Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (12)

Search Parameters:
Keywords = CE-OFDM

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2670 KB  
Article
Analysis of the Effectiveness of Multifrequency OFDM Systems with a Constant Envelope in a Hydroacoustic Simulator and During In Situ Tests
by A. Yu. Rodionov, L. G. Statsenko, A. A. Chusov, D. A. Kuzin and M. M. Smirnova
Acoustics 2024, 6(4), 1140-1153; https://doi.org/10.3390/acoustics6040062 - 12 Dec 2024
Viewed by 1294
Abstract
The key elements in the operation of modern underwater robotic systems are hydroacoustic communication and navigation systems. Hydroacoustic data transmission channels are designed in such a way that the transmitted information signals must be resistant to various types of interference and distortion, even [...] Read more.
The key elements in the operation of modern underwater robotic systems are hydroacoustic communication and navigation systems. Hydroacoustic data transmission channels are designed in such a way that the transmitted information signals must be resistant to various types of interference and distortion, even without preliminary estimates of the channel parameters, due to their significant non-stationarity because of the roughness of the sea surface, currents, and the movement of underwater vehicles. Furthermore, due to the high mobility of underwater vehicles, the transmission time of navigation signals and necessary information packets must be significantly reduced, which can negatively affect the noise immunity of the packages. For these purposes, digital wideband signals and orthogonal frequency division multiplexing (OFDM) are widely used; however, a number of significant drawbacks of these types of modulations often do not allow for the forming of a reliable channel for transmitting information, and for the navigation of mobile underwater systems. Unfortunately, this problem is not comprehensively presented in the literature. The authors propose to use the algorithm of digital data transmission based on the OFDM constant envelope multifrequency modulation (CE-OFDM) with differential symbol coding, which is suitable for non-stationary hydroacoustic environments. The presented algorithm, due to the minimization of the signal peak factor, can improve the signal-to-noise ratio at the receiving end by 5–10 dB, with a number of other advantages, over the classical OFDM method. The authors also numerically found groups of short binary sequences from 14–55 elements long, with the best autocorrelation properties for the formation of synchronization and navigation preambles with high noise immunity to Doppler and multipath effects that are characteristic of the hydroacoustic communication channel. The proposed algorithms were tested on the certain channel models on the Watermark acoustic simulator, as well as in shallow water at distances up to 2 km. Full article
Show Figures

Figure 1

19 pages, 4234 KB  
Article
Channel Estimation Algorithm Based on Parrot Optimizer in 5G Communication Systems
by Ke Sun and Jiwei Xu
Electronics 2024, 13(17), 3522; https://doi.org/10.3390/electronics13173522 - 5 Sep 2024
Cited by 3 | Viewed by 1944
Abstract
Accurate and efficient channel estimation (CE) is critical in the context of autonomous driving. This paper addresses the issue of orthogonal frequency-division multiplexing (OFDM) channel estimation in 5G communication systems by proposing a channel estimation model based on the Parrot Optimizer (PO). The [...] Read more.
Accurate and efficient channel estimation (CE) is critical in the context of autonomous driving. This paper addresses the issue of orthogonal frequency-division multiplexing (OFDM) channel estimation in 5G communication systems by proposing a channel estimation model based on the Parrot Optimizer (PO). The model optimizes for the minimum bit error rate (BER) and the minimum mean square error (MMSE) using the Parrot Optimizer to estimate the optimal channel characteristics. Simulation experiments compared the performance of PO-CE with the Least Squares (LS) method and the MMSE method under various signal-to-noise ratios (SNR) and modulation schemes. The results demonstrate that PO-CE’s performance approximates that of MMSE under high SNR conditions and significantly outperforms LS in the absence of prior information. The experiments specifically included scenarios with different modulation schemes (QPSK, 16QAM, 64QAM, and 256QAM) and pilot densities (1/3, 1/6, 1/9, and 1/12). The findings indicate that PO-CE has substantial potential for application in 5G channel estimation, offering an effective method for optimizing wireless communication systems. Full article
Show Figures

Figure 1

17 pages, 2124 KB  
Article
Time-Varying Channel Estimation Based on Distributed Compressed Sensing for OFDM Systems
by Yong Ding, Honggao Deng, Yuelei Xie, Haitao Wang and Shaoshuai Sun
Sensors 2024, 24(11), 3581; https://doi.org/10.3390/s24113581 - 1 Jun 2024
Cited by 1 | Viewed by 1673
Abstract
For orthogonal frequency division multiplexing (OFDM) systems in high-mobility scenarios, the estimation of time-varying multipath channels not only has a large error, which affects system performance, but also requires plenty of pilots, resulting in low spectral efficiency. To address these issues, we propose [...] Read more.
For orthogonal frequency division multiplexing (OFDM) systems in high-mobility scenarios, the estimation of time-varying multipath channels not only has a large error, which affects system performance, but also requires plenty of pilots, resulting in low spectral efficiency. To address these issues, we propose a time-varying multipath channel estimation method based on distributed compressed sensing and a multi-symbol complex exponential basis expansion model (MS-CE-BEM) by exploiting the temporal correlation and the joint delay sparsity of wideband wireless channels within the duration of multiple OFDM symbols. Furthermore, in the proposed method, a sparse pilot pattern with the self-cancellation of pilot intercarrier interference (ICI) is adopted to reduce the input parameter error of the MS-CE-BEM, and a symmetrical extension technique is introduced to reduce the modeling error. Simulation results show that, compared with existing methods, this proposed method has superior performances in channel estimation and spectrum utilization for sparse time-varying channels. Full article
Show Figures

Figure 1

15 pages, 3754 KB  
Article
Noise-Canceling Channel Estimation Schemes Based on the CIR Length Estimation for IEEE 802.11p/OFDM Systems
by Kyunbyoung Ko and Hanho Wang
Electronics 2024, 13(6), 1110; https://doi.org/10.3390/electronics13061110 - 18 Mar 2024
Cited by 1 | Viewed by 1405
Abstract
This paper investigates methods for noise-canceling channel estimation (NC-CE) to track rapid time-varying channels in IEEE 802.11p/orthogonal frequency division multiplexing (OFDM) systems. To this end, we introduce a novel three-step channel estimation technique based on the estimated length of the channel impulse response [...] Read more.
This paper investigates methods for noise-canceling channel estimation (NC-CE) to track rapid time-varying channels in IEEE 802.11p/orthogonal frequency division multiplexing (OFDM) systems. To this end, we introduce a novel three-step channel estimation technique based on the estimated length of the channel impulse response (CIR). This approach aims to surpass the performance of conventional designs that rely on constructed data pilots (CDPs). In the first step, we not only eliminate noise components but also estimate the channel frequency responses (CFRs) of virtual subcarriers for long preamble parts. Moving on to the second step, we incorporate a modified CDP method without a frequency-domain reliability test and interpolation, taking into account the CFRs of virtual subcarriers obtained at the previous OFDM symbol time. The final step can be implemented as the operation of the inverse fast Fourier transform (IFFT)/nulling/FFT to reduce noise components from the CFRs obtained in the second step and generate CFRs for virtual subcarriers to be used in the next symbol time. The results of our simulations validate the effectiveness of our proposed channel estimation schemes. Full article
(This article belongs to the Special Issue Advances in Wireless and Optical Communication Systems)
Show Figures

Figure 1

20 pages, 4395 KB  
Article
Discrete Fourier Transform with Denoise Model Based Least Square Wiener Channel Estimator for Channel Estimation in MIMO-OFDM
by Dhanasekaran S, SatheeshKumar Palanisamy, Fahima Hajjej, Osamah Ibrahim Khalaf, Ghaida Muttashar Abdulsahib and Ramalingam S
Entropy 2022, 24(11), 1601; https://doi.org/10.3390/e24111601 - 3 Nov 2022
Cited by 37 | Viewed by 4132
Abstract
Multiple-input Multiple-Output (MIMO) systems require orthogonal frequency division multiplexing to operate efficiently in multipath communication (OFDM). Channel estimation (C.E.) is used in channel conditions where time-varying features are required. The existing channel estimation techniques are highly complicated. A channel estimation algorithm is needed [...] Read more.
Multiple-input Multiple-Output (MIMO) systems require orthogonal frequency division multiplexing to operate efficiently in multipath communication (OFDM). Channel estimation (C.E.) is used in channel conditions where time-varying features are required. The existing channel estimation techniques are highly complicated. A channel estimation algorithm is needed to estimate the received signal’s correctness. In order to resolve this complexity in C.E. methodologies, this paper developed an Improved Channel Estimation Algorithm integrated with DFT-LS-WIENER (ICEA-DA). The Least Square (L.S.) and Minimum Mean Square Error (MMSE) algorithms also use the Discrete Fourier Transform (DFT)-based channel estimation method. The DFT-LS-WIENER channel estimation approach is recommended for better BER performance. The input signal is modulated in the transmitter module using the Quadrature Phase Shift Keying (QPSK) technique, pulse modeling, and least squares concepts. The L.S. Estimation technique needs the channel consistent throughout the estimation period. DFT joined with L.S. gives higher estimation precision and limits M.S.E. and BER. Experimental analysis of the proposed state-of-the-art method shows that DFT-LS-WIENER provides superior performance in terms of symbol error rate (S.E.R.), bit error rate (BER), channel capacity (CC), and peak signal-to-noise (PSNR). At 15 dB SNR, the proposed DFT-LS-WIENER techniques reduce the BER of 48.19%, 38.19%, 14.8%, and 14.03% compared to L.S., LS-DFT, MMSE, and MMSE-DFT. Compared to the conventional algorithm, the proposed DFT-LS-WIENER outperform them. Full article
(This article belongs to the Section Information Theory, Probability and Statistics)
Show Figures

Figure 1

28 pages, 8957 KB  
Article
A Novel Signal Design and Performance Analysis in NavCom Based on LEO Constellation
by Jing Ji, Yuting Liu, Wei Chen, Di Wu, Hongyang Lu and Jiantong Zhang
Sensors 2021, 21(24), 8235; https://doi.org/10.3390/s21248235 - 9 Dec 2021
Cited by 11 | Viewed by 3648
Abstract
The mega-launch of low Earth orbit satellites (LEOs) represents a critical opportunity to integrate navigation and communication (NavCom), but first, challenges related to signal design must be overcome. This article proposes a novel signal scheme named CE-OFDM-PM. Via research on the in-band or [...] Read more.
The mega-launch of low Earth orbit satellites (LEOs) represents a critical opportunity to integrate navigation and communication (NavCom), but first, challenges related to signal design must be overcome. This article proposes a novel signal scheme named CE-OFDM-PM. Via research on the in-band or adjacent band, it was found that the proposed signal scheme was suitable for S-band and had a wide normalized power spectrum density (PSD), high peak-to-side lobe ratio (PSR), and multiple peaks in autocorrelation. In an analysis of the simulation performance evaluation in navigation and communication, it is found that the proposed signal scheme has the potential for high accuracy, a code tracking accuracy of up to 0.85 m, a small mutual influence between the proposed signal scheme and other schemes, excellent anti-interference properties, and a better performance at both short and long distances in terms of its anti-multipath capability. Furthermore, the proposed signal scheme shows the ability to communicate between satellites and the ground and is outstanding in terms of its bit error rate (BER), CNR, and energy per bit to noise power spectral density ratio (Eb/N0). From the technical, theoretical, and application perspectives, our proposed signal scheme has potential as an alternative scheme in future BDS, PNTs, and even 5G/B5G. Full article
(This article belongs to the Special Issue Transmission Techniques for Future Global Mobile Systems)
Show Figures

Figure 1

9 pages, 2634 KB  
Article
Performance Evaluation of Highly Nonlinear Fiber (HNLF) Based Optical Phase Conjugation (OPC) in Long Haul Transmission of 640 Gbps 16-QAM CO-OFDM
by Jingjing Wang, Yongtao Du, Chunhao Liang, Zhong Li and Jing Fang
Photonics 2021, 8(2), 45; https://doi.org/10.3390/photonics8020045 - 10 Feb 2021
Cited by 5 | Viewed by 4279
Abstract
This paper presents the quantitative measurement through an experimental test of 640 Gbps 16-QAM coherent-optical orthogonal frequency-division multiplexing (CO-OFDM) over 800 km optical fiber with mid-link optical phase conjugation (OPC) using highly nonlinear fiber (HNLF). The first focus is the OPC parameter optimization, [...] Read more.
This paper presents the quantitative measurement through an experimental test of 640 Gbps 16-QAM coherent-optical orthogonal frequency-division multiplexing (CO-OFDM) over 800 km optical fiber with mid-link optical phase conjugation (OPC) using highly nonlinear fiber (HNLF). The first focus is the OPC parameter optimization, including the optimization of HNLF length and signal/pump power that inputs into OPC. Four different HNLFs, as the illustrative examples, are investigated. The second focus is to investigate the effects of fiber dispersion, nonlinearity, and amplified spontaneous emission (ASE) noise on the long-haul transmission of 16-QAM CO-OFDM signal, and the OPC compensation efficiency. The performance evaluation focuses on the conversion efficiency (CE), received signal constellation, Q-factor improvement, and bit error rate (BER) at the receiver end. Such end-to-end performance evaluation is important because the 16-QAM CO-OFDM signal status is heterogeneous and the mitigation of transmission impairments to the signal is still unclear. The OPC parametric optimization is achieved experimentally using commercially available HNLFs with different scenarios and the numerical results are interpreted in conjunction with simulations. Full article
(This article belongs to the Special Issue Recent Advances in the Study of Light Propagation in Optical Fibers)
Show Figures

Figure 1

13 pages, 3752 KB  
Article
Constant Envelope Modulation Techniques for Limited Power Millimeter Wave Links
by Yael Balal, Monika Pinchas and Yosef Pinhasi
Electronics 2019, 8(12), 1521; https://doi.org/10.3390/electronics8121521 - 11 Dec 2019
Cited by 2 | Viewed by 4427
Abstract
The demand for increased capacity and link availability for mobile communications requires the utilization of higher frequencies, such as millimeter waves at extremely high frequencies (EHFs) above 30 GHz. In this regime of frequencies, the waves are subjected to high atmospheric attenuation and [...] Read more.
The demand for increased capacity and link availability for mobile communications requires the utilization of higher frequencies, such as millimeter waves at extremely high frequencies (EHFs) above 30 GHz. In this regime of frequencies, the waves are subjected to high atmospheric attenuation and dispersion effects that lead to a degradation in communication reliability. The fact that solid-state millimeter and sub-millimeter wave sources are producing low power calls for effective signaling utilizing waveforms with a low peak to average power ratio (PAPR), such as constant envelope (CE) modulation. The CE techniques present a PAPR of 0 dB resulting in peak power transmission with high energy efficiency. The study of the performances of constant envelope orthogonal modulation techniques in the presence of co-channel interference is presented. The performance is evaluated in terms of the average symbol error rate (SER) using analytical results and simulations. The theory is carried out for the CE-M-ary time orthogonal (CE-MTO) and CE-orthogonal frequency division multiplexing (CE-OFDM), demonstrating comparable performances while leading to a simpler implementation than that of the CE-OFDM. Full article
(This article belongs to the Collection Millimeter and Terahertz Wireless Communications)
Show Figures

Figure 1

50 pages, 1162 KB  
Review
Review of Channel Estimation for Candidate Waveforms of Next Generation Networks
by Owoicho E. Ijiga, Olayinka O. Ogundile, Ayokunle D. Familua and Daniel J. J. Versfeld
Electronics 2019, 8(9), 956; https://doi.org/10.3390/electronics8090956 - 29 Aug 2019
Cited by 34 | Viewed by 7356
Abstract
The advancement in wireless communication applications encourages the use of effective and efficient channel estimation (CE) techniques because of the varying behaviour of the Rayleigh fading channel. In most cases, the emphasis of most proposed CE schemes is to improve the CE performance [...] Read more.
The advancement in wireless communication applications encourages the use of effective and efficient channel estimation (CE) techniques because of the varying behaviour of the Rayleigh fading channel. In most cases, the emphasis of most proposed CE schemes is to improve the CE performance and complexity for ensuring quality signal reception and improved system throughput. Candidate waveforms whose designs are based on filter bank multi-carrier (FBMC) modulation techniques such as filter bank orthogonal frequency division multiplexing based on offset quadrature amplitude modulation (OFDM-OQAM), universal filtered multicarrier (UFMC) and generalised frequency division multiplexing based on offset quadrature amplitude modulation (GFDM-OQAM) are no exception to the use of these proposed CE techniques in the literature. These schemes are considered as potential waveform candidates for the physical/media access control layer of the emerging fifth generation (5G) networks. Therefore, pinpoint CE techniques represent an important requirement for these waveforms to attain their full potentials. In this regard, this paper reviews the concept of CE as applicable to these waveforms as well as other waveform candidates under consideration in the emerging 5G networks. Since the design of the majority of the waveform candidates is filter based, a review of the general filter design considerations is presented in this paper. Secondly, we review general CE techniques for candidate waveforms of next generation networks and classify some of the studied CE techniques. In particular, we classify the CE schemes used in filter bank OFDM-OQAM and GFDM-OQAM based transceivers and present a performance comparison of some of these CE schemes. Besides, the paper reviews the performances of two linear CE schemes and three adaptive based CE schemes for two FBMC based waveform candidates assuming near perfect reconstruction (NPR) and non-perfect reconstruction (Non-PR) filter designs over slow and fast frequency selective Rayleigh fading channels. The results obtained are documented through computer simulations, where the performances of the studied CE schemes in terms of the normalised mean square error (NMSE) are analysed. Lastly, we summarise the findings of this work and suggest possible research directions in order to improve the potentials of the studied candidate waveforms over Rayleigh fading channels. Full article
(This article belongs to the Special Issue 5G Front-End Transceivers)
Show Figures

Figure 1

18 pages, 2303 KB  
Article
Multiuser Equalizer for Hybrid Massive MIMO mmWave CE-OFDM Systems
by Roberto Magueta, Sara Teodoro, Daniel Castanheira, Adão Silva, Rui Dinis and Atílio Gameiro
Appl. Sci. 2019, 9(16), 3363; https://doi.org/10.3390/app9163363 - 15 Aug 2019
Cited by 8 | Viewed by 3387
Abstract
This paper considers a multiuser broadband uplink massive multiple input multiple output (MIMO) millimeter-wave (mmWave) system. The constant envelope orthogonal frequency division multiplexing (CE-OFDM) is adopted as a modulation technique to allow an efficient power amplification, fundamental for mmWave based systems. Furthermore, a [...] Read more.
This paper considers a multiuser broadband uplink massive multiple input multiple output (MIMO) millimeter-wave (mmWave) system. The constant envelope orthogonal frequency division multiplexing (CE-OFDM) is adopted as a modulation technique to allow an efficient power amplification, fundamental for mmWave based systems. Furthermore, a hybrid architecture is considered at the user terminals (UTs) and base station (BS) to reduce the high cost and power consumption required by a full-digital architecture, which has a radio frequency (RF) chain per antenna. Both the design of the UT’s precoder and base station equalizer are considered in this work. With the aim of maximizing the beamforming gain between each UT and the BS, the precoder analog coefficients are computed as a function of the average angles of departure (AoD), which are assumed to be known at the UTs. At the BS, the analog part is derived by assuming a system with no multi-user interference. Then, a per carrier basis nonlinear/iterative multi-user equalizer, based on the iterative block decision feedback equalization (IB-DFE) principle is designed, to explicitly remove both the multi-user and residual inter carrier interferences, not tackled in the analog part. The equalizer design metric is the sum of the mean square error (MSE) of all subcarriers, whose minimization is shown to be equivalent to the minimization of a weighted error between the hybrid and the full digital equalizer matrices. The results show that the proposed hybrid multi-user equalizer has a performance close to the fully digital counterpart. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

12 pages, 3660 KB  
Article
Data-Aided Frequency Offset Estimation for CE-OFDM Broadband Satellite Systems
by Wang Cheng, Cao Yushi and Wang Weidong
Appl. Sci. 2019, 9(11), 2310; https://doi.org/10.3390/app9112310 - 5 Jun 2019
Cited by 5 | Viewed by 3460
Abstract
In recent years, the constant-envelope orthogonal frequency-division multiplexing (CE-OFDM) has been considered as a candidate waveform in broadband satellite systems as it has a 0-dB peak-to-average power ratio (PAPR). However, the carrier frequency offset (CFO) estimation scheme for CE-OFDM broadband satellite systems directly [...] Read more.
In recent years, the constant-envelope orthogonal frequency-division multiplexing (CE-OFDM) has been considered as a candidate waveform in broadband satellite systems as it has a 0-dB peak-to-average power ratio (PAPR). However, the carrier frequency offset (CFO) estimation scheme for CE-OFDM broadband satellite systems directly affects system performance. In this paper, we analyze the network architecture and the propagation environment of CE-OFDM broadband satellite systems, and we propose a data-aided CFO estimation strategy based on the frequency domain pilot symbols. The Cramer–Rao bound (CRB) of our CFO estimator is given by mathematical analysis, and the effect of the number of pilot symbols on the estimation performance is analyzed. The pilot symbol-based CFO estimator is composed of a phase demodulator and a discrete Fourier transform (DFT) module, and it can obtain a large estimation range under a small pilot overhead. The simulation results show that the CE-OFDM broadband satellite systems can achieve a good bit error rate (BER) performance by using the proposed strategy to estimate and compensate the CFO. Full article
(This article belongs to the Section Electrical, Electronics and Communications Engineering)
Show Figures

Figure 1

16 pages, 2846 KB  
Article
Channel Estimation and Data Detection Using Machine Learning for MIMO 5G Communication Systems in Fading Channel
by Sumitra N. Motade and Anju V. Kulkarni
Technologies 2018, 6(3), 72; https://doi.org/10.3390/technologies6030072 - 6 Aug 2018
Cited by 20 | Viewed by 9114
Abstract
In multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) systems, multi-user detection (MUD) algorithms play an important role in reducing the effect of multi-access interference (MAI). A combination of the estimation of channel and multi-user detection is proposed for eliminating various interferences and reduce the [...] Read more.
In multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) systems, multi-user detection (MUD) algorithms play an important role in reducing the effect of multi-access interference (MAI). A combination of the estimation of channel and multi-user detection is proposed for eliminating various interferences and reduce the bit error rate (BER). First, a novel sparse based k-nearest neighbor classifier is proposed to estimate the unknown activity factor at a high data rate. The active users are continuously detected and their data are decoded at the base station (BS) receiver. The activity detection considers both the pilot and data symbols. Second, an optimal pilot allocation method is suggested to select the minimum mutual coherence in the measurement matrix for optimal pilot placement. The suggested algorithm for designing pilot patterns significantly improves the results in terms of mean square error (MSE), symbol error rate (SER) and bit error rate for channel detection. An optimal pilot placement reduces the computational complexity and maximizes the accuracy of the system. The performance of the channel estimation (CE) and MUD for the proposed scheme was good as it provided significant results, which were validated through simulations. Full article
(This article belongs to the Special Issue Machine Learning for 5G Communications and Beyond)
Show Figures

Figure 1

Back to TopTop