Towards the Definition of Guidelines for the Conservation of Mural Paintings in Hypogea
Abstract
1. Introduction
2. Description of the Review’s Structure and Content
- (I)
- Identification of prevailing damage factors.
- (II)
- Examination of possible risk-mitigation strategies and their limitations.
- (III)
- Analysis of the interaction between residual risk and logistical aspects of restoration-site organization.
- (IV)
- Assessment of residual risk’s impact on the selection of restoration materials and methods.
3. Identification of Prevailing Damage Factors in Confined and Unconfined Hypogea
4. Risk Mitigation Strategies and Their Limits: Permanence of Residual Risk
5. Residual Risks and Their Impact on Logistic Organization of Hypogean Worksites
6. Residual Risks and Their Impact on Restoration Procedures: Approaches and Materials, Past and Present
6.1. Historical Overview on Different Approaches to Conservation of Mural Paintings in Hypogean Environments in Italy: ICR’s Expertise
6.2. Materials for Restoration in Hypogean Environment: Issues and Requirements
6.2.1. Injection Grouting
6.2.2. Disinfection
6.2.3. Consolidation
6.2.4. Infilling
| Issue to Be Addressed | Related Mortar Requirement | Testing Method |
|---|---|---|
| Water vapor flow | Appropriate permeability | Water vapor permeability [161] |
| Condensation | Appropriate porosity | Water absorption by contact sponge [160] |
| High water content of materials | Appropriate porosity | Water absorption by capillarity [203] Mercury Intrusion Porosimetry(MIP) [204] |
| Salt crystallization | Appropriate porosity | Salt Crystallization Resistance [205] (adapted for specific mortar testing conditions) |
| Biodeterioration | Appropriate drying rate | Drying properties [206] Bioreceptivity assessment |
| Absence of organic additives | / | |
| Disaggregation of historic mortars | Appropriate mechanical strength | Flexural and compressive strength of hardened mortar [207] |
| Adhesive strength on substrates [208] |
6.2.5. Retouching
7. Conclusions
- the logistical organization of the restoration worksite,
- procedural requirements during conservation operations,
- the selection of materials used in restoration treatments.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
| ICR | Central Institute for Restoration—Italian Ministry of Culture |
| AFICR | Photographic Archive of the Central Institute for Restoration |
| PCAS | Pontificia Commissione di Archeologia Sacra |
References
- Geneste, J.-M.; Bardisa, M. The Conservation of Chauvet Cave, France. The Conservation, Research Organization and the Diffusion of Knowledge of a Cave Inaccessible to the Public. In The Conservation of Subterranean Cultural Heritage; CRC Press: Leiden, The Netherlands, 2014; pp. 173–183. [Google Scholar]
- Lasheras, J.A.; de las Heras, C.; Prada, A. Altamira and Its Future. In The Conservation of Subterranean Cultural Heritage; CRC Press: Leiden, The Netherlands, 2014; pp. 145–164. [Google Scholar]
- Cuzman, O.A.; Tapete, D.; Fratini, F.; Mazzei, B.; Riminesi, C.; Tiano, P. Assessing and Facing the Biodeteriogenic Presence Developed in the Roman Catacombs of Santi Marco, Marcelliano e Damaso, Italy. Eur. J. Sci. Theol. 2014, 10, 185–197. [Google Scholar]
- Nugari, M.P.; Pietrini, A.M.; Caneva, G.; Imperi, F.; Visca, P. Biodeterioration of Mural Paintings in a Rocky Habitat: The Crypt of the Original Sin (Matera, Italy). Int. Biodeterior. Biodegrad. 2009, 63, 705–711. [Google Scholar] [CrossRef]
- Marzano, A. The Roman Villa in Positano and the Phenomenon of the Villae Maritimae. In The Otium Villa; Opera Edizioni: Salerno, Italy, 2017; pp. 183–192. [Google Scholar]
- Farinella, V. The Domus Aurea Book; Electa: Milano, Italy, 2020. [Google Scholar]
- Bixio, R.; De Pascale, A.; Galeazzi, C.; Parise, M. Rupestrian Works and Artificial Cavities: Categories of Construction Techniques. J. Archit. Eng. Res. 2023, 4, 59–68. [Google Scholar] [CrossRef]
- Accardo, G.; Cacace, C.; Rinaldi, R. Ipotesi Fisiche per La Conservazione Degli Ambienti Ipogei. In Manutenzione e Conservazione del Costruito fra Tradizione ed Innovazione, Proceedings of the Convegno di Studi, Bressanone, Italy, 24–27 June 1986; Libreria Progetto Editore: Padova, Italy, 1986; pp. 655–671. [Google Scholar]
- Scatigno, C.; Gaudenzi, S.; Sammartino, M.P.; Visco, G. A Microclimate Study on Hypogea Environments of Ancient Roman Building. Sci. Total Environ. 2016, 566–567, 298–305. [Google Scholar] [CrossRef]
- Hu, X.; Wu, R.; Li, Y.; Xie, H.; Zhang, Z.; Hokoi, S.; Su, B. Impact of Opening the Entrance on Cave Temple Murals in Different Climate Zones for Preventive Conservation. npj Herit. Sci. 2025, 13, 100. [Google Scholar] [CrossRef]
- Torraca, G. Environmental Protection of Mural Paintings in Caves. In Proceedings of the International Symposium on the Conservation and Restoration of Cultural Property, Conservation and Restoration of Mural Paintings (I), Tokyo, Japan, 17–21 November 1983. [Google Scholar]
- Xia, C.; Liu, D.; Kong, Z.; Xie, H.; Mu, B.; Hokoi, S.; Li, Y. Spatial and Temporal Changes in Microclimate Affect Disease Distribution in Two Ancient Tombs of Southern Tang Dynasty. Heliyon 2023, 9, e18054. [Google Scholar] [CrossRef]
- Corzo, M.A.; Afshar, M. Art and Eternity: The Nefertari Wall Paintings Conservation Project 1986–1992; Tien Wah Press: Singapore, 1993. [Google Scholar]
- Cecchini, A. Le Tombe Dipinte di Tarquinia: Vicenda Conservativa, Restauri, Tecnica di Esecuzione; Nardini Editore: Firenze, Italy, 2023. [Google Scholar]
- Yalçinkaya, U. Guidelines and Recommendations for the Conservation and Maintenance of Mural Paintings in Subterranean Environments. In Proceedings of the UNESCO Expert Workshop on Conservation of Mural Paintings: Access, Research, Conservation, Berlin, Germany, 2–4 June 2015. [Google Scholar]
- Saiz-Jimenez, C. The Conservation of Subterranean Cultural Heritage; CRC Press: Boca Raton, FL, USA, 2014; ISBN 978-1-138-02694-0. [Google Scholar]
- Danzl, T.; Exner, M.; Rüber-Schütte, E. Wandmalereien in Krypten, Grotten, Katakomben: Zur Konservierung Gefasster Oberflächen in Umweltgeschädigten Räumen = Wallpaintings in Crypts, Grottoes, Catacombs: Strategies for the Conservation of Coated Surfaces in Damp Environment, Quedlinburg, Germany, 3–6 November 2011. Available online: https://www.researchgate.net/profile/Sibylla-Tringham/publication/258775333_Passive_and_remedial_approaches_to_salt_damage_and_biodeterioration_of_wall_paintings_and_monuments_in_the_Crypt_of_the_Grand_Masters_St_John%27s_Co-Cathedral_Valletta/links/0046352cfcf59614af000000/Passive-and-remedial-approaches-to-salt-damage-and-biodeterioration-of-wall-paintings-and-monuments-in-the-Crypt-of-the-Grand-Masters-St-Johns-Co-Cathedral-Valletta.pdf (accessed on 2 November 2025).
- Emoto, Y. (Ed.) International Symposium on the Conservation and Restoration of Cultural Property, Conservation and Restoration of Mural Paintings (I); Tokyo, Japan, 17–21 November 1983; Tokyo National Research Institute of Cultural Properties: Tokyo, Japan, 1984. [Google Scholar]
- Caneva, G.; Bartoli, F.; Fontani, M.; Mazzeschi, D.; Visca, P. Changes in Biodeterioration Patterns of Mural Paintings: Multi-Temporal Mapping for a Preventive Conservation Strategy in the Crypt of the Original Sin (Matera, Italy). J. Cult. Herit. 2019, 40, 59–68. [Google Scholar] [CrossRef]
- Albero, S.; Giavarini, C.; Santarelli, M.L.; Vodret, A. CFD Modeling for the Conservation of the Gilded Vault Hall in the Domus Aurea. J. Cult. Herit. 2004, 5, 197–203. [Google Scholar] [CrossRef]
- Frasca, F.; Verticchio, E.; Caratelli, A.; Bertolin, C.; Camuffo, D.; Siani, A.M. A Comprehensive Study of the Microclimate-Induced Conservation Risks in Hypogeal Sites: The Mithraeum of the Baths of Caracalla (Rome). Sensors 2020, 20, 3310. [Google Scholar] [CrossRef]
- Visco, G.; Plattner, S.H.; Fortini, P.; Sammartino, M. A Multivariate Approach for a Comparison of Big Data Matrices. Case Study: Thermo-Hygrometric Monitoring inside the Carcer Tullianum (Rome) in the Absence and in the Presence of Visitors. Environ. Sci. Pollut. Res. 2017, 24, 13990–14004. [Google Scholar] [CrossRef] [PubMed]
- Bruno, L.; Bellezza, S.; De Leo, F.; Urzì, C. A Study for Monitoring and Conservation in the Roman Catacombs of St. Callistus and Domitilla, Rome (Italy). In The Conservation of Subterranean Cultural Heritage; CRC Press: Leiden, The Netherlands, 2014; pp. 37–44. [Google Scholar]
- Luvidi, L.; Prestileo, F.; De Paoli, M.; Riminesi, C.; Manganelli Del Fà, R.; Magrini, D.; Fratini, F. Diagnostics and Monitoring to Preserve a Hypogeum Site: The Case of the Mithraeum of Marino Laziale (Rome). Heritage 2021, 4, 4264–4285. [Google Scholar] [CrossRef]
- D’ Agostino, D.; Congedo, P.M.; Cataldo, R. Ventilation Control Using Computational Fluid-Dynamics (CFD) Modelling for Cultural Buildings Conservation. Procedia Chem. 2013, 8, 83–91. [Google Scholar] [CrossRef]
- Giavarini, C. Domus Aurea: The Conservation Project. J. Cult. Herit. 2001, 2, 217–228. [Google Scholar] [CrossRef]
- Schwartzbaum, P.M.; Massari, I.; Pignatelli, G.; Giantomassi, C. Approaches to the Conservation of Mural Paintings in Underground Structures. Case Studies of Recent Projects by ICCROM Consultants and Staff. In Proceedings of the International Symposium on the Conservation and Restoration of Cultural Property, Conservation and Restoration of Mural Paintings (I), Tokyo, Japan, 17–21 November 1983; Tokyo National Research Institute of Cultural Properties: Tokyo, Japan, 1984; pp. 41–58. [Google Scholar]
- Massari, I. Some Aspects of Humidity Protection in Historic Buildings. In Proceedings of the International Symposium on the Conservation and Restoration of Cultural Property-Conservation and Restoration of Mural Paintings (II), Tokyo, Japan, 18–21 November 1984; Tokyo National Research Institute of Cultural Properties: Tokyo, Japan, 1985; pp. 79–102. [Google Scholar]
- Cavezzali, D.; Giovagnoli, A.; Giani, E.; Mazzone, B.; Cacace, C. Domus Aurea Neronis, il restauro degli affreschi della Sala delle Maschere e del Corridoio N. 131: Un intervento sperimentale di conservazione in ambiente ipogeo. In Gli effetti dell’acqua sui beni culturali, valutazioni, critiche e modalità di verifica. In Proceedings of the Scienza e Beni Culturali XXXVI° Convegno Internazionale, Giornate di Studi Internazionali, Venice, Italy, 17–19 November 2020; Arcadia Ricerche: Venice, Italy, 2020. [Google Scholar]
- Gabrielli, N.; Zander, P. La Necropoli Sotto La Basilica Di San Pietro in Vaticano: Interventi Conservativi e Opere Di Manutenzione. In Kermes: La Rivista del Restauro; Nardini Editore: Firenze, Italy, 2007; pp. 53–66. [Google Scholar]
- Tringham, S.; de Fonjaudran, C.M.; De Giorgio, C.; Cather, S. Passive and remedial approaches to salt damage and biodeterioration of wall paintings and monuments in the Crypt of the Grand Masters, St. John’s Co Cathedral, Valletta. In Wandmalereien in Krypten, Grotten, Katakomben: Zur Konservierung Gefasster Oberflächen in Umweltgeschädigten Räumen. Wallpaintings in Crypts, Grottoes, Catacombs: Strategies for the Conservation of Coated Surfaces in Damp Environment; Danzl, T., Exner, M., Rüber-Schütte, E., Eds.; ICOMOS German National Committee: Quedlinburg, Germany, 2011; Volume 51, pp. 85–96. [Google Scholar]
- Iafrate, S.; Sidoti, G.; Capasso, F.E.; Giandomenico, M.; Muca, S.; Daniele, V.; Taglieri, G. New Perspectives for the Consolidation of Mural Paintings in Hypogea with an Innovative Aqueous Nanolime Dispersion, Characterized by Compatible, Sustainable, and Eco-Friendly Features. Nanomaterials 2023, 13, 317. [Google Scholar] [CrossRef]
- Giandomenico, M.; Iafrate, S.; Bartolini, M.; Sobrà, G.; Sidoti, G.; Tescari, M.; Kumbaric, A. Towards the Fruition of Wall Paintings in Hypogeum: Retouching Issues and Preventive Conservation Strategies. In Proceedings of the La Conservazione Preventiva e Programmata. Venti Anni Dopo il Codice dei Beni Culturali. 39° Convegno di Studi, Bressanone, Italy, 2–5 July 2024; Edizioni Arcadia Ricerche: Venice, Italy, 2024; Volume 39, pp. 709–712. [Google Scholar]
- Capasso, F.; Muca, S.; Giandomenico, M.; Gaetani, M.; Iafrate, S.; Bartolini, M.; Santamaria, U.; Calia, A.; Vasanelli, E.; Melica, D. Retouching Mural Paintings in Hypogeum: Preliminary Study and First Results. In Proceedings of the 6th International Meeting on Retouching of Cultural Heritage, RECH6, València, Spain, 4–6 November 2021; Editorial Universitat Politècnica de València: València, Spain, 2023; pp. 148–156. [Google Scholar]
- Simonelli, G.; Calia, A.; Mezzadri, P.; Sidoti, G.; Quarta, G.; Ruggiero, L. New Perspectives for the Inhibition of Salt Damages in Mural Paintings in Hypogeal Contexts: The Case of Saint Augustine in the Rupestrian Church of San Pietro Barisano (Matera, Italy). Eur. Phys. J. Plus 2025, 140, 683. [Google Scholar] [CrossRef]
- Giandomenico, M.; Capasso, F.E.; Muca, S.; Gaetani, M.C.; Quarta, G.; Iafrate, S.; Melica, D.; Calia, A. A Study of Repair Mortars for Restoration of Wall Painted Plasters in a Hypogeum Rock-Cut Church of Matera (Southern Italy). Materials 2023, 16, 5715. [Google Scholar] [CrossRef]
- Isola, D.; Bartoli, F.; Municchia, A.C.; Lee, H.J.; Jeong, S.H.; Chung, Y.J.; Caneva, G. Green Biocides for the Conservation of Hypogeal Mural Paintings Raised from Western and Eastern Traditions: Evaluation of Interference on Pigments and Substrata and Multifactor Parameters Affecting Their Activity. J. Cult. Herit. 2023, 61, 116–126. [Google Scholar] [CrossRef]
- Mazzei, B. La conservazione delle pitture delle catacombe romane. Antichi espedienti e recenti esperienze. ICOMOS–Hefte Des Dtsch. Natl. XLII 2005, 65–78. [Google Scholar] [CrossRef]
- Gittins, M. Treatments over twenty years: A critical assessment of four inter ventions undertaken since 1991. In Wandmalereien in Krypten, Grotten, Katakomben: Zur Konservierung Gefasster Oberflächen in Umweltgeschädigten Räumen. Wallpaintings in Crypts, Grottoes, Catacombs Strategies for the Conservation of Coated Surfaces in Damp Environments; Danzl, T., Exner, M., Rüber-Schütte, E., Eds.; ICOMOS German National Committee: Quedlinburg, Germany, 2011; Volume 51, pp. 149–158. [Google Scholar]
- Martellotti, G. La manutenzione del restaurato in ambiente ipogeo. In Lo Stato dell’Arte 17, Proceedings of XVII Congresso Nazionale IGIIC, Matera, Italy, 10–12 October 2019; Nardini: Florence, Italy, 2019. [Google Scholar]
- Cacace, C.; Fabbri, F.; Provinciali, B.; Udina, C. Gli affreschi della cripta del santuario di S. Maria del Piano in Ausonia (FR). Problemi conservativi e verifica dei risultati degli interventi storici di deumidificazione In Gli effetti dell’acqua sui beni culturali, valutazioni, critiche e modalità di verifica. In Proceedings of the Scienza e Beni Culturali XXXVI° Convegno Internazionale, Giornate di Studi Internazionali, Venice, Italy, 17–19 November 2020; Arcadia Ricerche: Venice, Italy, 2020. [Google Scholar]
- Laue, S.; Schaab, C.; Drese, D.; Krauthäuser, D.; Helfmeier, G.; Vogt, J. 20 Years Long-Term Monitoring of the Salt Loaded Crypt of St. Maria Im Kapitol, Cologne. In Salt Weathering of Buildings and Stone Sculptures; TU Delft Open, TU Deldt/Faculty of Architecture and Built Heritage: Delft, The Netherlands, 2021; p. 307. [Google Scholar]
- Basile, G. Interventi Preventivi al Restauro Degli Affreschi Della Cripta Dell’abate Epifanio in La Cripta Dell’abate Epifanio a San Vincenzo al Volturno: Un Secolo di Studi (1896–2007); Marazzi, F., Ed.; Volturnia: Cerro al Volturno, Italy, 2013; pp. 385–394. [Google Scholar]
- Bianchi, A. Il Restauro Della Cripta Di Anagni; Artemide: Rome, Italy, 2003. [Google Scholar]
- Santopadre, P.; Tamanti, G.; Bianchetti, P.; Sidoti, G. Studio Delle Tracce Di Pigmenti Azzurri in Due Affreschi Della Chiesa Inferiore Di San Clemente a Roma. Bollettino ICR-Nuova Serie 2011, 22–23, 85–95. [Google Scholar]
- Caneva, G.; Capponi, G. (Eds.) La Cripta del Peccato Originale di Matera; Gangemi: Roma, Italy, 2025; in press. [Google Scholar]
- Laurenti, M.C.; Osman El-Malik, E.M. (Eds.) Restoring the colours of the Goddess. In The Conservation Project of the Temple of Mut a Jebel Barkal; Gangemi: Rome, Italy, 2021. [Google Scholar]
- Bon Valsassina, C.; Capanna, F.; Ioele, M. (Eds.) Ajanta Dipinta: Studio Sulla Tecnica e Sulla Conservazione del Sito Rupestre Indiano; Gangemi: Rome, Italy, 2013. [Google Scholar]
- Haron, J.; Al-Adarbeh, N.; Lash, A.; Al-Batayneh, A.; Delmonaco, G.; Vibert-Guigue, C.; Aliquot, J.; Gatier, P.-L.; Bechetoille, S.; Sobrà, G. Bayt Rās Workshop. In Proceedings of the 14th international Conference on the History and Archaeology of Jordan (ICHAJ 14), Florence, Italy, 21–25 January 2019; Volume 14, pp. 803–811. [Google Scholar]
- Dunning, J.D.; Huf, W.L. The Effects of Aqueous Chemical Environments on Crack and Hydraulic Fracture Propagation and Morphologies. J. Geophys. Res. 1983, 88, 6491–6499. [Google Scholar] [CrossRef]
- Cecconi, M.; Melelli, L.; Russo, G.; De Angelis, A.; Carbone, P.; Cencetti, C.; Di Maio, R.; Turchetti, M.A.; Pane, V. Monitoring Activities for the Preservation of an Etruscan Hypogeum in Unsaturated Soil Mass. E3S Web Conf. 2023, 382, 17005. [Google Scholar] [CrossRef]
- Caneva, G.; Isola, D.; Lee, H.J.; Chung, Y.J. Biological Risk for Hypogea: Shared Data from Etruscan Tombs in Italy and Ancient Tombs of the Baekje Dynasty in Republic of Korea. Appl. Sci. 2020, 10, 6104. [Google Scholar] [CrossRef]
- Caneva, G.; Nugari, M.P.; Salvadori, O. Plant Biology for Cultural Heritage: Biodeterioration and Conservation; Getty Publications: Los Angeles, CA, USA, 2008. [Google Scholar]
- D’orazio, M.; Cursio, G.; Graziani, L.; Aquilanti, L.; Osimani, A.; Clementi, F.; Yéprémian, C.; Lariccia, V.; Amoroso, S. Effects of Water Absorption and Surface Roughness on the Bioreceptivity of ETICS Compared to Clay Bricks. Build. Environ. 2014, 77, 20–28. [Google Scholar] [CrossRef]
- Caneva, G.; Langone, S.; Bartoli, F.; Cecchini, A.; Meneghini, C. Vegetation Cover and Tumuli’s Shape as Affecting Factors of Microclimate and Biodeterioration Risk for the Conservation of Etruscan Tombs (Tarquinia, Italy). Sustainability 2021, 13, 3393. [Google Scholar] [CrossRef]
- Sedlbauer, K. Prediction of Mould Growth by Hygrothermal Calculation. J. Therm. Envel. Build. Sci. 2002, 25, 321–336. [Google Scholar] [CrossRef]
- Cardinale, N.; Rospi, G.; Stazi, A. Energy and Microclimatic Performance of Restored Hypogeous Buildings in South Italy: The “Sassi” District of Matera. Build. Environ. 2010, 45, 94–106. [Google Scholar] [CrossRef]
- Visco, G.; Plattner, S.H.; Fortini, P.; Di Giovanni, S.; Sammartino, M.P. Microclimate Monitoring in the Carcer Tullianum: Temporal and Spatial Correlation and Gradients Evidenced by Multivariate Analysis; First Campaign. Chem. Cent. J. 2012, 6, S11. [Google Scholar] [CrossRef]
- EGiani, E.; Cacace, C. Il complesso microclima degli ambienti ipogei: Difficoltà e precauzioni per la musealizzazione. Boll. Dell’Istituto Cent. Del. Restauro 2009, 18–19, 3–10. [Google Scholar]
- Visco, G.; Plattner, S.H.; Fortini, P.; Sammartino, M.P. Second Campaign of Microclimate Monitoring in the Carcer Tullianum: Temporal and Spatial Correlation and Gradients Evidenced by Multivariate Analysis. Chem. Cent. J. 2012, 6, 104. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Moral, S.; Soler, V.; Cañaveras, J.C.; Sanz-Rubio, E.; Van Grieken, R.; Gysels, K. Inorganic Deterioration Affecting the Altamira Cave, N Spain: Quantitative Approach to Wall-Corrosion (Solutional Etching) Processes Induced by Visitors. Sci. Total Environ. 1999, 243–244, 67–84. [Google Scholar] [CrossRef]
- Garcia-Anton, E.; Cuezva, S.; Fernandez-Cortes, A.; Benavente, D.; Sanchez-Moral, S. Main Drivers of Diffusive and Advective Processes of CO2-Gas Exchange between a Shallow Vadose Zone and the Atmosphere. Int. J. Greenh. Gas. Control 2014, 21, 113–129. [Google Scholar] [CrossRef]
- Chiodini, G.; Frondini, F. Carbon Dioxide Degassing from the Albani Hills Volcanic Region, Central Italy. Chem. Geol. 2001, 177, 67–83. [Google Scholar] [CrossRef]
- Benavente, D.; Sanchez-Moral, S.; Fernandez-Cortes, A.; Cañaveras, J.C.; Elez, J.; Saiz-Jimenez, C. Salt Damage and Microclimate in the Postumius Tomb, Roman Necropolis of Carmona, Spain. Environ. Earth Sci. 2011, 63, 1529–1543. [Google Scholar] [CrossRef]
- Tapete, D.; Fratini, F.; Mazzei, B.; Cantisani, E.; Pecchioni, E. Petrographic Study of Lime-Based Mortars and Carbonate Incrustation Processes of Mural Paintings in Roman Catacombs. Period. Mineral. 2013, 82, 503–527. [Google Scholar] [CrossRef]
- Germinario, L.; Oguchi, C.T. Gypsum, Mirabilite, and Thenardite Efflorescences of Tuff Stone in the Underground Environment. Environ. Earth Sci. 2022, 81, 242. [Google Scholar] [CrossRef]
- Sato, M.; Hattanji, T. A Laboratory Experiment on Salt Weathering by Humidity Change: Salt Damage Induced by Deliquescence and Hydration. Prog. Earth Planet. Sci. 2018, 5, 84. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Doehne, E. Salt Weathering: Influence of Evaporation Rate, Supersaturation and Crystallization Pattern. Earth Surf. Process. Landf. 1999, 24, 191–209. [Google Scholar] [CrossRef]
- Price, C.; Brimblecombe, P. Preventing Salt Damage in Porous Materials. Stud. Conserv. 1994, 39, 90–93. [Google Scholar] [CrossRef]
- Saiz-Jimenez, C.; Laiz, L. Occurrence of Halotolerant/Halophilic Bacterial Communities in Deteriorated Monuments. Int. Biodeterior. Biodegrad. 2000, 46, 319–326. [Google Scholar] [CrossRef]
- Collepardi, M. Degradation and Restoration of Masonry Walls of Historical Buildings. Mater. Struct. 1990, 23, 81–102. [Google Scholar] [CrossRef]
- Bianchetti, P.; Santopadre, P. Un’alterazione Dei Pigmenti Nei Dipinti Murali: La Trasformazione Dell’azzurrite in Paratacamite. Bollettino ICR 2004, 8–9, 76–86. [Google Scholar]
- Cucchietti, R.; Botticelli, M.; Conti, L.; Giovannone, C.; Rubino, A.R.; Santangelo, C.; Sidoti, G. La laurionite in dipinti murali e stucchi romani tra XVI e XVII secolo: Pigmento o prodotto di alterazione? Bollettino ICR 2019, 38, 12–29. [Google Scholar]
- Radepont, M.; Coquinot, Y.; Janssens, K.; Ezrati, J.-J.; De Nolf, W.; Cotte, M. Thermodynamic and Experimental Study of the Degradation of the Red Pigment Mercury Sulfide. J. Anal. At. Spectrom. 2015, 30, 599–612. [Google Scholar] [CrossRef]
- Broers, F.T.H.; Janssens, K.; Nelson Weker, J.; Webb, S.M.; Mehta, A.; Meirer, F.; Keune, K. Two Pathways for the Degradation of Orpiment Pigment (As2S3) Found in Paintings. J. Am. Chem. Soc. 2023, 145, 8847–8859. [Google Scholar] [CrossRef]
- Gadd, G.M.; Fomina, M.; Pinzari, F. Fungal Biodeterioration and Preservation of Cultural Heritage, Artwork, and Historical Artifacts: Extremophily and Adaptation. Microbiol. Mol. Biol. Rev. 2024, 88, e00200-22. [Google Scholar] [CrossRef]
- Imperi, F.; Caneva, G.; Cancellieri, L.; Ricci, M.A.; Sodo, A.; Visca, P. The Bacterial Aetiology of Rosy Discoloration of Ancient Wall Paintings. Environ. Microbiol. 2007, 9, 2894–2902. [Google Scholar] [CrossRef] [PubMed]
- Shirakawa, M.A.; Beech, I.B.; Tapper, R.; Cincotto, M.A.; Gambale, W. The Development of a Method to Evaluate Bioreceptivity of Indoor Mortar Plastering to Fungal Growth. Int. Biodeterior. Biodegrad. 2003, 51, 83–92. [Google Scholar] [CrossRef]
- Sánchez-Moral, S.; Luque, L.; Cuezva, S.; Soler, V.; Benavente, D.; Laiz, L.; Gonzalez, J.M.; Sáiz-Jiménez, C. Deterioration of Building Materials in Roman Catacombs: The Influence of Visitors. Sci. Total Environ. 2005, 349, 260–276. [Google Scholar] [CrossRef]
- Merello, P.; García-Diego, F.-J.; Beltrán, P.; Scatigno, C. High Frequency Data Acquisition System for Modelling the Impact of Visitors on the Thermo-Hygrometric Conditions of Archaeological Sites: A Casa Di Diana (Ostia Antica, Italy) Case Study. Sensors 2018, 18, 348. [Google Scholar] [CrossRef]
- Albertano, P.; Bruno, L. The Importance of Light in the Conservation of Hypogean Monuments. In Molecular Biology and Cultural Heritage; Routledge: London, UK, 2017; pp. 171–178. [Google Scholar]
- Mulec, J. Human Impact on Underground Cultural and Natural Heritage Sites, Biological Parameters of Monitoring and Remediation Actions for Insensitive Surfaces: Case of Slovenian Show Caves. J. Nat. Conserv. 2014, 22, 132–141. [Google Scholar] [CrossRef]
- Bruno, L.; Rugnini, L.; Spizzichino, V.; Caneve, L.; Canini, A.; Ellwood, N.T.W. Biodeterioration of Roman Hypogea: The Case Study of the Catacombs of SS. Marcellino and Pietro (Rome, Italy). Ann. Microbiol. 2019, 69, 1023–1032. [Google Scholar] [CrossRef]
- Calaforra, J.M.; Fernández-Cortés, A.; Sánchez-Martos, F.; Gisbert, J.; Pulido-Bosch, A. Environmental Control for Determining Human Impact and Permanent Visitor Capacity in a Potential Show Cave before Tourist Use. Environ. Conserv. 2003, 30, 160–167. [Google Scholar] [CrossRef]
- Zangari, G.; Bartoli, F.; Lucchese, F.; Caneva, G. Plant Diversity in Archaeological Sites and Its Bioindication Values for Nature Conservation: Assessments in the UNESCO Site Etruscan Necropolis of Tarquinia (Italy). Sustainability 2023, 15, 16469. [Google Scholar] [CrossRef]
- Di Tullio, V.; Proietti, N.; Gobbino, M.; Capitani, D.; Olmi, R.; Priori, S.; Riminesi, C.; Giani, E. Non-Destructive Mapping of Dampness and Salts in Degraded Wall Paintings in Hypogeous Buildings: The Case of St. Clement at Mass Fresco in St. Clement Basilica, Rome. Anal. Bioanal. Chem. 2010, 396, 1885–1896. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.H.; Lee, C.H. Change of environmental stability by improved airtightness in the Korean ancient royal tombs from the 6th century Baekje Kingdom. In Monument Future: Decay and Conservation of Stone, Proceedings of the 14th International Congress on the Deterioration and Conservation of Stone, Göttingen, Germany, 7–12 September 2020; Siegesmund, S., Middendorf, B., Eds.; Mitteldeutscher Verlag: Halle, Germany, 2020; pp. 321–326. [Google Scholar]
- De Santoli, L.; Mariotti, M. Interazione fra microclima interno e consistenza statica delle tombe ipogee. In Conservare il Passato: Metodi ed Esperienze di Protezione e Restauro nei Siti Archeologici; Varagnoli, C., Ed.; Gangemi: Rome, Italy, 2005; pp. 123–132. [Google Scholar]
- Isola, D.; Bartoli, F.; Langone, S.; Ceschin, S.; Zucconi, L.; Caneva, G. Plant DNA Barcode as a Tool for Root Identification in Hypogea: The Case of the Etruscan Tombs of Tarquinia (Central Italy). Plants 2021, 10, 1138. [Google Scholar] [CrossRef]
- Antonelli, F.; Iafrate, S.; Tescari, M.; Giandomenico, M.; Kumbaric, A.; Bartolini, M. The Hypogeous Roman Archeological Museum of Positano: Study of the Evolution of Biological Threaten and Development of Adequate Control Protocols. Microorganisms 2024, 12, 1520. [Google Scholar] [CrossRef]
- Aramini, F. LED e Beni Culturali: I Primi 15 Anni. In Materiali e Strutture: Problemi di Conservazione; Edizioni Quasar: Rome, Italy, 2017; pp. 41–52. [Google Scholar]
- Aramini, F. Roma, Domus Aurea: La sala della Volta Dorata: Illuminazione LED in Ambiente Ipogeo. Luce Des. 2009, 5, 52–56. [Google Scholar]
- Bruno, L.; Valle, V. Effect of White and Monochromatic Lights on Cyanobacteria and Biofilms from Roman Catacombs. Int. Biodeterior. Biodegrad. 2017, 123, 286–295. [Google Scholar] [CrossRef]
- Franceschini, M.; Broggi, A.; Bracciale, M.P.; Sommei, L.; Santarelli, M.L.; Marrocchi, A. Effectiveness of Phosphocitrate as Salt Crystallization Inhibitor in Porous Materials: Case Study of the Roman Mosaic of Orpheus and the Beasts (Perugia, Italy). Int. J. Archit. Herit. 2015, 9, 195–200. [Google Scholar] [CrossRef]
- Ruiz-Agudo, E.; Rodriguez-Navarro, C.; Sebastián-Pardo, E. Sodium Sulfate Crystallization in the Presence of Phosphonates: Implications in Ornamental Stone Conservation. Cryst. Growth Des. 2006, 6, 1575–1583. [Google Scholar] [CrossRef]
- Ruiz-Agudo, E.; Lubelli, B.; Sawdy, A.; Van Hees, R.; Price, C.; Rodriguez-Navarro, C. An Integrated Methodology for Salt Damage Assessment and Remediation: The Case of San Jerónimo Monastery (Granada, Spain). Environ. Earth Sci. 2011, 63, 1475–1486. [Google Scholar] [CrossRef]
- Fernandez-Cortes, A.; Palacio-Perez, E.; Martin-Pozas, T.; Cuezva, S.; Ontañon, R.; Lario, J.; Sanchez-Moral, S. Defining the Optimal Ranges of Tourist Visits in UNESCO World Heritage Caves with Rock Art: The Case of El Castillo and Covalanas (Cantabria, Spain). Appl. Sci. 2025, 15, 3484. [Google Scholar] [CrossRef]
- Karaboue, M.; Berritto, D.; Lacasella, G.V. Council Directive 2013/59/EURATOM of 5 December 2013—Protection against ionising radiation. La Clin. Ter. 2024, 175, 259–261. [Google Scholar]
- Azuma, K.; Kagi, N.; Yanagi, U.; Osawa, H. Effects of Low-Level Inhalation Exposure to Carbon Dioxide in Indoor Environments: A Short Review on Human Health and Psychomotor Performance. Environ. Int. 2018, 121, 51–56. [Google Scholar] [CrossRef]
- Jurado, V.; Laiz, L.; Sánchez-Moral, S.; Sáiz-Jiménez, C. Pathogenic Microorganisms Related to Human Visits in Altamira Cave, Spain. The Conservation of Subterranean Cultural Heritage; Saiz-Jimenez, C., Ed.; CRC Press: Leiden, The Netherlands, 2014; pp. 229–239. [Google Scholar]
- Frasca, F.; Caratelli, A.; Siani, A. The Capability of Capacitive Sensors in the Monitoring Relative Humidity in Hypogeum Environments. IOP Conf. Ser. Mater. Sci. Eng. 2018, 364, 012093. [Google Scholar] [CrossRef]
- Piñar, G.; Ettenauer, J.; Sterflinger, K. “La Vie En Rose”: A Review of the Rosy Discoloration of Subsurface Monuments. In The Conservation of Subterranean Cultural Heritage; Saiz-Jimenez, C., Ed.; CRC Press: Leiden, The Netherlands, 2014; pp. 113–124. ISBN 978-1-138-02694-0. [Google Scholar]
- Dao, T.; Dantigny, P. Control of Food Spoilage Fungi by Ethanol. Food Control 2011, 22, 360–368. [Google Scholar] [CrossRef]
- Gutiérrez-Corona, J.F.; González-Hernández, G.A.; Padilla-Guerrero, I.E.; Olmedo-Monfil, V.; Martínez-Rocha, A.L.; Patiño-Medina, J.A.; Meza-Carmen, V.; Torres-Guzmán, J.C. Fungal Alcohol Dehydrogenases: Physiological Function, Molecular Properties, Regulation of Their Production, and Biotechnological Potential. Cells 2023, 12, 2239. [Google Scholar] [CrossRef]
- Cagiano, D. La Sala Dipinta Della Villa Di Livia a Prima Porta. Bolletino ICR 1953, 13, 11–46. [Google Scholar]
- Cagiano De Azevedo, M. Il Distacco Delle Pitture Della Tomba Delle Bighe. Boll. Dell’Istituto Cent. Del. Restauro 1950, 1950, 27–40. [Google Scholar]
- Provinciali, B. In L’Istituto Centrale per il Restauro e il trasporto delle pitture murali, in L’incanto dell’affresco: Capolavori Strappati, 1st ed.; Ciancabilla, L., Spadoni, C., Eds.; SilvanaEditoriale: Milano, Italy, 2014; Volume 2, pp. 55–61. [Google Scholar]
- Torraca, G.; Mora, P. Fissativi per Pitture Murali. Boll. Dell’Istituto Cent. Del. Restauro 1965, 1965, 109–132. [Google Scholar]
- Hey, M. Some Preliminary Testing of Materials Used in the Restoration of Wall-Paintings: Joint Meeting of the ICOM Committee for Museum Laboratories and of the Sub-Committee for the Care of Paintings, ICOM, Bruxelles, 6–13 September 1967; ICCROM Library: Roma, Italy, 1967. [Google Scholar]
- AFICR archival folder n. 939, prof Lidia Barcellona Vero, Report on trials test of different herbicides.
- Massari, I. Il Calore in Difesa Del Monumento. In Umidità. Tecniche e Prodotti per il Risanamento; Alinea editrice: Firenze, Italy, 2005; pp. 87–90. [Google Scholar]
- Tribuzio, P. La Cripta Di M.SS. Del Piano; Istituto Centrale Per Il Restauro: Roma, Italy, 1974. [Google Scholar]
- Leprini, E.; Pissagroia, S. La Presenza e la Formazione di Efflorescenze Saline Negli Intonaci Dipinti e Non: Metodi di Intervento e Trattamenti di Inibizione. Master’s Thesis, Istituto Centrale per il Restauro, Rome, Italy, 2003. [Google Scholar]
- Biçer-Şimşir, B.; Rainer, L. Evaluation of Lime-Based Hydraulic Injection Grouts for the Conservation of Architectural Surfaces: A Manual of Laboratory and Field Test Methods; The Getty Conservation Institute: Los Angeles, CA, USA, 2011; ISBN 978-1-937433-16-1. [Google Scholar]
- Padovnik, A.; Sedmak, V.Č.; Mladenović, A.; Bokan-Bosiljkov, V. Development of Lime Injection Grouts for the Stabilisation of Detached Lime Plasters with Wall Paintings in the Unique Romanesque Round Church in Slovenia. MATEC Web Conf. 2024, 403, 07009. [Google Scholar] [CrossRef]
- Ferragni, D.; Forti, M.; Malliet, J.; Mora, P.; Teutonico, J.M.; Torraca, G. Injection Grouting of Mural Paintings and Mosaics. Stud. Conserv. 1984, 29, 110–116. [Google Scholar] [CrossRef]
- Biçer-şimşir, B.; Griffin, I.; Palazzo-Bertholon, B.; Rainer, L. Lime-Based Injection Grouts for the Conservation of Architectural Surfaces. Stud. Conserv. 2009, 54, 3–17. [Google Scholar] [CrossRef]
- Caroselli, M.; Ruffolo, S.A.; Piqué, F. Mortars and Plasters—How to Manage Mortars and Plasters Conservation. Archaeol. Anthr. Sci. 2021, 13, 188. [Google Scholar] [CrossRef]
- Giuliani, R. Il Restaurato Cubicolo Detto Degli Apostoli Piccoli Nelle Catacombe Di Domitilla e Alcune Note a Margine Della Sua Iconografia. Riv. Archeol. Cris. 2010, 86, 53–80. [Google Scholar]
- Biçer-Şimşir, B.; Rainer, L. Field Test Methods for Comparative Evaluation of Lime-Based Hydraulic Injection Grouts for the Conservation of Architectural Surfaces. In Proceedings of the ICOM-CC 17th Triennial Conference, Melbourne, Australia, 15–19 September 2014. [Google Scholar]
- Barcellona, S.; Santamaria, U.; Borrelli, E.; Laurenzi Tabasso, M. 78. Evaluation of Injection Grouting for Structural Strengthening of Ancient Buildings. In Conservation of Stone and Other Materials: Proceedings of the International RILEM/UNESCO Congress Held at the UNESCO Headquarters, Paris, France, 29 June–1 July 1993; Porte Plume: Paris, France; pp. 637–643.
- Rinaldi, T.; Arrighi, C.; Cirigliano, A.; Lanteri, F.; Porcelli, L.; Claudia, P.; Pogliani, P.; Tomassetti, M.C. An Innovative, Multidisciplinary Approach to the Restoration of Paintings in a Hypogeal Environment: The Case of the Etruscan Tomba Degli Scudi (4th Century BC) in Tarquinia. In Current Approaches, Solutions and Practices in Conservation of Cultural Heritage; Istanbul University Press: Istanbul, Turkey, 2024; pp. 343–373. [Google Scholar]
- Sickels, L.-B. Organics vs. Synthetics: Their Use as Additives in Mortars. In Proceedings of the Mortars, Cements and Grouts Used in the Conservation of Historic Buildings, Rome, Italy, 3–6 November 1981; pp. 25–52. [Google Scholar]
- Baglioni, P.; Dei, L.; Piqué, F.; Sarti, G.; Ferroni, E. New Autogenous Lime-Based Grouts Used in the Conservation of Lime-Based Wall Paintings. Stud. Conserv. 1997, 42, 43–54. [Google Scholar] [CrossRef]
- Griffin, I. Pozzolanas as Additives for Grouts—An Investigation of Their Working Properties and Performance Characteristics. Stud. Conserv. 2004, 49, 23–34. [Google Scholar] [CrossRef]
- Ergenç, D.; Fort, R.; Santos Silva, A.; Veiga, R.; Sanz Arauz, D. The Effects of DiloCarB as Carbonation Accelerator on the Properties of Lime Mortars. Mater. Struct. 2018, 51, 10. [Google Scholar] [CrossRef]
- Rodriguez-Navarro, C.; Ilić, T.; Ruiz-Agudo, E.; Elert, K. Carbonation Mechanisms and Kinetics of Lime-Based Binders: An Overview. Cem. Concr. Res. 2023, 173, 107301. [Google Scholar] [CrossRef]
- Pasian, C.; Secco, M.; Piqué, F.; Rickerby, S.; Artioli, G.; Cather, S. Performance of Grout with Reduced Water Content: The Importance of Porosity and Related Properties. In Proceedings of the 4th Historic Mortars Conference (HMC 2016), Santorini, Greece, 10–12 October 2016; pp. 639–646. [Google Scholar]
- Pasian, C.; Secco, M.; Piqué, F.; Artioli, G.; Rickerby, S.; Cather, S. Lime-Based Injection Grouts with Reduced Water Content: An Assessment of the Effects of the Water-Reducing Agents Ovalbumin and Ethanol on the Mineralogical Evolution and Properties of Grouts. J. Cult. Herit. 2018, 30, 70–80. [Google Scholar] [CrossRef]
- Pasian, C.; Secco, M.; Piqué, F.; Artioli, G.; Cather, S. Lime-Pozzolan Injection Grouts with Ovalbumin and Ethanol Added as Water-Reducing Agents: Grout Design and Assessment of the Mineralogical Evolution. 2019. Available online: https://www.researchgate.net/profile/Chiara-Pasian/publication/341398956_Lime-pozzolan_injection_grouts_with_ovalbumin_and_ethanol_added_as_water-reducing_agents_grout_design_and_assessment_of_the_mineralogical_evolution/links/5ebe5acd92851c11a867e86c/Lime-pozzolan-injection-grouts-with-ovalbumin-and-ethanol-added-as-water-reducing-agents-grout-design-and-assessment-of-the-mineralogical-evolution.pdf (accessed on 2 November 2025).
- Porter, J.; Pasian, C.; Secco, M.; Salameh, M.; Debono, N. Diethyl Oxalate-Based Microgrouts in Calcium Carbonate Systems: Formulation, Field Testing and Mineralogical Characterization. In Proceedings of the 5th Historic Mortars Conference, Pamplona, Spain, 19–21 June 2019. [Google Scholar]
- Porter, J.H.; Pasian, C.; Secco, M. Diethyl Oxalate-Based Microgrouts in Calcium Carbonate Systems: Formulation and Application Parameters. Int. J. Archit. Herit. 2020, 14, 1106–1119. [Google Scholar] [CrossRef]
- Cappitelli, F.; Cattò, C.; Villa, F. The Control of Cultural Heritage Microbial Deterioration. Microorganisms 2020, 8, 1542. [Google Scholar] [CrossRef] [PubMed]
- Municchia, A.C.; Fidanza, M.R.; Caneva, G. Advances in Testing the Interference of Biocides on Stone Materials: A Comparative Analysis and Guidelines for a Standardised Approach. J. Cult. Herit. 2023, 64, 23–41. [Google Scholar] [CrossRef]
- Lo Schiavo, S.; De Leo, F.; Urzì, C. Present and Future Perspectives for Biocides and Antifouling Products for Stone-Built Cultural Heritage: Ionic Liquids as a Challenging Alternative. Appl. Sci. 2020, 10, 6568. [Google Scholar] [CrossRef]
- Isola, D.; Selbmann, L.; Meloni, P.; Maracci, E.; Onofri, S.; Zucconi, L. Detrimental Rock Black Fungi and Biocides: A Study on the Monumental Cemetery of Cagliari. In Science and Technology for the Conservation of Cultural Heritage; CRC Press: London, UK, 2013. [Google Scholar]
- Zuliani, I.; Bartoli, F.; Mazzeschi, D.; Giovagnoli, A.M.; Caneva, G. A Rock Church Preventive Conservation Project: The Case Study of the Crypt of One Hundred Saints in Matera. In Proceedings of the 6th International Conference: YOCOCU, Matera, Italy, 22–26 May 2018; pp. 23–25. [Google Scholar]
- Mateus, D.; Costa, F.; de Jesus, V.; Malaquias, L. Biocides Based on Essential Oils for Sustainable Conservation and Restoration of Mural Paintings in Built Cultural Heritage. 2024. Available online: https://www.preprints.org/frontend/manuscript/25648c3a5a51e7e019e190d2f55424c2/download_pub (accessed on 2 November 2025).
- Fidanza, M.R.; Caneva, G. Natural Biocides for the Conservation of Stone Cultural Heritage: A Review. J. Cult. Herit. 2019, 38, 271–286. [Google Scholar] [CrossRef]
- Russo, R.; Palla, F. Plant Essential Oils as Biocides in Sustainable Strategies for the Conservation of Cultural Heritage. Sustainability 2023, 15, 8522. [Google Scholar] [CrossRef]
- Antonelli, F.; Iovine, S.; Sacco Perasso, C.; Macro, N.; Gioventù, E.; Capasso, F.E.; Bartolini, M. Essential Oils and Essential Oil-Based Products Compared to Chemical Biocides Against Microbial Patinas on Stone Cultural Heritage. Coatings 2024, 14, 1546. [Google Scholar] [CrossRef]
- Reale, R.; Medeghini, L.; Botticelli, M. Stealing from Phytotherapy—Heritage Conservation with Essential Oils: A Review, from Remedy to Sustainable Restoration Product. Sustainability 2024, 16, 5110. [Google Scholar] [CrossRef]
- Ranaldi, R.; Rugnini, L.; Migliore, G.; Tasso, F.; Gabriele, F.; Spreti, N.; Scuderi, F.; Braglia, R.; Di Martino, P.; Pujia, A.; et al. The Role of Essential Oils as Eco-Friendly Strategy to Control Biofilm Collected in the Colosseum (Rome, Italy). Appl. Microbiol. Biotechnol. 2025, 109, 48. [Google Scholar] [CrossRef]
- Tisserand, R.; Young, R. Essential Oil Safety: A Guide for Health Care Professionals; Elsevier Health Sciences: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Pinna, D. Can We Do without Biocides to Cope with Biofilms and Lichens on Stone Heritage? Int. Biodeterior. Biodegrad. 2022, 172, 105437. [Google Scholar] [CrossRef]
- Rugnini, L.; Migliore, G.; Tasso, F.; Ellwood, N.T.W.; Sprocati, A.R.; Bruno, L. Biocidal Activity of Phyto-Derivative Products Used on Phototrophic Biofilms Growing on Stone Surfaces of the Domus Aurea in Rome (Italy). Appl. Sci. 2020, 10, 6584. [Google Scholar] [CrossRef]
- Lee, H.-J.; Chung, Y.-J. Antifungal, Antibacterial, and Interference Effects of Plant-Extracted Essential Oils Used for Mural Conservation at Buyeo Royal Tomb No. 1. Appl. Sci. 2023, 13, 3645. [Google Scholar] [CrossRef]
- Marco, A.; Santos, S.; Caetano, J.; Pintado, M.; Vieira, E.; Moreira, P.R. Basil Essential Oil as an Alternative to Commercial Biocides against Fungi Associated with Black Stains in Mural Painting. Build. Environ. 2020, 167, 106459. [Google Scholar] [CrossRef]
- Borderie, F.; Laurence, A.-S.; Naoufal, R.; Faisl, B.; Geneviève, O.; Dominique, R.; Badr, A.-S. UV–C Irradiation as a Tool to Eradicate Algae in Caves. Int. Biodeterior. Biodegrad. 2011, 65, 579–584. [Google Scholar] [CrossRef]
- Pfendler, S.; Borderie, F.; Bousta, F.; Alaoui-Sosse, L.; Alaoui-Sosse, B.; Aleya, L. Comparison of Biocides, Allelopathic Substances and UV-C as Treatments for Biofilm Proliferation on Heritage Monuments. J. Cult. Herit. 2018, 33, 117–124. [Google Scholar] [CrossRef]
- Cennamo, P.; Scielzo, R.; Rippa, M.; Trojsi, G.; Carfagna, S.; Chianese, E. UV-C Irradiation and Essential-Oils-Based Product as Tools to Reduce Biodeteriorates on the Wall Paints of the Archeological Site of Baia (Italy). Coatings 2023, 13, 1034. [Google Scholar] [CrossRef]
- Hansen, E.; Doehne, E.; Fidler, J.; Larson, J.; Martin, B.; Matteini, M.; Rodriguez-Navarro, C.; Pardo, E.S.; Price, C.; De Tagle, A.; et al. A Review of Selected Inorganic Consolidants and Protective Treatments for Porous Calcareous Materials. Stud. Conserv. 2003, 48, 13–25. [Google Scholar] [CrossRef]
- López-Arce, P.; Gomez-Villalba, L.S.; Pinho, L.; Fernández-Valle, M.E.; de Buergo, M.Á.; Fort, R. Influence of Porosity and Relative Humidity on Consolidation of Dolostone with Calcium Hydroxide Nanoparticles: Effectiveness Assessment with Non-Destructive Techniques. Mater. Charact. 2010, 61, 168–184. [Google Scholar] [CrossRef]
- Daniele, V.; Taglieri, G. Nanolime Suspensions Applied on Natural Lithotypes: The Influence of Concentration and Residual Water Content on Carbonatation Process and on Treatment Effectiveness. J. Cult. Herit. 2010, 11, 102–106. [Google Scholar] [CrossRef]
- Borsoi, G.; Lubelli, B.; Van Hees, R.; Veiga, R.; Silva, A.S.; Colla, L.; Fedele, L.; Tomasin, P. Effect of Solvent on Nanolime Transport within Limestone: How to Improve in-Depth Deposition. Colloids Surf. A Physicochem. Eng. Asp. 2016, 497, 171–181. [Google Scholar] [CrossRef]
- Otero, J.; Starinieri, V.; Charola, A.E.; Taglieri, G. Influence of Different Types of Solvent on the Effectiveness of Nanolime Treatments on Highly Porous Mortar Substrates. Constr. Build. Mater. 2020, 230, 117112. [Google Scholar] [CrossRef]
- Busschots, E.; De Kock, T.; Berto, T.; Peeters, K.; Godts, S.; Fontaine, L. Consolidating Lime Mortar with Nanolime: The Effect of the Ethanol:Water Ratio. Stud. Conserv. 2025, 70, 358–366. [Google Scholar] [CrossRef]
- ASTM D3359-09; Standard Test Methods for Measuring Adhesion by Tape Test. ASTM International: West Conshohocken, PA, USA, 2009.
- ASTM D4214-98; Standard Test Methods for Evaluating the Degree of Chalking of Exterior Paint Films. ASTM International: West Conshohocken, PA, USA, 1998.
- UNI 11432:2011; Cultural heritage—Natural and Artificial Stone—Determination of the Water Absorption by Contact Sponge. UNI: Milano, Italy, 2011.
- UNI EN 15803:2010; Conservation of Cultural Property—Test Methods—Determination of Water Vapour Permeability (δp). UNI: Milano, Italy, 2010.
- UNI EN 15886:2010; Conservation of Cultural Property—Test Methods—Colour Measurement of Surfaces. UNI: Milano, Italy, 2010.
- Carretti, E.; Dei, L. Physicochemical Characterization of Acrylic Polymeric Resins Coating Porous Materials of Artistic Interest. Prog. Org. Coat. 2004, 49, 282–289. [Google Scholar] [CrossRef]
- Cappitelli, F.; Zanardini, E.; Sorlini, C. The Biodeterioration of Synthetic Resins Used in Conservation. Macromol. Biosci. 2004, 4, 399–406. [Google Scholar] [CrossRef]
- Pinna, D. Microbial Recolonization of Artificial and Natural Stone Artworks after Cleaning and Coating Treatments. J. Cult. Herit. 2023, 61, 217–228. [Google Scholar] [CrossRef]
- Wheeler, G. Alkoxysilanes and the Consolidation of Stone; Getty Publications: Los Angeles, CA, USA, 2005. [Google Scholar]
- Matteini, M. Inorganic Treatments for the Consolidation and Protection of Stone Artefacts. Conserv. Sci. Cult. Herit. 2008, 8, 13–27. [Google Scholar]
- Magrini, D.; Bartolozzi, G.; Bracci, S.; Carlesi, S.; Cucci, C.; Picollo, M. Evaluation of the Efficacy and Durability of the “Barium Hydroxide Method” after 40 Years. Multi-Analytical Survey on the Crocifissione by Beato Angelico. J. Cult. Herit. 2020, 45, 362–369. [Google Scholar] [CrossRef]
- Matteini, M.; Fratini, F.; Rescic, S.; Baldan, M.; Campana, L.; Cuzman, O.A. Synergic Use of Ammonium Oxalate and Di-Ammonium Phosphate in the Protection and Consolidation of Carbonate Materials. Int. J. Conserv. Sci. 2020, 11, 405–424. [Google Scholar]
- Ma, X.; Pasco, H.; Balonis, M.; Kakoulli, I. Investigation of the Optical, Physical, and Chemical Interactions between Diammonium Hydrogen Phosphate (DAP) and Pigments. Sustainability 2019, 11, 3803. [Google Scholar] [CrossRef]
- Barriuso, B.C.; Botticelli, G.; Cuzman, O.A.; Osticioli, I.; Tiano, P.; Matteini, M. Conservation of Calcareous Stone Monuments: Screening Different Diammonium Phosphate Based Formulations for Countering Phototrophic Colonization. J. Cult. Herit. 2017, 27, 97–106. [Google Scholar] [CrossRef]
- Baglioni, P.; Chelazzi, D.; Giorgi, R. Nanotechnologies in the Conservation of Cultural Heritage: A Compendium of Materials and Techniques; Springer: Dordrecht, The Netherlands, 2015; ISBN 978-94-017-9302-5. [Google Scholar]
- Chelazzi, D.; Baglioni, P. From Nanoparticles to Gels: A Breakthrough in Art Conservation Science. Langmuir 2023, 39, 10744–10755. [Google Scholar] [CrossRef]
- Giorgi, R.; Dei, L.; Baglioni, P. A New Method for Consolidating Wall Paintings Based on Dispersions of Lime in Alcohol. Stud. Conserv. 2000, 45, 154–161. [Google Scholar] [CrossRef]
- Ambrosi, M.; Dei, L.; Giorgi, R.; Neto, C.; Baglioni, P. Colloidal Particles of Ca(OH)2: Properties and Applications to Restoration of Frescoes. Langmuir 2001, 17, 4251–4255. [Google Scholar] [CrossRef]
- Chelazzi, D.; Poggi, G.; Jaidar, Y.; Toccafondi, N.; Giorgi, R.; Baglioni, P. Hydroxide Nanoparticles for Cultural Heritage: Consolidation and Protection of Wall Paintings and Carbonate Materials. J. Colloid. Interface Sci. 2013, 392, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Baglioni, P.; Chelazzi, D.; Giorgi, R.; Carretti, E.; Toccafondi, N.; Jaidar, Y. Commercial Ca(OH)2 Nanoparticles for the Consolidation of Immovable Works of Art. Appl. Phys. A 2014, 114, 723–732. [Google Scholar] [CrossRef]
- Daniele, V.; Taglieri, G.; Quaresima, R. The Nanolimes in Cultural Heritage Conservation: Characterisation and Analysis of the Carbonatation Process. J. Cult. Herit. 2008, 9, 294–301. [Google Scholar] [CrossRef]
- Gomez-Villalba, L.S.; López-Arce, P.; Alvarez de Buergo, M.; Fort, R. Structural Stability of a Colloidal Solution of Ca(OH)2 Nanocrystals Exposed to High Relative Humidity Conditions. Appl. Phys. A 2011, 104, 1249–1254. [Google Scholar] [CrossRef]
- Otero, J.; Charola, A.E.; Grissom, C.A.; Starinieri, V. An Overview of Nanolime as a Consolidation Method for Calcareous Substrates. Ge-Conserv. 2017, 1, 71–78. [Google Scholar] [CrossRef]
- Albini, R.; Bettucci, O.; Borrelli, E.; Macchia, A.; Campanella, L.; Mazzei, B. Il Consolidamento Con Idrossido Di Calce Nano Strutturata in Ambiente Ipogeo. In Lo Stato dell’Arte 10, Proceedings of the X Congresso Nazionale IGIIC Lo Stato dell’Arte, Roma, Italy, 22–24 November 2012; Nardini Editore: Florence, Italy, 2012; pp. 22–24. [Google Scholar]
- Macchia, A.; Bettucci, O.; Gravagna, E.; Ferro, D.; Albini, R.; Mazzei, B.; Campanella, L. Calcium Hydroxide Nanoparticles and Hypogeum Environment: Test to Understand the Best Way of Application. J. Nanomater. 2014, 2014, 167540. [Google Scholar] [CrossRef]
- Bartoli, M.; Danesi, A.; Gambardella, S. Nanocalce: Consolidamento di intonaci dipinti in un ambiente ipogeo della Domus Aurea. In Lo Stato Dell’arte 14, Proceedings of XIV Congresso Nazionale IGIIC, L’Aquila, Italy, 20–22 October 2016; Nardini Editore: Florence, Italy, 2016. [Google Scholar]
- López-Arce, P.; Indart, A.Z.; Gómez-Villalba, L.; Fort, R. Increase of Durability of Carbonate Stones Consolidated with Nanoparticles of Ca(OH)2. In Proceedings of the International Conference on Durability of Building Materials and Components, Porto, Portugal, 12–15 April 2011; pp. 1–8. [Google Scholar]
- Rodriguez-Navarro, C.; Vettori, I.; Ruiz-Agudo, E. Kinetics and Mechanism of Calcium Hydroxide Conversion into Calcium Alkoxides: Implications in Heritage Conservation Using Nanolimes. Langmuir 2016, 32, 5183–5194. [Google Scholar] [CrossRef]
- Taglieri, G.; Daniele, V.; Rosatelli, G.; Sfarra, S.; Mascolo, M.C.; Mondelli, C. Eco-Compatible Protective Treatments on an Italian Historic Mortar (XIV Century). J. Cult. Herit. 2017, 25, 135–141. [Google Scholar] [CrossRef]
- Daniele, V.; Taglieri, G.; Macera, L.; Rosatelli, G.; Otero, J.; Charola, A.E. Green Approach for an Eco-Compatible Consolidation of the Agrigento Biocalcarenites Surface. Constr. Build. Mater. 2018, 186, 1188–1199. [Google Scholar] [CrossRef]
- Taglieri, G.; Daniele, V.; Macera, L.; Mignemi, A. Innovative and Green Nanolime Treatment Tailored to Consolidate the Original Mortar of the Façade of a Medieval Building in L’aquila (Italy). Constr. Build. Mater. 2019, 221, 643–650. [Google Scholar] [CrossRef]
- Macera, L.; Daniele, V.; Duchetta, F.; Casciardi, S.; Taglieri, G. New Nanolimes for Eco-Friendly and Customized Treatments to Preserve the Biocalcarenites of the “Valley of Temples” of Agrigento. Constr. Build. Mater. 2021, 306, 124811. [Google Scholar] [CrossRef]
- Taglieri, G.; Daniele, V.; Macera, L.; Mondelli, C. Nano Ca(OH)2 Synthesis Using a Cost-effective and Innovative Method: Reactivity Study. J. Am. Ceram. Soc. 2017, 100, 5766–5778. [Google Scholar] [CrossRef]
- Taglieri, G.; Daniele, V.; Macera, L. Synthesizing Alkaline Earth Metal Hydroxides Nanoparticles through an Innovative, Single-Step and Eco-Friendly Method. Solid State Phenom. 2019, 286, 3–14. [Google Scholar]
- Volpe, R.; Taglieri, G.; Daniele, V.; Del Re, G. A Process for the Synthesis of Ca(OH)2 Nanoparticles by Means of Ionic Exchange Resins. European Patent EP2880101, 21 December 2016. [Google Scholar]
- Daniele, V.; Rosatelli, G.; Macera, L.; Taglieri, G. New Aqueous Nanolime Formulations for Fully Compatible Consolidation Treatments of Historical Mortars for Hypogeum Environment. Constr. Build. Mater. 2022, 356, 129316. [Google Scholar] [CrossRef]
- Otero, J.; Starinieri, V.; Charola, A.E. Nanolime for the Consolidation of Lime Mortars: A Comparison of Three Available Products. Constr. Build. Mater. 2018, 181, 394–407. [Google Scholar] [CrossRef]
- Arizzi, A.; Gomez-Villalba, L.S.; Lopez-Arce, P.; Cultrone, G.; Fort, R. Lime Mortar Consolidation with Nanostructured Calcium Hydroxide Dispersions: The Efficacy of Different Consolidating Products for Heritage Conservation. Eur. J. Mineral. 2015, 27, 311–323. [Google Scholar] [CrossRef]
- Normand, L.; Duchêne, S.; Vergès-Belmin, V.; Dandrel, C.; Giovannacci, D.; Nowik, W. Comparative in Situ Study of Nanolime, Ethyl Silicate and Acrylic Resin for Consolidation of Wall Paintings with High Water and Salt Contents at the Chapter Hall of Chartres Cathedral. Int. J. Archit. Herit. 2020, 14, 1120–1133. [Google Scholar] [CrossRef]
- Tzavellos, S.; Pesce, G.L.; Wu, Y.; Henry, A.; Robson, S.; Ball, R.J. Effectiveness of Nanolime as a Stone Consolidant: A 4-Year Study of Six Common UK Limestones. Materials 2019, 12, 2673. [Google Scholar] [CrossRef]
- Pozo-Antonio, J.S.; Otero, J.; González, N. The Influence of Using Wet Cellulose Poultice on Nanolime Consolidation Treatments Applied on a Limestone. Constr. Build. Mater. 2022, 337, 127615. [Google Scholar] [CrossRef]
- Maucourant, C.; O’Flaherty, F. Influence of Treatment Technique on the Effectiveness of Nanolime as a Consolidant for Low-Porosity Limestones. In Conservation of Architectural and Urban Heritage; Advances in Science, Technology & Innovation; Teba, T., Di Raimo, A., Eds.; Springer Nature: Cham, Switzerland, 2025; pp. 491–504. ISBN 978-3-031-71144-2. [Google Scholar]
- Groot, C.; Van Hees, R.; Wijffels, T. Selection of Plasters and Renders for Salt Laden Masonry Substrates. Constr. Build. Mater. 2009, 23, 1743–1750. [Google Scholar] [CrossRef]
- Lanas, J.; Alvarez-Galindo, J.I. Masonry Repair Lime-Based Mortars: Factors Affecting the Mechanical Behavior. Cem. Concr. Res. 2003, 33, 1867–1876. [Google Scholar] [CrossRef]
- Lanas, J.; Sirera, R.; Alvarez, J.I. Study of the Mechanical Behavior of Masonry Repair Lime-Based Mortars Cured and Exposed under Different Conditions. Cem. Concr. Res. 2006, 36, 961–970. [Google Scholar] [CrossRef]
- UNI EN 15801:2010; Conservation of Cultural Property—Test Methods—Determination of Water Absorption by Capillarity. UNI: Milano, Italy, 2010.
- ISO 15901-1:2016; Evaluation of Pore Size Distribution and Porosity of Solid Materials by Mercury Porosimetry and Gas Adsorption—Part 1: Mercury Porosimetry. ISO: Geneva, Switzerland, 2016.
- RILEM Technical Committees. RILEM TC 127-MS-A.2 Uni-directional salt crystallization test for masonry units. Mat. Struct. 1998, 31, 10–11. [Google Scholar] [CrossRef]
- UNI 16322:2013; Cultural Heritage—Mortars—Determination of Drying Properties. UNI: Milano, Italy, 2013.
- UNI EN 1015-11:2019; Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. UNI: Milano, Italy, 2019.
- UNI EN 1015-12:2016; Methods of Test for Mortar for Masonry—Part 12: Determination of Adhesive Strength of Hardened Rendering and Plastering Mortars on Substrates. UNI: Milano, Italy, 2016.
- Sgarlata, M. Dieci anni di attività dell’Ispettorato per le Catacombe della Sicilia Orientale. Riv. Archeol. Cris. 2008, 83, 61–98. [Google Scholar]
- Nicola, P.F. La Cripta Ritrovata. Domenico Guidobono e gli affreschi nascosti dell’abbazia di Casanova. In Lo Stato dell’Arte 17, Proceedings of XVII Congresso Nazionale IGIIC, Matera, Italy, 10–12 October 2019; Scolastica Editrice: Rome, Italy, 2019. [Google Scholar]
- Moropoulou, A.; Bakolas, A.; Moundoulas, P.; Aggelakopoulou, E.; Anagnostopoulou, S. Strength Development and Lime Reaction in Mortars for Repairing Historic Masonries. Cem. Concr. Compos. 2005, 27, 289–294. [Google Scholar] [CrossRef]
- Lanas, J.; Arandigoyen, M.; Alvarez, J.I.; Pérez Bernal, J.L.; Angel Bello, M. Mechanical behavior of masonry repair mortars: Aerial and hydraulic lime-based mixtures. In Proceedings of the 10th International Congress on Deterioration and Conservation of Stone, Stockholm, Sweden, 27 June–2 July 2024. [Google Scholar]
- Bianco, N.; Calia, A.; Denotarpietro, G.; Negro, P. Hydraulic Mortar and Problems Related to the Suitability for Restoration. Period. Miner. 2013, 82, 529–542. [Google Scholar]
- Vyšvařil, M.; Žižlavský, T.; Bayer, P. The Effect of Aggregate Type on the Properties of Lime Mortars. AMM 2016, 861, 141–148. [Google Scholar]
- Papayianni, I. Criteria and Methodology for Manufacturing Combatible Repair Mortars and Bricks. In PACT; Conseil de l’Europe: Strasbourg, France, 1998; pp. 179–190. [Google Scholar]
- Arizzi, A.; Cultrone, G. The Influence of Aggregate Texture, Morphology and Grading on the Carbonation of Non-Hydraulic (Aerial) Lime-Based Mortars. QJEGH 2013, 46, 507–520. [Google Scholar] [CrossRef]
- Szemerey-Kiss, B.; Török, Á.; Siegesmund, S. The Influence of Binder/Aggregate Ratio on the Pore Properties and Strength of Repair Mortars. Environ. Earth Sci. 2013, 69, 1439–1449. [Google Scholar] [CrossRef]
- Bianco, N.; Calia, A.; Denotarpietro, G.; Negro, P. Laboratory Assessment of the Performance of New Hydraulic Mortars for Restoration. Procedia Chem. 2013, 8, 20–27. [Google Scholar] [CrossRef]
- Qiao, M.; Shan, G.; Chen, J.; Wu, S.; Gao, N.; Ran, Q.; Liu, J. Effects of Salts and Adsorption on the Performance of Air Entraining Agent with Different Charge Type in Solution and Cement Mortar. Constr. Build. Mater. 2020, 242, 118188. [Google Scholar] [CrossRef]
- Bianco, N.; Colangiuli, D.; Calia, A. Nuove malte da restauro e verifiche di compatibilità con i supporti. In Dialoghi Multidisciplinari per la Ricerca, la Tutela e la Valorizzazione, Proceedings of I Convegno Beni Culturali in Puglia, Bari, Italy, 16–17 September 2020; Fondazione Pasquale Battista: Bari, Italy, 2021. [Google Scholar]
- Kontić, A.; Vasconcelos, G.; Melendez, C.B.; Azenha, M.; Sokolović, N. Influence of Air Entrainers on the Properties of Hydrated Lime Mortars. Constr. Build. Mater. 2023, 403, 132968. [Google Scholar] [CrossRef]
- Zaleska, M.; Pavlikova, M.; Pivak, A.; Pavlik, Z. Thermal insulation repair lime plaster with perlite—Functional parameters and salt crystallization resistance. In Proceedings of the International Multidisciplinary Scientific GeoConference: SGEM, Albena, Bulgari, 15 November 2022; pp. 209–216. [Google Scholar]
- Marušiak, Š.; Pavlíková, M.; Pivák, A.; Guz, Ł.; Pavlík, Z. Thermal Properties of Lightweight MKPC Composites; AIP Publishing LLC: Melville, NY, USA, 2023; p. 020011. [Google Scholar]
- Botticelli, G.; Matteini, M.; Moles, A.; Laterna, G. A mineral expansive material for readhesion operations on mural paintings. In Scientific Methodologies Applied to Works of Art, Proceedings of the Symposium on Scientific Methodologies Applied to Works of Art, Florence, Italy, 2–5 May 1986; Montedison Progetto Cultura: Milano, Italy, 1986. [Google Scholar]
- Li, J.; Jin, G.; Quan, H.; Jin, X.; Jin, M. Influence of Aluminum Powder Content on Expansion Rate of Foamed Concrete. IOP Conf. Ser. Earth Environ. Sci. 2021, 783, 012065. [Google Scholar] [CrossRef]
- Russo, C. Il Restauro di un Dipinto Murale Inedito Nella Cripta dei Santi Pietro e Paolo a Matera: Studio di Malte ad Elevata Porosità per le Stuccature in Ambiente Ipogeo. Master’s Thesis, Istituto Centrale per il Restauro ICR, Matera, Italy, 2023. [Google Scholar]
- UNI EN 15802:2010; Conservation of Cultural Property—Test Methods—Determination of Static Contact Angle. UNI: Milano, Italy, 2010.
- Mora, P.; Mora, L.; Philippot, P. Conservation of Wall Paintings; Butterwors: Boston, MA, USA; London, UK, 1984. [Google Scholar]
- Notarstefano, C.; Di Marcello, S. La verifica della durabilità dei colori ad acquarello impiegati nella reintegrazione dei dipinti murali. In A Scuola di Restauro. Le Migliori Tesi Degli Allievi dell’Istituto Superiore per la Conservazione ed il Restauro e dell’Opificio Delle Pietre Dure Negli Anni 2005–2007; Gangemi: Roma, Italy, 2011; pp. 71–81. [Google Scholar]
- Pelosi, C.; Marabelli, M.; Falcucci, C.; Giurlanda, F.; Ortenzi, F.; Patrizi, F. Problematiche Conservative Degli Acquerelli Nel Restauro. Archeomatica. 2009, Volume 1. Available online: https://dspace.unitus.it/handle/2067/1740 (accessed on 2 November 2025).
- Lerwill, A.; Townsend, J.H.; Thomas, J.; Hackney, S.; Caspers, C.; Liang, H. Photochemical Colour Change for Traditional Watercolour Pigments in Low Oxygen Levels. Stud. Conserv. 2015, 60, 15–32. [Google Scholar] [CrossRef]
- Cascioli, S.; Patrizi, M.G. Restaurando in Catacomba Di Cantiere in Cantiere. La conservazione delle pitture nelle catacombe romane. In Acquisizioni e Prospettive; Pontificia Commissione di Archeologia Sacra: Rome, Italy, 2002; pp. 49–62. [Google Scholar]
- Giandomenico, M. La reintegrazione pittorica in ambiente ipogeo: Criticità conservative e prospettive di ricerca. In Proceedings of the Catacombe e Ipogei. Facciamo Luce Sul Controllo dei Potenziali Biodeteriogeni in Epoca di Cambiamenti Climatici, Rome, Italy, 28 May 2025. [Google Scholar]
- Rhoplex AC-33. Available online: https://cameo.mfa.org/wiki/Rhoplex_AC-33 (accessed on 25 September 2025).
- Hayakawa, N.; Nakau, E.; Kigawa, R.; Okimoto, A.; Kawanobe, W. Basic research of conservation materials for painting surface. Bunkazai Hozon Shufuku Gakkai Shi Kobunkazai No Kagaku 2008, 53, 1–19. [Google Scholar]
- Gu, J.-D. Microbiological Deterioration and Degradation of Synthetic Polymeric Materials: Recent Research Advances. Int. Biodeterior. Biodegrad. 2003, 52, 69–91. [Google Scholar] [CrossRef]
- PCAS, Restoration Archive, Giorgio Capriotti, 2025, Relazione di restauro della scala Arenario nelle catacombe di Priscilla.
- PCAS, Restoration Archive, Valentina Romé, 2025, Relazione di restauro del cubicolo di Leone nelle catacombe di Commodilla.
- PCAS, Restoration Archive Giovanna Prestipino ELuigi De Prezzo, 2025, Relazione di restauro della Cripta di, S. Eusebio nelle Catacombe di S. Callisto.
- De Prezzo, L.; Prestipino, G.; Mazzei, B. Il cubicolo di S. Eusebio nelle catacombe di S. Callisto. Materiali e tecniche antiche e recenti a confronto, in Lo stato dell’arte 23. In Proceedings of the XXIII Congresso Nazionale IGIIC, Aosta, Italy, 9–11 October 2025; Nardini Editore: Florence, Italy, 2025; pp. 250–257. [Google Scholar]
- PCAS, Restoration Archive Maria Gigliola Patrizi, 2017, Relazione di restauro della Cripta di, S. Eusebio nelle Catacombe di S. Callisto; Cubicolo 69 della Introductio nelle Catacombe di Domitilla.
- Cecchin, M.; Bortolussi, C.; Scarpelli, J. Compatibilità e reversibilità dei sistemi sol-gel nel ritocco pittorico: Il caso del piccolo tempio di Giove Anxur a Terracina (LT). In Proceedings of the XIV Convegno Internazionale Diagnosis for the Conservation and Valorization of Cultural Heritage, Naples, Italy, 14–15 December 2023. [Google Scholar]
- PCAS, Restoration Archive, Carla Tomasi, 2003, Relazione di restauro della cripta di Ampliato nelle catacombe di Domitilla.
- PCAS, Restoration Archive, Alma Ortolan, 2009, Relazione di restauro del cubicolo doppio P nelle Catacome di S.Tecla.
- Ortolan, A. Il progetto di ricerca e l’intervento di restauro. In Il Cubicolo Degli Apostoli Nelle Catacombe Romane di Santa Tecla; Mazzei, B., Ed.; Pontificia Commissione di Archeologia Sacra: Rome, Italy, 2010; pp. 231–251. [Google Scholar]
- Mazzei, B. Cantantibus Organis: Il Palinsesto Decorativo Della Cripta Di S. Cecilia Nelle Catacombe Di S. In Callisto: Studi e Restauro; Gangemi Editore: Rome, Italy, 2024. [Google Scholar]
- Restoration Report by Consorzio, PRAGMA. Available online: https://capolavoriin100km.cultura.gov.it/wp-content/uploads/2023/07/INSERIRE-DIDA-INTERNA-CONSORZIO-PRAGMA-1-relazione-finale-rigaglia-indagni-tecnica-intervento.pdf (accessed on 22 September 2025).
- Franco-Castillo, I.; Hierro, L.; de la Fuente, J.M.; Seral-Ascaso, A.; Mitchell, S.G. Perspectives for Antimicrobial Nanomaterials in Cultural Heritage Conservation. Chem 2021, 7, 629–669. [Google Scholar] [CrossRef]
- Reyes-Estebanez, M.; Ortega-Morales, B.O.; Chan-Bacab, M.; Granados-Echegoyen, C.; Camacho-Chab, J.C.; Pareañez-Sacarias, J.E.; Gaylarde, C. Antimicrobial Engineered Nanoparticles in the Built Cultural Heritage Context and Their Ecotoxicological Impact on Animals and Plants: A Brief Review. Herit. Sci. 2018, 6, 17. [Google Scholar] [CrossRef]
- Becerra, J.; Ortiz, P.; Zaderenko, A.P.; Karapanagiotis, I. Assessment of Nanoparticles/Nanocomposites to Inhibit Micro-Algal Fouling on Limestone Façades. Build. Res. Inf. 2020, 48, 180–190. [Google Scholar] [CrossRef]
- Romani, M.; Warscheid, T.; Nicole, L.; Marcon, L.; Di Martino, P.; Suzuki, M.T.; Lebaron, P.; Lami, R. Current and Future Chemical Treatments to Fight Biodeterioration of Outdoor Building Materials and Associated Biofilms: Moving Away from Ecotoxic and Towards Efficient, Sustainable Solutions. Sci. Total Environ. 2022, 802, 149846. [Google Scholar] [CrossRef] [PubMed]









| Environmental Criticality | Biological Criticality | Health and Safety Criticality |
|---|---|---|
| Low air circulation High RH values Perturbative effect of human presence Limited accessibility | High biocontamination | Possible radon values exceeding threshold [98] Possible CO2 values exceeding threshold [99] Possible presence of pathogenic microorganisms [100] |
| Type of Risk to Avoid | Logistic Requirements (Relating to Work Organization) | Operative Requirements (Relating to Restoration Procedures) |
|---|---|---|
| Health and safety |
| |
| Environmental Risk |
|
|
| Biological Risk |
|
|
| Issue to Be Addressed | Product Requirement | Testing Method |
|---|---|---|
| Powdering and flaking of the paint layer | Cohesive and adhesive power | Tape test [158,159] |
| Water saturated substrate | Appropriate penetration | Histochemical and SEM analysis |
| Condensation | Appropriate porosity | Water absorption by contact sponge [160] |
| Water vapor flow | Appropriate permeability | Water vapor permeability [161] |
| Optical properties | No chromatic alteration | Spectrocolorimetry [162] |
| Biodeterioration | Absence of organic compounds | Bioreceptivity assessment |
| Products | Cohesive Power | Penetration | Porosity | Permeability | Optical Properties | Bio- Resistance | VOCs Absence |
|---|---|---|---|---|---|---|---|
| Acrylic resins | +/− | +/− | − | − | − | + | − |
| Nanoacrylic emulsions | + | + | +/− | +/− | + | − | + |
| Ethyl silicate | + | +/− | +/− | − | − | + | − |
| Barium hydroxide | + | +/− | + | + | + | +/− * | + *** |
| AMOX | + | +/− | + | + | +/− | +/− * | + *** |
| DAP | + | +/− | + | + | + | +/− | + *** |
| Aqueous nanosilica | + | + | + | + | +/− | + | + |
| Water-based nanolimes | + | + | + | + | + | + | + |
| Alcohol-based nanolimes | + | + | + | + | + | +/− ** | − |
| Permeability | Porosity | Mechanical Strength | Bio-Resistance | ||
|---|---|---|---|---|---|
| Type of repair mortar | Traditional mortars (hydraulic and aerial) | +/− * | +/− * | + | + |
| Experimental macroporous mortars | + | + | − | +/− | |
| Surface finish | Rough surface | + | + | / | − |
| Smooth surface | +/− | +/− | / | + |
| Issue to Be Addressed | Colors Requirement | Testing Method |
|---|---|---|
| Water vapor flow | Appropriate vapor permeability | Water vapor permeability [161] |
| High water content/Condensation | Water resistance/durability | Contact angle test [227], Tape test [158,159] |
| Salt crystallization | Appropriate water permeability | Salt Crystallization Resistance [205] (adapted for color testing conditions) Water absorption by contact sponge [160] |
| Biodeterioration | Bio-resistance | Bioreceptivity assessment ATP test |
| Low air circulation | Low VOCs content | / |
| Optical properties | Matt finish and chromatic stability | Spectrocolorimetry [162] |
| Reversibility | Easy removal in solvents not harmful for original materials | Solubility test after artificial ageing |
| Binders | Permeability | Bio- Resistance | Water Resistance/ Durability | Low Toxicity | Reversibility | Optical Properties |
|---|---|---|---|---|---|---|
| arabic gum (watercolors) | + | − | − | + | + | + |
| acrylic resins | +/− | +/− | + | +/− | + | +/− |
| inorganic materials (nanolime, silica sol–gel) | + | + * | + | + * | − | + |
| water | + | + | − | + | + | + |
| water + biocide | + | + | − | +/− | + | + |
| varnishes | +/− | +/− | + | +/− | + | +/− |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Iafrate, S.; Giandomenico, M.; Cucchietti, R.; Russo, C.; Bartolini, M.; Conti, L.; De Angelis, S.; Fontani, V.; Kumbaric, A.; Sidoti, G.; et al. Towards the Definition of Guidelines for the Conservation of Mural Paintings in Hypogea. Heritage 2025, 8, 472. https://doi.org/10.3390/heritage8110472
Iafrate S, Giandomenico M, Cucchietti R, Russo C, Bartolini M, Conti L, De Angelis S, Fontani V, Kumbaric A, Sidoti G, et al. Towards the Definition of Guidelines for the Conservation of Mural Paintings in Hypogea. Heritage. 2025; 8(11):472. https://doi.org/10.3390/heritage8110472
Chicago/Turabian StyleIafrate, Sara, Manuel Giandomenico, Roberta Cucchietti, Chiara Russo, Marco Bartolini, Lucia Conti, Sara De Angelis, Vanessa Fontani, Alma Kumbaric, Giancarlo Sidoti, and et al. 2025. "Towards the Definition of Guidelines for the Conservation of Mural Paintings in Hypogea" Heritage 8, no. 11: 472. https://doi.org/10.3390/heritage8110472
APA StyleIafrate, S., Giandomenico, M., Cucchietti, R., Russo, C., Bartolini, M., Conti, L., De Angelis, S., Fontani, V., Kumbaric, A., Sidoti, G., Tescari, M., & Sobrà, G. (2025). Towards the Definition of Guidelines for the Conservation of Mural Paintings in Hypogea. Heritage, 8(11), 472. https://doi.org/10.3390/heritage8110472

