Role of Iron Phthalocyanine Coordination in Catecholamines Detection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Solutions
2.2. Langmuir Films
2.3. SERS Analysis
2.4. Catecholamines Detection by Cyclic Voltammetry
3. Results and Discussion
3.1. SERS Analysis
FePc | FePc+EP | FePc+DA | FePc+LDA | FePc+Ty | Assignments |
---|---|---|---|---|---|
------ | ------ | 1386 | ------ | ------ | NH2 antisymmetric deformation [28], C-H2 torcion and bending [37] |
1403 | 1403 | ------ | 1403 | 1403 | CNC stretching, pyrrole expansion, and CH in-plane bending [16] |
1429 | 1429 | 1429 | 1429 | 1429 | CH2 in-plane deformation [28] |
1450 | 1450 | 1450 | 1450 | 1450 | C-O-H in-plane deformation, C-C stretching [37] |
------ | ------ | 1498 | ------ | 1498 | C-C stretching + C-H in-plane deformation mode + C-OH stretching [38] |
1517 | 1517 | 1517 | 1517 | 1517 | CNC stretching and C-H deformation [28,29] |
1529 | 1529 | Stretching of the catechol group [28,29] | |||
1532 | 1532 | 1532 | [6,7] CNC stretching, C-H deformation [16,35,36] |
3.2. Electrochemical Measurements
3.3. Application in Drug Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
References
- Deng, Y.-H.; Wang, H.; Zhang, H.-S. Determination of amino acid neurotransmitters in human cerebrospinal fluid and saliva by capillary electrophoresis with laser-induced fluorescence detection. J. Sep. Sci. 2008, 31, 3088–3097. [Google Scholar] [CrossRef]
- Thomas Broome, S.; Louangaphay, K.; Keay, K.; Leggio, G.; Musumeci, G.; Castorina, A. Dopamine: An immune transmitter. Neural Regen. Res. 2020, 15, 2173. [Google Scholar] [CrossRef] [PubMed]
- Pan, X.; Kaminga, A.C.; Jia, P.; Wen, S.W.; Acheampong, K.; Liu, A. Catecholamines in Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Front. Aging Neurosci. 2020, 12. [Google Scholar] [CrossRef]
- Sarkar, C.; Basu, B.; Chakroborty, D.; Dasgupta, P.S.; Basu, S. The immunoregulatory role of dopamine: An update. Brain. Behav. Immun. 2010, 24, 525–528. [Google Scholar] [CrossRef] [Green Version]
- Hašková, P.; Koubková, L.; Vávrová, A.; Macková, E.; Hrušková, K.; Kovaříková, P.; Vávrová, K.; Šimůnek, T. Comparison of various iron chelators used in clinical practice as protecting agents against catecholamine-induced oxidative injury and cardiotoxicity. Toxicology 2011, 289, 122–131. [Google Scholar] [CrossRef] [PubMed]
- Oni, J.; Nyokong, T. Interaction between iron(II) tetrasulfophthalocyanine and the neurotransmitters, serotonin and dopamine. Polyhedron 2000, 19, 1355–1361. [Google Scholar] [CrossRef]
- Sundar, S.; Venkatachalam, G.; Kwon, S. Sol-Gel Mediated Greener Synthesis of γ-Fe2O3 Nanostructures for the Selective and Sensitive Determination of Uric Acid and Dopamine. Catalysts 2018, 8, 512. [Google Scholar] [CrossRef] [Green Version]
- Ranku, M.N.; Uwaya, G.E.; Fayemi, O.E. Electrochemical Detection of Dopamine at Fe3O4/SPEEK Modified Electrode. Molecules 2021, 26, 5357. [Google Scholar] [CrossRef]
- Fan, Z.; Wang, M.; Wu, S.; Wang, H.; Li, J.; Liu, L.; Rong, J.; Tong, Z.; Zhang, X. A novel nanotube based on self-assembled iron porphyrin/tantalum tungstate composite for electrochemical detection of dopamine. J. Mater. Sci. 2020, 55, 7833–7842. [Google Scholar] [CrossRef]
- Wang, H.; Cao, T.; Wu, S.; Wang, S.; Yan, C.; Wang, Z.; Zhang, X.; Tong, Z. Synthesis of Novel Iron Porphyrin/Titanoniobate Nanocomposite for Electrochemical Detection of Uric Acid. J. Electrochem. Soc. 2021, 168, 077509. [Google Scholar] [CrossRef]
- Martin, C.S.; Alessio, P.; Crespilho, F.N.; Brett, C.M.A.; Constantino, C.J.L. Influence of the supramolecular arrangement of iron phthalocyanine thin films on catecholamine oxidation. J. Electroanal. Chem. 2019, 836, 7–15. [Google Scholar] [CrossRef]
- Martin, C.S.; Gouveia-Caridade, C.; Crespilho, F.N.; Constantino, C.J.L.; Brett, C.M.A. Iron Phthalocyanine Electrodeposited Films: Characterization and Influence on Dopamine Oxidation. J. Phys. Chem. C 2016, 120, 15698–15706. [Google Scholar] [CrossRef]
- Keshavananda Prabhu, C.P.; Nemakal, M.; Aralekallu, S.; Mohammed, I.; Palanna, M.; Sajjan, V.A.; Akshitha, D.; Sannegowda, L.K. A comparative study of carboxylic acid and benzimidazole phthalocyanines and their surface modification for dopamine sensing. J. Electroanal. Chem. 2019, 847, 113262. [Google Scholar] [CrossRef]
- Andersen, A.; Chen, Y.; Birkedal, H. Bioinspired Metal—Polyphenol Materials: Self-Healing and Beyond. Biomimetics 2019, 4, 30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, K.; Liu, K.; An, P.; Li, H.; Lin, Y.; Hu, J.; Jia, C.; Fu, J.; Li, H.; Liu, H.; et al. Iron phthalocyanine with coordination induced electronic localization to boost oxygen reduction reaction. Nat. Commun. 2020, 11, 4173. [Google Scholar] [CrossRef]
- Alessio, P.; Rodríguez-Méndez, M.L.; De Saja Saez, J.A.; Constantino, C.J.L. Iron phthalocyanine in non-aqueous medium forming layer-by-layer films: Growth mechanism, molecular architecture and applications. Phys. Chem. Chem. Phys. 2010, 12, 3972–3983. [Google Scholar] [CrossRef]
- Coates, M.; Nyokong, T. Characterization of glassy carbon electrodes modified with carbon nanotubes and iron phthalocyanine through grafting and click chemistry. Electrochim. Acta 2013, 91, 158–165. [Google Scholar] [CrossRef]
- Rubira, R.J.G.; Aoki, P.H.B.; Constantino, C.J.L.; Alessio, P. Supramolecular architectures of iron phthalocyanine Langmuir-Blodgett films: The role played by the solution solvents. Appl. Surf. Sci. 2017, 416, 482–491. [Google Scholar] [CrossRef] [Green Version]
- Alessio, P.; Pavinatto, F.J.; Oliveira, O.N., Jr.; De Saja Saez, J.A.; Constantino, C.J.L.; Rodríguez-Méndez, M.L. Detection of catechol using mixed Langmuir–Blodgett films of a phospholipid and phthalocyanines as voltammetric sensors. Analyst 2010, 135, 2591. [Google Scholar] [CrossRef]
- Phan, M.D.; Lee, J.; Shin, K. Collapsed States of Langmuir Monolayers. J. Oleo Sci. 2016, 65, 385–397. [Google Scholar] [CrossRef] [Green Version]
- Jiao, T.; Xing, R.; Zhang, Q.; Lv, Y.; Zhou, J.; Gao, F. Self-Assembly, Interfacial Nanostructure, and Supramolecular Chirality of the Langmuir-Blodgett Films of Some Schiff Base Derivatives without Alkyl Chain. J. Nanomater. 2013, 2013, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Jin, B.; Wang, X.; Lei, S.; Shi, Z.; Zhao, J.; Liu, Q.; Peng, R. The mono(catecholamine) derivatives as iron chelators: Synthesis, solution thermodynamic stability and antioxidant properties research. R. Soc. Open Sci. 2018, 5, 171492. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dreyer, D.R.; Miller, D.J.; Freeman, B.D.; Paul, D.R.; Bielawski, C.W. Elucidating the Structure of Poly(dopamine). Langmuir 2012, 28, 6428–6435. [Google Scholar] [CrossRef]
- Petran, A.; Mrówczyński, R.; Filip, C.; Turcu, R.; Liebscher, J. Melanin-like polydopa amides—Synthesis and application in functionalization of magnetic nanoparticles. Polym. Chem. 2015, 6, 2139–2149. [Google Scholar] [CrossRef]
- Sugumaran, M. Reactivities of Quinone Methides versus o-Quinones in Catecholamine Metabolism and Eumelanin Biosynthesis. Int. J. Mol. Sci. 2016, 17, 1576. [Google Scholar] [CrossRef] [Green Version]
- Zucolotto, V.; Ferreira, M.; Cordeiro, M.R.; Constantino, C.J.L.; Balogh, D.T.; Zanatta, A.R.; Moreira, W.C.; Oliveira, O.N. Unusual interactions binding iron tetrasulfonated phthalocyanine and poly(allylamine hydrochloride) in layer-by-layer films. J. Phys. Chem. B 2003, 107, 3733–3737. [Google Scholar] [CrossRef]
- Wöhrle, D. Phthalocyanines: Properties and Applications; Leznoff, C.C., Lever, A.B.P., Weinheim, V.C.H., Eds.; Available online: https://onlinelibrary.wiley.com/doi/abs/10.1002/adma.19930051217 (accessed on 1 November 2021). [CrossRef]
- Figueiredo, M.L.B.; Martin, C.S.; Furini, L.N.; Rubira, R.J.G.; Batagin-Neto, A.; Alessio, P.; Constantino, C.J.L. Surface-enhanced Raman scattering for dopamine in Ag colloid: Adsorption mechanism and detection in the presence of interfering species. Appl. Surf. Sci. 2020, 522, 146466. [Google Scholar] [CrossRef]
- Qin, L.; Li, X.; Kang, S.Z.; Mu, J. Gold nanoparticles conjugated dopamine as sensing platform for SERS detection. Colloids Surf. B Biointerfaces 2015, 126, 210–216. [Google Scholar] [CrossRef] [PubMed]
- Youn, M.Y.; Kim, Y.; Lee, N.S. Raman Spectroscopic Study of Monodentate Dopamine Adsorbed on Silver and Copper Adatoms. Bull. Korean Chem. Soc. 1997, 18, 1314–1316. [Google Scholar]
- Feng, J.; Fan, H.; Zha, D.; Wang, L.; Jin, Z. Characterizations of the Formation of Polydopamine-Coated Halloysite Nanotubes in Various pH Environments. Langmuir 2016, 32, 10377–10386. [Google Scholar] [CrossRef]
- Shi, C.-X.; Chen, Z.-P.; Chen, Y.; Liu, Q.; Yu, R.-Q. Quantification of dopamine in biological samples by surface-enhanced Raman spectroscopy: Comparison of different calibration models. Chemom. Intell. Lab. Syst. 2017, 169, 87–93. [Google Scholar] [CrossRef]
- Rubira, R.J.G.; Camacho, S.A.; Martin, C.S.; Mejía-Salazar, J.R.; Gómez, F.R.; da Silva, R.R.; de Oliveira Junior, O.N.; Alessio, P.; Constantino, C.J.L. Designing silver nanoparticles for detecting levodopa (3,4-dihydroxyphenylalanine, l-dopa) using surface-enhanced raman scattering (SERS). Sensors 2020, 20, 15. [Google Scholar] [CrossRef] [Green Version]
- Cao, X.; Qin, M.; Li, P.; Zhou, B.; Tang, X.; Ge, M.; Yang, L.; Liu, J. Probing catecholamine neurotransmitters based on iron-coordination surface-enhanced resonance Raman spectroscopy label. Sens. Actuators B Chem. 2018, 268, 350–358. [Google Scholar] [CrossRef]
- Aroca, R.; Thedchanamoorthy, A. Vibrational Studies of Molecular Organization in Evaporated Phthalocyanine Thin Solid Films. Chem. Mater. 1995, 7, 69–74. [Google Scholar] [CrossRef]
- Liu, Z.; Zhang, X.; Zhang, Y.; Jiang, J. Theoretical investigation of the molecular, electronic structures and vibrational spectra of a series of first transition metal phthalocyanines. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2007, 67, 1232–1246. [Google Scholar] [CrossRef]
- Park, S.K.; Lee, C.K.; Lee, S.H.; Lee, N.S. Vibrational analysis of ferrocyanide complex ion based on density functional force field. Bull. Korean Chem. Soc. 2002, 23, 253–261. [Google Scholar] [CrossRef] [Green Version]
- Jha, O.; Yadav, T.K.; Yadav, R.A. Structural and vibrational study of a neurotransmitter molecule: Dopamine [4-(2-aminoethyl) benzene-1,2-diol]. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2018, 189, 473–484. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.S.; Alessio, P.; Crespilho, F.N.; Constantino, C.J.L. Supramolecular Arrangement of Iron Phthalocyanine in Langmuir-Schaefer and Electrodeposited Thin Films. J. Nanosci. Nanotechnol. 2018, 18, 3206–3217. [Google Scholar] [CrossRef]
- Cheng, H.; Qiu, H.; Zhu, Z.; Li, M.; Shi, Z. Investigation of the electrochemical behavior of dopamine at electrodes modified with ferrocene-filled double-walled carbon nanotubes. Electrochim. Acta 2012, 63, 83–88. [Google Scholar] [CrossRef]
- Martin, C.S.; Alessio, P. Analysis of Polyphenolic Content in Teas Using Sensors. In Safety Issues in Beverage Production; Elsevier: Amsterdam, The Netherlands, 2020; pp. 359–397. [Google Scholar]
- Ogura, K.; Kobayashi, M.; Nakayama, M.; Miho, Y. In-situ FTIR studies on the electrochemical oxidation of histidine and tyrosine. J. Electroanal. Chem. 1999, 463, 218–223. [Google Scholar] [CrossRef]
- Enache, T.A.; Oliveira-Brett, A.M. Phenol and para-substituted phenols electrochemical oxidation pathways. J. Electroanal. Chem. 2011, 655, 9–16. [Google Scholar] [CrossRef]
- Pérez-Ortiz, M.; Bollo, S.; Zapata-Urzúa, C.; Yáñez, C.; Álvarez-Lueje, A. Voltammetric study and direct analytical determination of the antiparkinson drug benserazide. Anal. Lett. 2011, 44, 1683–1698. [Google Scholar] [CrossRef]
- Wang, J.; Zhou, Y.; Liang, J.; He, P.G.; Fang, Y.Z. Determination of Levodopa and Benserazide Hydrochloride in Pharmaceutical Formulations by CZE with Amperometric Detection. Chromatographia 2005, 61, 265–270. [Google Scholar] [CrossRef]
- Ensafi, A.A.; Arabzadeh, A.; Karimi-Maleh, H. Sequential determination of benserazide and levodopa by voltammetric method using chloranil as a mediator. J. Braz. Chem. Soc. 2010, 21, 1572–1580. [Google Scholar] [CrossRef] [Green Version]
- Zapata-Urzúa, C.; Pérez-Ortiz, M.; Bravo, M.; Olivieri, A.C.; Álvarez-Lueje, A. Simultaneous voltammetric determination of levodopa, carbidopa and benserazide in pharmaceuticals using multivariate calibration. Talanta 2010, 82, 962–968. [Google Scholar] [CrossRef] [PubMed]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martin, C.S.; Rubira, R.J.G.; Silva, J.N.; Aléssio, P. Role of Iron Phthalocyanine Coordination in Catecholamines Detection. Surfaces 2021, 4, 323-335. https://doi.org/10.3390/surfaces4040027
Martin CS, Rubira RJG, Silva JN, Aléssio P. Role of Iron Phthalocyanine Coordination in Catecholamines Detection. Surfaces. 2021; 4(4):323-335. https://doi.org/10.3390/surfaces4040027
Chicago/Turabian StyleMartin, Cibely S., Rafael J. G. Rubira, Jaqueline N. Silva, and Priscila Aléssio. 2021. "Role of Iron Phthalocyanine Coordination in Catecholamines Detection" Surfaces 4, no. 4: 323-335. https://doi.org/10.3390/surfaces4040027
APA StyleMartin, C. S., Rubira, R. J. G., Silva, J. N., & Aléssio, P. (2021). Role of Iron Phthalocyanine Coordination in Catecholamines Detection. Surfaces, 4(4), 323-335. https://doi.org/10.3390/surfaces4040027