Analysis of the Effectiveness of Multifrequency OFDM Systems with a Constant Envelope in a Hydroacoustic Simulator and During In Situ Tests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Short Synchronizing Binary Sequences with the Best Autocorrelation Properties
2.2. Multifrequency Signals with Constant Envelope CE-OFDM
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yuh, J.; Ura, T.; Bekey, G.A. (Eds.) Underwater Robots; Springer Science & Business Media: New York, NY, USA, 2012; p. 251. [Google Scholar]
- Preisig, J. Acoustic propagation considerations for underwater acoustic communications network development. ACM SIGMOBILE Mob. Comput. Commun. Rev. 2007, 19, 2–10. [Google Scholar] [CrossRef]
- Lü, B.; Darmon, M.; Potel, C. Stochastic simulation of the high-frequency wave propagation in a random medium. J. Appl. Phys. 2012, 112, 054902. [Google Scholar] [CrossRef]
- Chitre, M.; Ong, S.H.; Potter, J. Performance of Coded OFDM in Very Shallow Water Channels and Snapping Shrimp Noise. In Proceedings of the OCEANS 2005 MTS/IEEE, Washington, DC, USA, 17–23 September 2005; pp. 996–1001. [Google Scholar]
- Scherbatyuk, A.P.; Dubrovin, F.S. Some algorithms of AUV positioning based on one moving beacon. IFAC Proc. Vol. 2012, 45, 1–6. [Google Scholar] [CrossRef]
- Sergeenko, N.; Scherbatyuk, A.; Dubrovin, F. Some Algorithms of Cooperative AUV Navigation with Mobile Surface Beacon. In Proceedings of the 2013 OCEANS-San Diego, San Diego, CA, USA, 23–27 September 2013; pp. 1–6. [Google Scholar]
- Dubrovin, F.; Scherbatyuk, A. Development of Algorithms for an Autonomous Underwater Vehicle Navigation with a Single Mobile Beacon: The results of Simulations and Marine Trials. In Proceedings of the 22nd Saint Petersburg International Conference on Integrated Navigation Systems, ICINS 2015-Proceedings, Saint Petersburg, Russia, 25–27 May 2015; pp. 164–171. [Google Scholar]
- Dubrovin, F.S.; Scherbatyuk, A.P. About Accuracy Estimation of AUV Single-Beacon Mobile Navigation using ASV, Equipped with DGPS. In Proceedings of the OCEANS 2016-Shanghai IEEE, Shanghai, China, 10–13 April 2016; pp. 1–4. [Google Scholar]
- Kebkal, K.G.; Kebkal, A.G.; Yakovlev, S.G. A frequency-modulated-carrier digital communication technique for multipath underwater acoustic channels. Acoust. Phys. 2004, 50, 177–184. [Google Scholar] [CrossRef]
- Lu, B.; Darmon, M.; Potel, C.; Zernov, V. Models Comparison for the scattering of an acoustic wave on immersed targets. J. Phys. Conf. Ser. 2012, 353, 012009. [Google Scholar] [CrossRef]
- Kebkal, K.G.; Mashoshin, A.I. AUV acoustic positioning methods. Gyroscopy Navig. 2017, 8, 80–89. [Google Scholar] [CrossRef]
- Proakis, J.G.; Stojanovic, M.; Catipovic, J. Adaptive Equalization Algorithms for High Rate Underwater Acoustic Communications. In Proceedings of the IEEE Symposium on Autonomous Underwater Vehicle Technology (AUV′94), Cambridge, MA, USA, 19–20 July 1994; pp. 157–164. [Google Scholar]
- Petrov, P.S.; Golov, A.A.; Bezotvetnykh, V.V.; Burenin, A.V.; Kozitskiy, S.B.; Sorokin, M.A.; Morgunov, Y.N. Experimental and theoretical study on arrival times and effective velocities in the case of long-range propagation of acoustical pulses along the shelf edge in a shallow sea. Acoust. Phys. 2020, 66, 21–32. [Google Scholar] [CrossRef]
- Morgunov, Y.N.; Bezotvetnykh, V.V.; Golov, A.A.; Burenin, A.V.; Lebedev, M.S.; Petrov, P.S. Experimental study of the impulse response function variability of underwater sound channel in the Sea of Japan using pseudorandom sequences and its application to long-range acoustic navigation. Acoust. Phys. 2021, 67, 287–292. [Google Scholar] [CrossRef]
- Morgunov, Y.N.; Golov, A.A.; Kamenev, S.I.; Matvienko, Y.V. Means and methods for hydrological–acoustic support of high-precision long-range positioning of underwater objects. Acoust. Phys. 2019, 65, 711–715. [Google Scholar] [CrossRef]
- Morgunov, Y.N.; Burenin, A.V.; Besotvetnykh, V.V.; Golov, A.A. Propagation of pulse pseudorandom signals from a shelf into shallow water in winter hydrological conditions of the Sea of Japan. Acoust. Phys. 2017, 63, 681–685. [Google Scholar] [CrossRef]
- Morgunov, Y.N.; Bezotvetnykh, V.V.; Burenin, A.V.; Voitenko, E.A. Study of how hydrological conditions affect the propagation of pseudorandom signals from the shelf in deep water. Acoust. Phys. 2016, 62, 350–356. [Google Scholar] [CrossRef]
- Rodionov, A.Y.; Unru, P.P.; Kirianov, A.V.; Dubrovin, F.S.; Kulik, S.Y. Some Algorithms for DSSS Signal Processing with Time-Shift Keying for Long-Distance Underwater Communication. In Proceedings of the 2017 IEEE Underwater Technology (UT), Busan, Republic of Korea, 21–24 February 2017; p. 7890287. [Google Scholar]
- Chusov, A.A.; Kovylin, A.A.; Statsenko, L.G.; Mirgorodskaya, Y.V. Parallel search for signals with specified cross-and autocorrelation properties on multiprocessor platforms. Radioelectron. Commun. Syst. 2011, 54, 425–431. [Google Scholar] [CrossRef]
- Van Walree, P.; Sangfelt, E.; Leus, G. Multicarrier spread spectrum for covert acoustic communications. In Proceedings of the MTS/IEEE OCEANS, Quebec City, QC, Canada, 8–11 April 2008; pp. 1–8. [Google Scholar]
- Zhou, S.; Wang, Z. OFDM for Underwater Acoustic Communications; John Wiley & Sons: New York, NY, USA, 2014; p. 416. [Google Scholar]
- Rodionov, A.Y.; Statsenko, L.G.; Kuzin, D.A.; Smirnova, M.M. Application of incoherent multi-frequency signals for information transmission in a nonstationary hydroacoustic environment. Acoust. Phys. 2023, 69, 738–747. [Google Scholar] [CrossRef]
- Berger, C.R.; Huang, J.; Moura, J.M. Study of pilot overhead for iterative OFDM receivers on time-varying and sparse underwater acoustic channels. In Proceedings of the OCEANS′11 MTS/IEEE KONA, Waikoloa, HI, USA, 19–22 September 2011; pp. 1–8. [Google Scholar]
- Chitre, M.; Shahabudeen, S.; Stojanovic, M. Underwater acoustic communications and networking: Recent advances and future challenges. Mar. Technol. Soc. J. 2008, 42, 103–116. [Google Scholar] [CrossRef]
- Weichman, P.B. Doppler effects in heterogeneous media with applications to ocean acoustic modeling. Nonlinear Soft Matter Phys. 2005, 72, 066602. [Google Scholar] [CrossRef] [PubMed]
- Sklar, B. Digital Communications: Fundamentals and Applications; Pearson Education: London, UK, 2021; p. 1136. ISBN 9780134588667/0134588665. [Google Scholar]
- Rodionov, A.Y.; Unru, P.P.; Statsenko, L.G.; Kir’yanov, A.V.; Chusov, A.A.; Scherbatyuk, A.F. Development of the Preamble-based FM-OFDM Underwater Acoustic Communication System Using High-Performance Computing. In Proceedings of the 2016 17th International Conference on Sciences and Techniques of Automatic Control and Computer Engineering (STA), Sousse, Tunisia, 19–21 December 2016; pp. 697–704. [Google Scholar]
- Rodionov, A.; Statsenko, L.; Unru, P.; Morgunov, Y.; Golov, A.; Voitenko, E.; Kiryanov, A. Experimental estimation of the constant envelope fm-ofdm method usage in underwater acoustic communication systems. Appl. Sci. 2018, 8, 402. [Google Scholar] [CrossRef]
- Van Walree, P.A.; Jenserud, T.; Smedsrud, M. A discrete-time channel simulator driven by measured scattering functions. IEEE J. Sel. Areas Commun. 2008, 26, 1628–1637. [Google Scholar] [CrossRef]
- van Walree, P.; Otnes, R.; Jenserud, T. Watermark: A Realistic Benchmark for Underwater Acoustic Modems. In Proceedings of the 2016 IEEE Third Underwater Communications and Networking Conference (UComms), Lerici, Italy, 30 August–1 September 2016; pp. 1–4. [Google Scholar]
M, Bits | Level of Sidelobes of ACF, Bits | K | M, Bits | Level of Sidelobes of ACF, Bits | K | M, Bits | Level of Sidelobes of ACF, Bits | K |
---|---|---|---|---|---|---|---|---|
14 | 2 | 72 | 28 | 2 | 16 | 42 | 3 | 32 |
15 | 2 | 104 | 29 | 3 | 2244 | 43 | 3 | 96 |
16 | 2 | 80 | 30 | 3 | 688 | 44 | 3 | 120 |
17 | 2 | 32 | 31 | 3 | 2008 | 45 | 3 | 32 |
18 | 2 | 16 | 32 | 3 | 3376 | 46 | 3 | 8 |
19 | 2 | 8 | 33 | 3 | 1132 | 47 | 3 | 8 |
20 | 2 | 24 | 34 | 3 | 408 | 48 | 3 | 32 |
21 | 2 | 24 | 35 | 3 | 888 | 49 | 4 | 392,704 |
22 | 3 | 3024 | 36 | 3 | 1288 | 50 | 4 | 201,352 |
23 | 3 | 4084 | 37 | 3 | 440 | 51 | 3 | 8 |
24 | 3 | 6864 | 38 | 3 | 136 | 52 | 4 | 264,464 |
25 | 2 | 8 | 39 | 3 | 240 | 53 | 4 | - |
26 | 3 | 1936 | 40 | 3 | 456 | 54 | 4 | - |
27 | 3 | 3096 | 41 | 3 | 120 | 55 | 4 | - |
Name | NCS1 |
---|---|
Location | Shoal |
Time of year | June |
Range | 540 м |
Depth | 80 м |
Transmitter location | Bottom |
Receiver location | Bottom |
Signal type | DSSS (broadband) |
Bandwidth | 10–18 kHz |
Delay | 32 ms |
Type | SISO (one transmitter and one receiver) |
Number of hydrophones | 1 |
Distance, m | BER CE-OFDM |
---|---|
400 m, 2-point wave disturbance | 1 × 10−4 |
400 m, relative motion 1 m/s | 2 × 10−4 |
1000 m, 2-point wave disturbance | 3 × 10−3 |
1000 m, relative motion 1 m/s | 5 × 10−3 |
2000 m, 3-point wave disturbance | 1.5 × 10−2 |
2000 m, relative motion 1 m/s | 5 × 10−2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rodionov, A.Y.; Statsenko, L.G.; Chusov, A.A.; Kuzin, D.A.; Smirnova, M.M. Analysis of the Effectiveness of Multifrequency OFDM Systems with a Constant Envelope in a Hydroacoustic Simulator and During In Situ Tests. Acoustics 2024, 6, 1140-1153. https://doi.org/10.3390/acoustics6040062
Rodionov AY, Statsenko LG, Chusov AA, Kuzin DA, Smirnova MM. Analysis of the Effectiveness of Multifrequency OFDM Systems with a Constant Envelope in a Hydroacoustic Simulator and During In Situ Tests. Acoustics. 2024; 6(4):1140-1153. https://doi.org/10.3390/acoustics6040062
Chicago/Turabian StyleRodionov, A. Yu., L. G. Statsenko, A. A. Chusov, D. A. Kuzin, and M. M. Smirnova. 2024. "Analysis of the Effectiveness of Multifrequency OFDM Systems with a Constant Envelope in a Hydroacoustic Simulator and During In Situ Tests" Acoustics 6, no. 4: 1140-1153. https://doi.org/10.3390/acoustics6040062
APA StyleRodionov, A. Y., Statsenko, L. G., Chusov, A. A., Kuzin, D. A., & Smirnova, M. M. (2024). Analysis of the Effectiveness of Multifrequency OFDM Systems with a Constant Envelope in a Hydroacoustic Simulator and During In Situ Tests. Acoustics, 6(4), 1140-1153. https://doi.org/10.3390/acoustics6040062