Three Environments, One Problem: Forecasting Water Temperature in Central Europe in Response to Climate Change
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Objects
2.2. Materials
2.3. Methods
2.3.1. Bayesian Model Averaging (BMA) for Air Temperature Aggregation
2.3.2. Statistical Downscaling of Air Temperature
2.3.3. Machine Learning for Water Temperature Prediction
2.3.4. Model Evaluation
2.3.5. Analysis of the Direction and Rate of Change of Water Temperatures
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Choiński, A.; Ptak, M.; Strzelczak, A. Present-day evolution of coastal lakes based on the example of Jamno and Bukowo (the Southern Baltic coast). Oceanol. Hydrobiol. Stud. 2014, 43, 178–184. [Google Scholar] [CrossRef]
- Bintz, J.C.; Nixon, S.W.; Buckley, B.A.; Granger, S.L. Impacts of temperature and nutrients on coastal lagoon plant communities. Estuaries 2003, 26, 765–776. [Google Scholar] [CrossRef]
- Trombetta, T.; Bouget, F.Y.; Felix, C.; Mostajir, B.; Vidussi, F. Microbial diversity in a North Western Mediterranean Sea Shallow Coastal Lagoon under contrasting Water temperature conditions. Front. Mar. Sci. 2022, 9, 858744. [Google Scholar] [CrossRef]
- Dvoretsky, V.G.; Dvoretsky, A.G. Effects of water temperature on zooplankton abundance and biomass in the southwestern Barents Sea: Implications for Arctic monitoring and management. Ocean Coast. Manag. 2025, 261, 107506. [Google Scholar] [CrossRef]
- Lillis, A.; Mooney, T.A. Sounds of a changing sea: Temperature drives acoustic output by dominant biological sound-producers in shallow water habitats. Front. Mar. Sci. 2022, 9, 960881. [Google Scholar] [CrossRef]
- Ducharne, A. Importance of stream temperature to climate change impact on water quality. Hydrol. Earth Syst. Sci. 2008, 12, 797–810. [Google Scholar] [CrossRef]
- Kang, W.; Yang, X.; Jingqiao, M.; Yiqing, G.; Peipei, Z.; Gang, W. Study on the spawning period of typical fishes in the lower reaches of Jinsha River under the influence of water temperature change. J. Hohai Univ. 2023, 51, 50–55. [Google Scholar]
- Ptak, M.; Choiński, A.; Strzelczak, A.; Targosz, A. Disappearance of Lake Jelenino since the end of the XVIII century as an effect of anthropogenic transformations of the natural environment. Pol. J. Environ. Stud. 2013, 22, 191–196. [Google Scholar]
- Ptak, M.; Sojka, M.; Graf, R.; Choiński, A.; Zhu, S.; Nowak, B. Warming Vistula River—The effects of climate and local conditions on water temperature in one of the largest rivers in Europe. J. Hydrol. Hydromech. 2022, 70, 1–11. [Google Scholar] [CrossRef]
- Durance, I.; Ormerod, S.J. Trends in water quality and discharge confound long-term warming effects on river macroinvertebrates. Freshw. Boil. 2009, 54, 388–405. [Google Scholar] [CrossRef]
- Hausfather, Z.; Cowtan, K.; Clarke, D.C.; Jacobs, P.; Richardson, M.; Rohde, R. Assessing recent warming using instrumentally homogeneous sea surface temperature records. Sci. Adv. 2017, 3, e1601207. [Google Scholar] [CrossRef] [PubMed]
- Duan, H.; Yang, K.; Shang, C.; Zhou, X.; Luo, Y. Anthropogenic impact of lake surface water temperature of lakes: A case study of eleven lakes on the Yunnan-Guizhou Plateau. Ecol. Indic. 2024, 165, 112165. [Google Scholar] [CrossRef]
- Zannella, A.; Simonetti, I.; Lubello, C.; Cappietti, L. Hydrodynamics, transport time scales and water temperature dynamics in heavily anthropized eutrophic coastal lagoons, submitted for publication. Estuar. Coast. Shelf 2025, 314, 109146. [Google Scholar] [CrossRef]
- Zeighami, A.; Kurylyk, B.L. Modelled Water Temperature Patterns and Energy Balance of a Threatened Coastal Lagoon Ecosystem. Hydrol. Process. 2025, 39, e70068. [Google Scholar] [CrossRef]
- Stefan, H.G.; Sinokrot, B.A. Projected global climate change impact on water temperatures in five north central U.S. streams. Clim. Change 1993, 24, 353–381. [Google Scholar] [CrossRef]
- Khalil, I.; Atkinson, P.M.; Challenor, P. Looking back and looking forwards: Historical and future trends in sea surface temperature (SST) in the Indo–Pacific region from 1982 to 2100. Int. J. Appl. Earth Obs. Geoinf. 2016, 45, 14–26. [Google Scholar] [CrossRef]
- Mullin, C.A.; Kirchhoff, C.J.; Wang, G.; Vlahos, P. Future projections of water temperature and thermal stratification in Connecticut reservoirs and possible implications for cyanobacteria. Water Resour. Res. 2020, 56, e2020WR027185. [Google Scholar] [CrossRef]
- Ptak, M.; Amnuaylojaroen, T.; Sojka, M. Seven decades of surface temperature changes in central European lakes. What’s next? Resources 2024, 13, 149. [Google Scholar] [CrossRef]
- Ptak, M.; Amnuaylojaroen, T.; Sojka, M. Rivers increasingly warmer—Pediction of changes in the thermal regime of rivers in Poland. J. Geogr. Sci. 2025, 35, 139–172. [Google Scholar] [CrossRef]
- Tórz, A.; Nędzarek, A. The variability in concentrations of chosen nitrogen and phosphorus forms in the Oder River estuary in 1999–2002. Oceanol. Hydrobiol. Stud. 2010, 39, 113–120. [Google Scholar] [CrossRef]
- Dąbrowski, J.; Więcaszek, B.; Brysiewicz, A.; Czerniejewski, P. Which Fish Predators Can Tell Us the Most about Changes in the Ecosystem of the Pomeranian Bay in the Southwest Baltic Proper? Water 2024, 16, 2788. [Google Scholar] [CrossRef]
- Zwoliński, Z.; Kostrzewski, A.; Winowski, M.; Mazurek, M. Wolin Island—Outstanding geodiversity on the Polish Coast. In Landscapes and Landforms of Poland; Migoń, P., Jancewicz, K., Eds.; Springer: Cham, Switzerland, 2024; pp. 687–708. [Google Scholar]
- Wrzesiński, D. Entropia odpływu rzek w Polsce. In Studia i Prace z Geografii i Geologii; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2013; Volume 33. [Google Scholar]
- Majewski, A. Zalew Szczeciński; Wydawnictwa Komunikacji i Łączności: Warszawa, Poland, 1980. [Google Scholar]
- Osadczuk, A. Zalew Szczeciński- Środowiskowe Warunki Współczesnej Sedymentacji Lagunowej; Uniwersytet Szczeciński: Szczecin, Poland, 2004. [Google Scholar]
- Robak, S.; Zieliński, G.; Pańczyk, M.; Chmieliński, P.; Nermer, T. Skład i udział badanych pierwiastków chemicznych w otolicie węgorza europejskiego Anguilla anguilla (L.) pochodzącego z Zalewu Szczecińskiego. Komun. Rybackie 2018, 5, 1–5. [Google Scholar]
- Tomaszewski, J.B.; Tomaszewska, J. Charakterystyka fizjograficzna poszczególnych części estuarium. In Estuarium Odry i Zatoka Pomorska w Rozwoju Społeczno-Gospodarczym Polski; Uniwersytet Szczeciński: Szczecin, Poland, 1990. [Google Scholar]
- Seland, Ø.; Bentsen, M.; Olivié, D.; Toniazzo, T.; Gjermundsen, A.; Graff, L.S.; Debernard, J.B.; Gupta, A.K.; He, Y.C.; Kirkevåg, A.; et al. Overview of the Norwegian Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario simulations. Geosci. Model Dev. 2020, 13, 6165–6200. [Google Scholar] [CrossRef]
- Müller, W.A.; Jungclaus, J.H.; Mauritsen, T.; Baehr, J.; Bittner, M.; Budich, R.; Bunzel, F.; Esch, M.; Ghosh, R.; Haak, H.; et al. A higher-resolution version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). J. Adv. Model. Earth Syst. 2018, 10, 1383–1413. [Google Scholar] [CrossRef]
- Döscher, R.; Acosta, M.; Alessandri, A.; Anthoni, P.; Arneth, A.; Arsouze, T.; Bergmann, T.; Bernadello, R.; Bousetta, S.; Caron, L.P.; et al. The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6. Geosci. Model Dev. 2022, 15, 2973–3020. [Google Scholar] [CrossRef]
- Semmler, T.; Danilov, S.; Gierz, P.; Goessling, H.F.; Hegewald, J.; Hinrichs, C.; Koldunov, N.; Khosravi, N.; Mu, L.; Rackow, T.; et al. Simulations for CMIP6 with the AWI climate model AWI-CM-1-1. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002009. [Google Scholar] [CrossRef]
- Xin, X.-G.; Wu, T.-W.; Zhang, J.; Zhang, F.; Li, W.-P.; Zhang, Y.-W.; Lu, Y.-X.; Fang, Y.-J.; Jie, W.-H.; Zhang, L.; et al. Introduction of BCC models and its participation in CMIP6. Adv. Clim. Change Res. 2019, 15, 533. [Google Scholar]
- Yukimoto, S.; Kawai, H.; Koshiro, T.; Oshima, N.; Yoshida, K.; Urakawa, S.; Tsujino, H.; Deushi, M.; Tanaka, T.; Hosaka, M.; et al. The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2.0: Description and basic evaluation of the physical component. J. Meteorol. Soc. Jpn. Ser. II 2019, 97, 931–965. [Google Scholar] [CrossRef]
- Dunne, J.P.; Horowitz, L.W.; Adcroft, A.J.; Ginoux, P.; Held, I.M.; John, J.G.; Krasting, J.P.; Malyshev, S.; Naik, V.; Paulot, F.; et al. The GFDL Earth System Model version 4.1 (GFDL-ESM 4.1): Overall coupled model description and simulation characteristics. J. Adv. Model. Earth Syst. 2020, 12, e2019MS002015. [Google Scholar] [CrossRef]
- Lauritzen, P.H.; Nair, R.D.; Herrington, A.; Callaghan, P.; Goldhaber, S.; Dennis, J.; Bacmeister, J.; Eaton, B.; Zarzycki, C.; Taylor, M.A.; et al. NCAR release of CAM-SE in CESM2.0: A reformulation of the spectral element dynamical core in dry-mass vertical coordinates with comprehensive treatment of condensates and energy. J. Adv. Model. Earth Syst. 2018, 10, 1537–1570. [Google Scholar] [CrossRef]
- Cherchi, A.; Fogli, P.G.; Lovato, T.; Peano, D.; Iovino, D.; Gualdi, S.; Masina, S.; Scoccimarro, E.; Materia, S.; Bellucci, A.; et al. Global mean climate and main patterns of variability in the CMCC-CM2 coupled model. J. Adv. Model. Earth Syst. 2019, 11, 185–209. [Google Scholar] [CrossRef]
- Hoeting, J.A.; Madigan, D.; Raftery, A.E.; Volinsky, C.T. Bayesian model averaging: A tutorial (with comments by M. Clyde, David Draper and EI George, and a rejoinder by the authors. Stat. Sci. 1999, 14, 382–417. [Google Scholar] [CrossRef]
- Amnuaylojaroen, T. Advancements in Downscaling Global Climate Model Temperature Data in Southeast Asia: A Machine Learning Approach. Forecasting 2023, 6, 1–17. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engen-Skaugen, T. Downscaling RCM precipitation to the station scale using statistical transformations–a comparison of methods. Hydrol. Earth Syst. Sci. 2023, 16, 3383–3390. [Google Scholar] [CrossRef]
- Maraun, D.; Wetterhall, F.; Ireson, A.M.; Chandler, R.E.; Kendon, E.J.; Widmann, M.; Brienen, S.; Rust, H.W.; Sauter, T.; Themeßl, M.; et al. Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys. 2010, 48, 3. [Google Scholar] [CrossRef]
- Rousseeuw, P.J. Robust Regression and Outlier Detection; John Wiley & Sons: Hoboken, NJ, USA, 1987. [Google Scholar]
- Schär, C.; Vidale, P.L.; Lüthi, D.; Frei, C.; Häberli, C.; Liniger, M.A.; Appenzeller, C. The role of increasing temperature variability in European summer heatwaves. Nature 2004, 427, 332–336. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Hastie, T. The Elements of Statistical Learning: Data Mining, Inference, and Prediction; Taylor and Francis: New York, NY, USA, 2009. [Google Scholar]
- Chen, T.; Guestrin, C. Xgboost: A scalable tree boosting system. In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Huang, B.; Liu, C.; Banzon, V.; Freeman, E.; Graham, G.; Hankins, B.; Smith, T.; Zhang, H.-M. Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. J. Clim. 2021, 34, 2923–2939. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily High-Resolution-Blended Analyses for Sea Surface Temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Haghbin, M.; Sharafati, A.; Motta, D.; Al-Ansari, N.; Noghani, M.H.M. Applications of soft computing models for predicting sea surface temperature: A comprehensive review and assessment. Prog. Earth Planet. Sci. 2021, 8, 4. [Google Scholar] [CrossRef]
- Miao, Y.; Zhang, C.; Zhang, X.; Zhang, L. A Multivariable Convolutional Neural Network for Forecasting Synoptic-Scale Sea Surface Temperature Anomalies in the South China Sea. Weather Forecast. 2023, 38, 849–863. [Google Scholar] [CrossRef]
- Fanelli, C.; Ciani, D.; Pisano, A.; Nardelli, B.B. Deep learning for the super resolution of Mediterranean sea surface temperature fields. Ocean Sci. 2024, 20, 1035–1050. [Google Scholar] [CrossRef]
- Hirons, L.C.; Klingaman, N.P.; Woolnough, S.J. The impact of air-sea interactions on the representation of tropical precipitation extremes. J. Adv. Model. Earth Syst. 2018, 10, 550–559. [Google Scholar] [CrossRef]
- Kendall, M.G.; Stuart, A. The Advanced Theory of Statistics, 3rd ed.; Charles Griffin Ltd.: Cheshire, UK, 1968. [Google Scholar]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitorin; Van Nostrand Reinhold Co.: New York, NY, USA, 1987. [Google Scholar]
- Patakamuri, S.K.; O’Brien, N. Modified Versions of Mann Kendall and Spearman’s Rho Trend Tests, Version 1.6; Water Resources Publication: Littleton, CO, USA, 2022.
- Probst, P.; Wright, M.N.; Boulesteix, A.L. Hyperparameters and tuning strategies for random forest. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2019, 9, e1301. [Google Scholar] [CrossRef]
- James, G.; Witten, D.; Hastie, T.; Tibshirani, R. An Introduction to Statistical Learning with Applications in R; Springer: New York, NY, USA, 2013. [Google Scholar]
- Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random Forests for Classification in Ecology. Ecology 2012, 88, 2783–2792. [Google Scholar] [CrossRef]
- Zhu, S.; Luo, Y.; Ptak, M.; Sojka, M.; Ji, Q.; Choiński, A.; Kuang, M. A hybrid model for the forecasting of sea surface water temperature using the information of air temperature: A case study of the Baltic Sea. All Earth 2022, 34, 27–38. [Google Scholar] [CrossRef]
- Ptak, M.; Sojka, M.; Nowak, B. Effect of climate warming on a change in thermal and ice conditions in the largest lake in Poland—Lake Śniardwy. J. Hydrol. Hydrodyn. 2020, 68, 260–270. [Google Scholar] [CrossRef]
- Rodrigues, M.; Rosa, A.; Cravo, A.; Jacob, J.; Fortunato, A.B. Effects of Climate Change and Anthropogenic Pressures in the Water Quality of a Coastal Lagoon (Ria Formosa, Portugal). Sci. Total Environ. 2021, 780, 146311. [Google Scholar] [CrossRef]
- Dailidienė, I.; Baudler, H.; Chubarenko, B.; Navrotskaya, S. Long term water level and surface temperature changes in the lagoons of the southern and eastern Baltic. Oceanologia 2011, 53, 293–308. [Google Scholar] [CrossRef]
- Itsukushima, R.; Ohtsuki, K.; Sato, T. Drivers of rising monthly water temperature in river estuaries. Limnol. Oceanogr. 2024, 69, 589–603. [Google Scholar] [CrossRef]
- Świątek, M. Long-term variability of water temperature and salinity at the Polish coast. Bull. Geogr. Phys. Geogr. Ser. 2019, 16, 115–130. [Google Scholar] [CrossRef]
- Choiński, A.; Ptak, M.; Volchak, A.; Kirvel, I.; Valiuškevičius, G.; Parfomuk, S.; Kirvel, P.; Sidak, S. Effect of Air Temperature Increase on Changes in Thermal Regime of the Oder and Neman Rivers Flowing into the Baltic Sea. Atmosphere 2021, 12, 498. [Google Scholar] [CrossRef]
- Henson, S.A.; Beaulieu, C.; Ilyina, T.; John, J.G.; Long, M.; Séférian, R.; Tjiputra, J.; Sarmiento, J.L. Rapid emergence of climate change in environmental drivers of marine ecosystems. Nat. Commun. 2017, 8, 14682. [Google Scholar] [CrossRef] [PubMed]
- Siqueira, L.; Kirtman, B.P. Atlantic near-term climate variability and the role of a resolved Gulf Stream. Geophys. Res. Lett. 2016, 43, 3964–3972. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Freilich, M.H.; Milliff, R.F. Satellite measurements reveal persistent small-scale features in ocean winds. Science 2004, 303, 978–983. [Google Scholar] [CrossRef]
- Kowalewska-Kalkowska, H. Meteorological and hydrological determination of water temperature in the coastal area of the Pomeranian Bay. Balt. Coast. Zone 2000, 4, 15–26. [Google Scholar]
- Liao, E.; Lu, W.; Yan, X.H.; Jiang, Y.; Kidwell, A. The coastal ocean response to the global warming acceleration and hiatus. Sci. Rep. 2015, 5, 16630. [Google Scholar] [CrossRef]
- Kassem, H.; Amos, C.L.; Thompson, C.E.L. Sea surface temperature trends in the coastal zone of southern England. J. Coast. Res. 2023, 39, 18–31. [Google Scholar] [CrossRef]
- Galbraith, P.S.; Larouche, P.; Chassé, J.; Petrie, B. Sea-surface temperature in relation to air temperature in the Gulf of St. Lawrence: Interdecadal variability and long term trends. Deep-Sea Res. Part II Top. Stud. Oceanogr. 2012, 77–80, 10–20. [Google Scholar] [CrossRef]
- Jakimavičius, D.; Kriaučiūnienė, J.; Šarauskienė, D. Impact of climate change on the Curonian Lagoon water balance components, salinity and water temperature in the 21st century. Oceanologia 2018, 60, 378–389. [Google Scholar] [CrossRef]
- Ptak, M.; Amnuaylojaroen, T.; Sojka, M. Historical and future changes in water temperature of the Pilica River (Central Europe) in response to global warming. Sustainability 2024, 16, 10244. [Google Scholar] [CrossRef]
- Jung, H.; Jung, E.; Jang, C.J. Future changes in sea surface temperature in the East Asian Marginal Seas projected by CMIP6 models. Korea Soc. Coast. Disaster Prev. 2024, 11, 123–131. [Google Scholar] [CrossRef]
- Available online: www.hydroportal.pl (accessed on 20 February 2025).
- Ptak, M.; Nowak, B. Variability of oxygen-thermal conditions in selected lakes in Poland. Ecol. Chem. Eng. S 2016, 23, 639–650. [Google Scholar] [CrossRef]
- Neumann, T.; Schernewski, G.; Friedland, R. Transformation Processes in the Oder Lagoon as seen from a Model Perspective. EGUsphere 2025. preprint egusphere-2024-3734. [Google Scholar] [CrossRef]
- Kang, Y.; Lee, D.H. Coastal Warming Heightens Direct Impacts of Seawater Temperature on Nutrients near Aquaculture Farms in Korea. Sci. Total Environ. 2023, 892, 164643. [Google Scholar] [CrossRef]
- Gruszka, P. The River Odra estuary as a gateway for alien species immigration to the Baltic Sea basin. Acta Hydrochim. Hydrobiol. 1999, 27, 374–382. [Google Scholar] [CrossRef]
- Leppäkoski, E.; Gollasch, S.; Gruszka, P.; Ojaveer, H.; Olenin, S.; Panov, V. The Baltic—A sea of invaders. Can. J. Fish. Aquat. Sci. 2002, 59, 1175–1188. [Google Scholar] [CrossRef]
- Zięba, G.; Vilizzi, L.; Copp, G.H. How likely is Lepomis gibbosus to become invasive in Poland under conditions of climate warming? Acta Ichthyol. Piscat. 2020, 50, 35–51. [Google Scholar] [CrossRef]
- Radtke, G.; Bernaś, R. Temperature tolerance of European fish species based on thermal maxima in southern Baltic Sea-basin streams. Ecol. Indic. 2025, 170, 113107. [Google Scholar] [CrossRef]
- Stanzel, P.; Harald, K. From ENSEMBLES to CORDEX: Evolving climate change projections for Upper Danube River flow. J. Hydrol. 2018, 563, 987–999. [Google Scholar] [CrossRef]
- Pappenberger, F.; Dutra, E.; Wetterhall, F.; Cloke, H.L. Deriving global flood hazard maps of fluvial floods through a physical model cascade. Hydrol. Earth Syst. Sci. 2012, 16, 4143–4156. [Google Scholar] [CrossRef]
Model Name | Version | Institution | Reference |
---|---|---|---|
Norwegian Earth System Model | NorESM2-MM | Norwegian Climate Centre | [28] |
Max Planck Institute Earth System Model | MPI-ESM1-2-HR | Max Planck Institute for Meteorology | [29] |
European Consortium Earth System Model | EC-Earth3 | EC-Earth Consortium | [30] |
Alfred Wegener Institute Climate Model | AWI-CM-1-1-MR | Alfred Wegener Institute | [31] |
Beijing Climate Center Climate System Model | BCC-CSM2-MR | Beijing Climate Center | [32] |
Meteorological Research Institute Earth System Model | MRI-ESM2-0 | Meteorological Research Institute (Japan Meteorological Agency) | [33] |
Geophysical Fluid Dynamics Laboratory Earth System Model | GFDL-ESM4 | NOAA Geophysical Fluid Dynamics Laboratory | [34] |
Community Earth System Model | CESM2 | National Center for Atmospheric Research (NCAR) | [35] |
Euro-Mediterranean Center on Climate Change Climate Model | CMCC-CM2-SR5 | Euro-Mediterranean Center on Climate Change | [36] |
Meteorological Station | R2 | MAE (°C) | RMSE (°C) | |||
---|---|---|---|---|---|---|
BMA | Statistical Downscaled | BMA | Statistical Downscaled | BMA | Statistical Downscaled | |
Szczecin | 0.63 | 0.85 | 3.74 | 2.40 | 4.77 | 3.05 |
Goleniów | 0.62 | 0.86 | 3.89 | 2.43 | 4.99 | 3.07 |
Świnoujście | 0.70 | 0.87 | 3.21 | 2.15 | 4.12 | 2.73 |
Water Type | R2 | MAE (°C) | RMSE (°C) |
---|---|---|---|
River | 0.83 | 2.58 | 3.24 |
Lagoon | 0.84 | 2.43 | 3.02 |
Sea | 0.98 | 0.18 | 0.26 |
Scenario | Location | Variable | Slope (°C/Decade) | Estimated 2100 Temperature Value (°C) |
---|---|---|---|---|
SSP2-4.5 | River | Air | 0.22 | 11.6 |
Water | 0.17 | 14.00 | ||
Estuary | Air | 0.2 | 10.77 | |
Water | 0.15 | 13.00 | ||
Sea | Air | 0.19 | 11.07 | |
Water | 0.13 | 12.00 | ||
SSP5-8.5 | River | Air | 0.62 | 14.25 |
Water | 0.50 | 16.70 | ||
Estuary | Air | 0.59 | 13.3 | |
Water | 0.45 | 15.50 | ||
Sea | Air | 0.57 | 13.54 | |
Water | 0.40 | 14.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ptak, M.; Sojka, M.; Szyga-Pluta, K.; Amnuaylojaroen, T. Three Environments, One Problem: Forecasting Water Temperature in Central Europe in Response to Climate Change. Forecasting 2025, 7, 24. https://doi.org/10.3390/forecast7020024
Ptak M, Sojka M, Szyga-Pluta K, Amnuaylojaroen T. Three Environments, One Problem: Forecasting Water Temperature in Central Europe in Response to Climate Change. Forecasting. 2025; 7(2):24. https://doi.org/10.3390/forecast7020024
Chicago/Turabian StylePtak, Mariusz, Mariusz Sojka, Katarzyna Szyga-Pluta, and Teerachai Amnuaylojaroen. 2025. "Three Environments, One Problem: Forecasting Water Temperature in Central Europe in Response to Climate Change" Forecasting 7, no. 2: 24. https://doi.org/10.3390/forecast7020024
APA StylePtak, M., Sojka, M., Szyga-Pluta, K., & Amnuaylojaroen, T. (2025). Three Environments, One Problem: Forecasting Water Temperature in Central Europe in Response to Climate Change. Forecasting, 7(2), 24. https://doi.org/10.3390/forecast7020024