epoxidation Using a Polymer-Supported Mo(VI) Complex: Performance Evaluation and Optimisation via Response Surface Methodology. Reactions 2025, 6, 22. https://doi.org/10.3390/reactions6020022
Bhuiyan MMR, Saha B. Comparative Study of Greener Alkene Epoxidation Using a Polymer-Supported Mo(VI) Complex: Performance Evaluation and Optimisation via Response Surface Methodology. Reactions. 2025; 6(2):22. https://doi.org/10.3390/reactions6020022
Chicago/Turabian StyleBhuiyan, Md Masud Rana, and Basudeb Saha. 2025. "Comparative Study of Greener Alkene Epoxidation Using a Polymer-Supported Mo(VI) Complex: Performance Evaluation and Optimisation via Response Surface Methodology" Reactions 6, no. 2: 22. https://doi.org/10.3390/reactions6020022
APA StyleBhuiyan, M. M. R., & Saha, B. (2025). Comparative Study of Greener Alkene Epoxidation Using a Polymer-Supported Mo(VI) Complex: Performance Evaluation and Optimisation via Response Surface Methodology. Reactions, 6(2), 22. https://doi.org/10.3390/reactions6020022