Does Daytime Sleepiness Moderate the Relationship Between Working Memory and Academic Performance in Schoolchildren? A Pilot Study
Abstract
1. Introduction
1.1. Working Memory and School Performance
1.2. Daytime Sleepiness and Learning
1.3. Interplay Between Working Memory and Sleepiness
1.4. The Present Study
2. Results
2.1. Descriptive Statistics
2.2. Moderation Analysis: Does Daytime Sleepiness Alter the Effect of Working Memory on Academic Achievement
2.3. Moderation Analysis: Does the Moderating Role of Daytime Sleepiness Differ by Its Severity?
2.3.1. Baseline Differences by Daytime Sleepiness Group
2.3.2. Moderation Analysis by Daytime Sleepiness Severity
3. Discussion
3.1. Summary of Main Findings and Hypothesis Testing
3.2. Subgroup Analyses as Indirect Evidence of Interaction
3.3. Developmental Implications
3.4. Limitations and Future Directions
4. Materials and Methods
4.1. Participants
4.2. Measures
4.2.1. Academic Achievement
4.2.2. Working Memory Assessment
- CTB Total Score: the total number of correctly reproduced sequences.
- CTB Average Reaction Time (RT): the mean latency for correct responses, recorded automatically by the software.
4.2.3. Daytime Sleepiness
4.3. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PDSS | Pediatric Daytime Sleepiness Scale |
CTB | Corsi Block-Tapping Test |
RT | Reaction time |
IQR | Interquartile Range |
References
- Diaz, A.; Berger, R.; Valiente, C.; Eisenberg, N.; VanSchyndel, S.; Tao, C.; Spinrad, T.L.; Doane, L.D.; Thompson, M.S.; Silva, K.M.; et al. Children’s Sleep and Academic Achievement: The Moderating Role of Effortful Control. Int. J. Behav. Dev. 2017, 41, 275–284. [Google Scholar] [CrossRef]
- Kotyusov, A.I.; Kasanov, D.; Kosachenko, A.I.; Gashkova, A.S.; Pavlov, Y.G.; Malykh, S. Working Memory Capacity Depends on Attention Control, but Not Selective Attention. Behav. Sci. 2023, 13, 92. [Google Scholar] [CrossRef]
- Spiegel, J.A.; Goodrich, J.M.; Morris, B.M.; Osborne, C.M.; Lonigan, C.J. Relations Between Executive Functions and Academic Outcomes in Elementary School Children: A Meta-Analysis. Psychol. Bull. 2021, 147, 329–351. [Google Scholar] [CrossRef]
- Mehta, K.J. Effect of Sleep and Mood on Academic Performance—At Interface of Physiology, Psychology, and Education. Humanit. Soc. Sci. Commun. 2022, 9, 16. [Google Scholar] [CrossRef]
- Bacaro, V.; Carpentier, L.; Crocetti, E. Sleep Well, Study Well: A Systematic Review of Longitudinal Studies on the Interplay Between Sleep and School Experience in Adolescence. Int. J. Environ. Res. Public Health 2023, 20, 4829. [Google Scholar] [CrossRef] [PubMed]
- Sankalaite, S.; Huizinga, M.; Warreyn, P.; Dewandeleer, J.; Baeyens, D. The Association Between Working Memory, Teacher–Student Relationship, and Academic Performance in Primary School Children. Front. Psychol. 2023, 14, 1240741. [Google Scholar] [CrossRef]
- Hischa, V.; Moeller, K.; Seitz-Stein, K.; Niklas, F. Differential contributions of approximate number system, number line estimation, and working memory to mathematical skills in preschool and primary school. Psychol. Res. 2025, 89, 142. [Google Scholar] [CrossRef] [PubMed]
- Mashburn, C.A.; Burgoyne, A.P.; Engle, R.W. Working Memory, Intelligence, and Life Success. In Memory in Science for Society; Logie, R.H., Wen, Z.E., Gathercole, S.E., Cowan, N., Engle, R.W., Eds.; Oxford University Press: Oxford, UK, 2023; pp. 149–184. [Google Scholar] [CrossRef]
- Ahmed, S.F.; Ellis, A.; Ward, K.P.; Chaku, N.; Davis-Kean, P.E. Working Memory Development from Early Childhood to Adolescence Using Two Nationally Representative Samples. Dev. Psychol. 2022, 58, 1962–1973. [Google Scholar] [CrossRef]
- Tikhomirova, T.; Malykh, A.; Malykh, S. Predicting Academic Achievement with Cognitive Abilities: Cross-Sectional Study across School Education. Behav. Sci. 2020, 10, 158. [Google Scholar] [CrossRef] [PubMed]
- Ismatullina, V.; Voronin, I.; Shelemetieva, A.; Malykh, S. Cross-Cultural Study of Working Memory in Adolescents. Procedia—Soc. Behav. Sci. 2014, 146, 353–357. [Google Scholar] [CrossRef]
- Friso-van den Bos, I.; van der Ven, S.H.; Kroesbergen, E.H.; van Luit, J.E. Working memory and mathematics in primary school children: A meta-analysis. Educational Research Review 2013, 10, 29–44. [Google Scholar] [CrossRef]
- Kaddouri, H.; Amrani, A.; El-Mir, M. Working Memory and Academic Performance Among Fifth and Sixth-Graders. Int. J. Multidiscip. Res. 2025, 7. [Google Scholar] [CrossRef]
- Ahmadi, Z.; Omidvar, S. The Quality of Sleep and Daytime Sleepiness and Their Association with Quality of School Life and School Achievement Among Students. J. Educ. Health Promot. 2022, 11, 159. [Google Scholar] [CrossRef]
- Sivakumar, C.T.; Rajan, M.; Pasupathy, U.; Chidambaram, S.; Baskar, N. Effect of Sleep Habits on Academic Performance in Schoolchildren Age 6 to 12 Years: A Cross-Sectional Observation Study. J. Clin. Sleep Med. 2022, 18, 145–149. [Google Scholar] [CrossRef] [PubMed]
- Uccella, S.; Cordani, R.; Salfi, F.; Gorgoni, M.; Scarpelli, S.; Gemignani, A.; Geoffroy, P.A.; De Gennaro, L.; Palagini, L.; Ferrara, M.; et al. Sleep Deprivation and Insomnia in Adolescence: Implications for Mental Health. Brain Sci. 2023, 13, 569. [Google Scholar] [CrossRef]
- Centers for Disease Control and Prevention. FastStats: Sleep in Children. 2024. Available online: https://www.cdc.gov/sleep/data-research/facts-stats/children-sleep-facts-and-stats.html (accessed on 17 April 2025).
- Seo, W.S.; Sung, H.M.; Lee, J.H.; Koo, B.H.; Kim, M.J.; Kim, S.Y.; Choi, S.J.; Shin, I.H. Sleep Patterns and Their Age-Related Changes in Elementary-School Children. Sleep Med. 2010, 11, 569–575. [Google Scholar] [CrossRef]
- Mehta, K.J. Morning wake-time and the time of teaching/assessment session can influence test score. Humanit. Soc. Sci. Commun. 2025, 12, 213. [Google Scholar] [CrossRef]
- Horn, J.L.; Cattell, R.B. Age differences in fluid and crystallized intelligence. Acta Psychol. 1967, 26, 107–129. [Google Scholar] [CrossRef] [PubMed]
- Carroll, J.B. Human Cognitive Abilities: A Survey of Factor-Analytic Studies; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar] [CrossRef]
- Floyd, R.G.; Evans, J.J.; McGrew, K.S. Relations between measures of Cattell–Horn–Carroll (CHC) cognitive abilities and mathematics achievement across the school-age years. Psychol. Sch. 2007, 44, 563–581. [Google Scholar] [CrossRef]
- Peng, P.; Kievit, R.A. The Development of Academic Achievement and Cognitive Abilities: A Bidirectional Perspective. Child Dev. Perspect. 2020, 14, 15–20. [Google Scholar] [CrossRef]
- Peng, P.; Wang, T.; Wang, C.; Lin, X. A meta-analysis on the relation between fluid intelligence and reading/mathematics: Effects of tasks, age, and social economics status. Psychol. Bull. 2019, 145, 189–236. [Google Scholar] [CrossRef]
- Duckworth, A.L.; Seligman, M.E.P. Self-discipline gives girls the edge: Gender in self-discipline, grades, and achievement test scores. J. Educ. Psychol. 2006, 98, 198–208. [Google Scholar] [CrossRef]
- Else-Quest, N.M.; Hyde, J.S.; Linn, M.C. Cross-national patterns of gender differences in mathematics: A meta-analysis. Psychol. Bull. 2013, 139, 104–127. [Google Scholar] [CrossRef]
- Lenroot, R.K.; Giedd, J.N. Sex differences in the adolescent brain. Brain Cogn. 2010, 72, 46–55. [Google Scholar] [CrossRef]
- Tikhomirova, T.N.; Malykh, A.S.; Malykh, S.B. Visuospatial Working Memory Development across Years of Schooling. Psychol. Russ. State Art 2020, 13, 207–222. [Google Scholar] [CrossRef]
- Pagulayan, K.F.; Busch, R.M.; Medina, K.L.; Bartok, J.A.; Krikorian, R. Developmental Normative Data for the Corsi Block-Tapping Task. J. Clin. Exp. Neuropsychol. 2006, 28, 1043–1052. [Google Scholar] [CrossRef]
- Randler, C.; Kolomeichuk, S.N.; Morozov, A.V.; Petrashova, D.A.; Pozharskaya, V.V.; Martynova, A.A.; Korostovtseva, L.S.; Bochkarev, M.V.; Sviryaev, Y.V.; Polouektov, M.G.; et al. Psychometric properties of the Russian version of the Pediatric Daytime Sleepiness Scale (PDSS). Heliyon 2019, 5, e02134. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.; Barbosa, D.G.; Junior, G.J.F.; Andrade, R.D.; Silva, D.A.S.; Pelegrini, A.; Gomes Felden, É.P. Proposal of cutoff points for pediatric daytime sleepiness scale to identify excessive daytime sleepiness. Chronobiol. Int. 2017, 35, 303–311. [Google Scholar] [CrossRef] [PubMed]
- Kolomeychuk, S.N.; Morozov, A.V.; Petrashova, D.A.; Pozharskaya, V.V.; Stafeeva, E.B.; Vinogradova, I.A.; Bochkarev, M.B.; Tarasov, B.A. Daytime sleepiness and sleep parameters of children of the European North of the Russian Federation. Yakut Med. J. 2019, 3, 94–96. [Google Scholar] [CrossRef]
School Level | Male (N) | Female (N) | Total (N) |
---|---|---|---|
Middle school (11–15 y) | 193 | 170 | 363 |
High school (16–17 y) | 98 | 140 | 238 |
Total | 291 | 310 | 601 |
Variable | Mean | SD | Median | SE |
---|---|---|---|---|
Average Grade | 4.05 | 0.58 | 4 | 0.02 |
Language Grade | 3.93 | 0.64 | 4 | 0.03 |
Mathematics Grade | 3.94 | 0.75 | 4 | 0.03 |
Literature Grade | 4.29 | 0.64 | 4 | 0.03 |
CTB Total Score | 4.72 | 1.95 | 5 | 0.08 |
CTB Average RT | 4654.30 | 1513.19 | 4519 | 61.75 |
PDSS | 14.07 | 6.45 | 14 | 0.26 |
Variable | CTB Total Score | CTB Average RT | PDSS |
---|---|---|---|
Average Grade | 0.12 ** | −0.06 | −0.11 ** |
Language Grade | 0.11 ** | −0.06 | −0.08 |
Mathematics Grade | 0.14 *** | −0.10 * | −0.11 ** |
Literature Grade | 0.05 | 0.01 | −0.11 ** |
Predictor | B | SE | t | p |
---|---|---|---|---|
Intercept | 3.85 | 0.04 | 105.26 | <0.001 |
CTB Total Score | 0.06 | 0.02 | 2.58 | 0.010 |
PDSS | −0.10 | 0.02 | −4.34 | <0.001 |
CTB Average RT | −0.06 | 0.02 | −2.68 | 0.008 |
Sex (Female) | 0.33 | 0.05 | 7.05 | <0.001 |
School Level (High) | 0.09 | 0.05 | 1.94 | 0.052 |
CTB Total × PDSS | 0.01 | 0.02 | 0.29 | 0.772 |
PDSS × CTB Average RT | 0.03 | 0.02 | 1.24 | 0.215 |
Predictor | B | SE | t | p |
---|---|---|---|---|
Intercept | 3.66 | 0.05 | 78.06 | <0.001 |
CTB Total Score | 0.07 | 0.03 | 2.48 | 0.013 |
PDSS | −0.12 | 0.03 | −4.18 | <0.001 |
CTB Average RT | −0.10 | 0.03 | −3.30 | 0.001 |
Sex (Female) | 0.32 | 0.06 | 5.33 | <0.001 |
School Level (High) | 0.29 | 0.06 | 4.66 | <0.001 |
CTB Total × PDSS | −0.01 | 0.03 | −0.39 | 0.701 |
PDSS × CTB Average RT | 0.01 | 0.03 | 0.21 | 0.835 |
Predictor | B | SE | t | p |
---|---|---|---|---|
Intercept | 3.72 | 0.04 | 91.11 | <0.001 |
CTB Total Score | 0.07 | 0.03 | 2.68 | 0.008 |
PDSS | −0.09 | 0.03 | −3.37 | <0.001 |
CTB Average RT | −0.07 | 0.03 | −2.68 | 0.008 |
Sex (Female) | 0.38 | 0.05 | 7.38 | <0.001 |
School Level (High) | 0.03 | 0.05 | 0.59 | 0.554 |
CTB Total × PDSS | 0.00 | 0.03 | 0.01 | 0.992 |
PDSS × CTB Average RT | 0.04 | 0.03 | 1.58 | 0.115 |
Predictor | B | SE | t | p |
---|---|---|---|---|
Intercept | 4.17 | 0.04 | 99.97 | <0.001 |
CTB Total Score | 0.04 | 0.03 | 1.37 | 0.170 |
PDSS | −0.09 | 0.03 | −3.41 | <0.001 |
CTB Average RT | −0.02 | 0.03 | −0.71 | 0.478 |
Sex (Female) | 0.28 | 0.05 | 5.34 | <0.001 |
School Level (High) | −0.04 | 0.05 | −0.71 | 0.478 |
CTB Total × PDSS | 0.03 | 0.03 | 1.21 | 0.228 |
PDSS × CTB Average RT | 0.04 | 0.03 | 1.49 | 0.138 |
Variable | Normal Sleepiness | High Sleepiness | Test Statistic | p-Value | Effect Size |
---|---|---|---|---|---|
Age, M (SD) | 13.99 (2.00) | 14.45 (1.96) | t(517.0) = −2.76 | 0.006 | d = −0.23 |
CTB Total Score, M (SD) | 4.77 (1.95) | 4.63 (1.95) | t(509.7) = 0.86 | 0.393 | d = 0.07 |
CTB Average RT, M (SD) | 4763.69 (1526.33) | 4488.61 (1482.72) | t(519.8) = 2.20 | 0.028 | d = 0.14 |
Female, N (%) | 162 (44.8%) | 148 (61.9%) | χ2(1) = 16.32 | <0.001 | V = 0.17 |
High school, N (%) | 127 (35.1%) | 111 (46.4%) | χ2(1) = 7.30 | 0.007 | V = 0.11 |
Daytime Sleepiness | Normal (PDSS < 16, N = 362) | High (PDSS ≥ 16, N = 239) | ||||||
---|---|---|---|---|---|---|---|---|
Predictor | B | SE | t | p | B | SE | t | p |
Intercept | 3.91 | 0.06 | 64.11 | <0.001 | 3.85 | 0.09 | 43.01 | <0.001 |
CTB Total Score | 0.10 | 0.05 | 2.22 | 0.027 | 0.12 | 0.08 | 1.57 | 0.117 |
PDSS | −0.06 | 0.05 | −1.04 | 0.300 | −0.15 | 0.06 | −2.43 | 0.016 |
CTB Average RT | −0.07 | 0.04 | −1.66 | 0.098 | −0.09 | 0.08 | −1.10 | 0.271 |
Sex (Female) | 0.27 | 0.06 | 4.50 | <0.001 | 0.42 | 0.07 | 5.74 | <0.001 |
School Level (High) | 0.10 | 0.06 | 1.57 | 0.117 | 0.05 | 0.08 | 0.62 | 0.537 |
CTB Total × PDSS | 0.06 | 0.05 | 1.18 | 0.237 | −0.06 | 0.07 | −0.88 | 0.378 |
PDSS × CTB Average RT | 0.00 | 0.05 | 0.08 | 0.941 | 0.05 | 0.07 | 0.70 | 0.485 |
Daytime Sleepiness | Normal (PDSS < 16, N = 362) | High (PDSS ≥ 16, N = 239) | ||||||
---|---|---|---|---|---|---|---|---|
Predictor | B | SE | t | p | B | SE | t | p |
Intercept | 3.73 | 0.08 | 48.15 | <0.001 | 3.67 | 0.12 | 31.27 | <0.001 |
CTB Total Score | 0.12 | 0.06 | 2.01 | 0.045 | 0.07 | 0.10 | 0.66 | 0.511 |
PDSS | −0.05 | 0.07 | −0.80 | 0.426 | −0.15 | 0.08 | −1.88 | 0.061 |
CTB Average RT | −0.11 | 0.06 | −2.00 | 0.046 | −0.05 | 0.10 | −0.45 | 0.656 |
Sex (Female) | 0.29 | 0.08 | 3.78 | <0.001 | 0.36 | 0.10 | 3.73 | <0.001 |
School Level (High) | 0.29 | 0.08 | 3.63 | <0.001 | 0.25 | 0.10 | 2.48 | 0.014 |
CTB Total Score × PDSS | 0.03 | 0.07 | 0.51 | 0.608 | −0.02 | 0.09 | −0.18 | 0.855 |
PDSS × CTB Average RT | −0.01 | 0.07 | −0.16 | 0.875 | −0.04 | 0.09 | −0.46 | 0.644 |
Daytime Sleepiness | Normal (PDSS < 16, N = 362) | High (PDSS ≥ 16, N = 239) | ||||||
---|---|---|---|---|---|---|---|---|
Predictor | B | SE | t | p | B | SE | t | p |
Intercept | 3.73 | 0.07 | 54.06 | < 0.001 | 3.79 | 0.10 | 39.04 | < 0.001 |
CTB Total Score | 0.12 | 0.05 | 2.32 | 0.021 | 0.16 | 0.08 | 1.97 | 0.051 |
PDSS | −0.08 | 0.06 | −1.26 | 0.208 | −0.17 | 0.07 | −2.47 | 0.014 |
CTB Average RT | −0.08 | 0.05 | −1.58 | 0.115 | −0.13 | 0.08 | −1.51 | 0.131 |
Sex (Female) | 0.33 | 0.07 | 4.88 | < 0.001 | 0.48 | 0.08 | 6.04 | < 0.001 |
School Level (High) | 0.09 | 0.07 | 1.26 | 0.211 | −0.09 | 0.08 | −1.14 | 0.256 |
CTB Total × PDSS | 0.07 | 0.06 | 1.27 | 0.206 | −0.09 | 0.07 | −1.28 | 0.204 |
PDSS × CTB Average RT | 0.01 | 0.06 | 0.22 | 0.830 | 0.09 | 0.08 | 1.14 | 0.257 |
Daytime Sleepiness | Normal (PDSS < 16, N = 362) | High (PDSS ≥ 16, N = 239) | ||||||
---|---|---|---|---|---|---|---|---|
Predictor | B | SE | t | p | B | SE | t | p |
Intercept | 4.26 | 0.07 | 62.79 | <0.001 | 4.09 | 0.11 | 38.96 | <0.001 |
CTB Total Score | 0.07 | 0.05 | 1.33 | 0.184 | 0.13 | 0.09 | 1.47 | 0.143 |
PDSS | −0.04 | 0.06 | −0.60 | 0.547 | −0.13 | 0.07 | −1.84 | 0.068 |
CTB Average RT | −0.03 | 0.05 | −0.59 | 0.559 | −0.08 | 0.09 | −0.92 | 0.357 |
Sex (Female) | 0.19 | 0.07 | 2.86 | 0.005 | 0.43 | 0.09 | 4.94 | <0.001 |
School Level (High) | −0.08 | 0.07 | −1.19 | 0.235 | −0.01 | 0.09 | −0.13 | 0.896 |
CTB Total × PDSS | 0.08 | 0.06 | 1.32 | 0.189 | −0.07 | 0.08 | −0.88 | 0.382 |
PDSS × CTB Average RT | 0.01 | 0.06 | 0.16 | 0.871 | 0.11 | 0.08 | 1.26 | 0.210 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malykh, S.; Demareva, V. Does Daytime Sleepiness Moderate the Relationship Between Working Memory and Academic Performance in Schoolchildren? A Pilot Study. Clocks & Sleep 2025, 7, 57. https://doi.org/10.3390/clockssleep7040057
Malykh S, Demareva V. Does Daytime Sleepiness Moderate the Relationship Between Working Memory and Academic Performance in Schoolchildren? A Pilot Study. Clocks & Sleep. 2025; 7(4):57. https://doi.org/10.3390/clockssleep7040057
Chicago/Turabian StyleMalykh, Sergey, and Valeriia Demareva. 2025. "Does Daytime Sleepiness Moderate the Relationship Between Working Memory and Academic Performance in Schoolchildren? A Pilot Study" Clocks & Sleep 7, no. 4: 57. https://doi.org/10.3390/clockssleep7040057
APA StyleMalykh, S., & Demareva, V. (2025). Does Daytime Sleepiness Moderate the Relationship Between Working Memory and Academic Performance in Schoolchildren? A Pilot Study. Clocks & Sleep, 7(4), 57. https://doi.org/10.3390/clockssleep7040057