Previous Issue
Volume 7, March
 
 

Forecasting, Volume 7, Issue 2 (June 2025) – 5 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Section
Select all
Export citation of selected articles as:
18 pages, 3889 KiB  
Article
A Deep Learning-Based Prediction and Forecasting of Tomato Prices for the Cape Town Fresh Produce Market: A Model Comparative Analysis
by Emmanuel Ekene Okere and Vipin Balyan
Forecasting 2025, 7(2), 19; https://doi.org/10.3390/forecast7020019 - 13 May 2025
Viewed by 13
Abstract
The fresh produce supply chain sector is a vital pillar of any society and an indispensable part of the national economic structure. As a significant segment of the agricultural market, accurately forecasting vegetable prices holds significant importance. Vegetable market pricing is subject to [...] Read more.
The fresh produce supply chain sector is a vital pillar of any society and an indispensable part of the national economic structure. As a significant segment of the agricultural market, accurately forecasting vegetable prices holds significant importance. Vegetable market pricing is subject to a myriad of complex influences, resulting in nonlinear patterns that conventional time series methodologies often struggle to decode. Future planning for commodity pricing is achievable by forecasting the future price anticipated by the current circumstances. This paper presents a price forecasting methodology for tomatoes which uses price and production data taken from 2008 to 2021 and analyzed by means of advanced deep learning-based Long Short-Term Memory (LSTM) networks. A comparative analysis of three models based on Root Mean Square Error (RMSE) identifies LSTM as the most accurate model, achieving the lowest RMSE (0.2818), while SARIMA performs relatively well. The proposed deep learning-based method significantly improved the results versus other conventional machine learning and statistical time series analysis methods. Full article
(This article belongs to the Section Forecasting in Economics and Management)
Show Figures

Figure 1

16 pages, 2755 KiB  
Article
Day-Ahead Energy Price Forecasting with Machine Learning: Role of Endogenous Predictors
by Chibuike Chiedozie Ibebuchi
Forecasting 2025, 7(2), 18; https://doi.org/10.3390/forecast7020018 - 9 Apr 2025
Viewed by 631
Abstract
Accurate Day-Ahead Energy Price (DAEP) forecasting is essential for optimizing energy market operations. This study introduces a machine learning framework to predict the DAEP with a 24 h lead time, leveraging historical data and forecasts available at the prediction time. Hourly DAEP data [...] Read more.
Accurate Day-Ahead Energy Price (DAEP) forecasting is essential for optimizing energy market operations. This study introduces a machine learning framework to predict the DAEP with a 24 h lead time, leveraging historical data and forecasts available at the prediction time. Hourly DAEP data from the California Independent System Operator (January 2017 to July 2023) were integrated with exogenous and engineered endogenous features. A custom rolling window cross-validation, with 24 h validation blocks sliding daily across 2372 folds, evaluates an Extreme Gradient Boosting (XGBoost) model’s performance under diverse market conditions, achieving a median mean absolute error of 6.26 USD/MWh and root mean squared error of 8.27 USD/MWh, with variability reflecting market volatility. The feature importance analysis using Shapley additive explanations highlighted the dominance of engineered endogenous features in driving the 24 h lead time forecasts under relatively stable market conditions. Forecasting the DAEP at a runtime of 10 AM on the prior day was used to assess model uncertainty. This involved training random forest, support vector regression, XGBoost, and feed forward neural network models, followed by stacking and voting ensembles. The results indicate the need for ensemble forecasting and evaluation beyond a static train–test split to ensure the practical utility of machine learning for DAEP forecasting across varied market dynamics. Finally, operationalizing the forecast model for bidding decisions by forecasting the DAEP and real-time prices at runtime is presented and discussed. Full article
Show Figures

Figure 1

1 pages, 116 KiB  
Correction
Correction: Ferreira Lima dos Santos et al. Riding into Danger: Predictive Modeling for ATV-Related Injuries and Seasonal Patterns. Forecasting 2024, 6, 266–278
by Fernando Ferreira Lima dos Santos, Farzaneh Khorsandi and Guilherme De Moura Araujo
Forecasting 2025, 7(2), 17; https://doi.org/10.3390/forecast7020017 - 7 Apr 2025
Viewed by 137
Abstract
Addition of an Author [...] Full article
33 pages, 1233 KiB  
Article
Volatility Modelling of the Johannesburg Stock Exchange All Share Index Using the Family GARCH Model
by Israel Maingo, Thakhani Ravele and Caston Sigauke
Forecasting 2025, 7(2), 16; https://doi.org/10.3390/forecast7020016 - 3 Apr 2025
Viewed by 458
Abstract
In numerous domains of finance and economics, modelling and predicting stock market volatility is essential. Predicting stock market volatility is widely used in the management of portfolios, analysis of risk, and determination of option prices. This study is about volatility modelling of the [...] Read more.
In numerous domains of finance and economics, modelling and predicting stock market volatility is essential. Predicting stock market volatility is widely used in the management of portfolios, analysis of risk, and determination of option prices. This study is about volatility modelling of the daily Johannesburg Stock Exchange All Share Index (JSE ALSI) stock price data between 1 January 2014 and 29 December 2023. The modelling process incorporated daily log returns derived from the JSE ALSI. The following volatility models were presented for the period: sGARCH(1, 1) and fGARCH(1, 1). The models for volatility were fitted using five unique error distribution assumptions, including Student’s t, its skewed version, the generalized error and skewed generalized error distributions, and the generalized hyperbolic distribution. Based on information criteria such as Akaike, Bayesian, and Hannan–Quinn, the ARMA(0, 0)-fGARCH(1, 1) model with a skewed generalized error distribution emerged as the best fit. The chosen model revealed that the JSE ALSI prices are highly persistent with the leverage effect. JSE ALSI price volatility was notably influenced during the COVID-19 pandemic. The forecast over the next 10 days shows a rise in volatility. A comparative study was then carried out with the JSE Top 40 and the S&P500 indices. Comparison of the FTSE/JSE Top 40, S&P 500, and JSE ALLSI return indices over the COVID-19 pandemic indicated higher initial volatility in the FTSE/JSE Top 40 and S&P 500, with the JSE ALLSI following a similar trend later. The S&P 500 showed long-term reliability and high rolling returns in spite of short-run volatility, the FTSE/JSE Top 40 showed more pre-pandemic risk and volatility but reduced levels of rolling volatility after the pandemic, similar in magnitude for each index with low correlations among them. These results provide important insights for risk managers and investors navigating the South African equity market. Full article
(This article belongs to the Section Forecasting in Economics and Management)
Show Figures

Figure 1

19 pages, 2858 KiB  
Article
Mode Decomposition Bi-Directional Long Short-Term Memory (BiLSTM) Attention Mechanism and Transformer (AMT) Model for Ozone (O3) Prediction in Johannesburg, South Africa
by Israel Edem Agbehadji and Ibidun Christiana Obagbuwa
Forecasting 2025, 7(2), 15; https://doi.org/10.3390/forecast7020015 - 2 Apr 2025
Cited by 1 | Viewed by 295
Abstract
This paper presents a model that combines mode decomposition approaches with a bi-directional long short-term memory (BiLSTM) attention mechanism and a transformer (AMT) to predict the concentration level of ozone (O3) in Johannesburg, South Africa. Johannesburg is a densely populated city [...] Read more.
This paper presents a model that combines mode decomposition approaches with a bi-directional long short-term memory (BiLSTM) attention mechanism and a transformer (AMT) to predict the concentration level of ozone (O3) in Johannesburg, South Africa. Johannesburg is a densely populated city and the industrial and economic hub of South Africa. Being the industrial hub, air pollution is a major concern as it affects human health. Using air pollutants and meteorological datasets, a model was proposed that uses a mode decomposition approach to address the nonlinear nature of O3 concentration. This nonlinearity is one of the most challenging issues in air quality prediction, and this study proposed a model to decompose input data and identify the most relevant features and leverage attention mechanisms to produce weighted parameters that can enhance the model’s performance. The model’s performance enhancement approach was aimed at ensuring an effective model that easily adapts to frequently changing pollutant data in air quality prediction. The performance was evaluated statistically with root mean squared error (RMSE), mean absolute error (MAE), and mean square error (MSE). The proposed EEMD-CEEMDAN-BiLSTM-AMT model produced the most optimal result with MSE (4.80 × 10−6), RMSE (0.002), and MAE (0.001). When compared with the other similar models, the proposed model was best in terms of MSE value. Future work seeks to enhance the proposed model to fine-tune its performance on different air pollutant concentrations in South Africa. Full article
(This article belongs to the Section Environmental Forecasting)
Show Figures

Figure 1

Previous Issue
Back to TopTop