Renaissance of Creative Accounting Due to the Pandemic: New Patterns Explored by Correspondence Analysis
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Making a Sample of Enterprises from the V4 Region
3.2. Calculating the M-Score Based on the Beneish Model
3.3. Performing the Pearson Chi-Square Test, Pearson Contingency Coefficient C, and Cramer’s V
3.4. Computing Behavioral Changes over Time by Correspondence Analysis
4. Results
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Haafza, L.A.; Awan, M.J.; Abid, A.; Yasin, A.; Nobanee, H.; Farooq, M.S. Big data COVID-19 systematic literature review: Pandemic crisis. Electronics 2021, 10, 3125. [Google Scholar] [CrossRef]
- Ben-Ahmed, K.; Ayadi, I.; Hamad, S.B. COVID-19 impact on digital companies’ stock return: A dynamic data analysis. Financ. Res. Lett. 2022, 46, 102340. [Google Scholar] [CrossRef] [PubMed]
- Svabova, L.; Tesarova, E.N.; Durica, M.; Strakova, L. Evaluation of the impacts of the COVID-19 pandemic on the development of the unemployment rate in Slovakia: Counterfactual before-after comparison. Equilib. Q. J. Econ. Econ. 2021, 16, 261–284. [Google Scholar] [CrossRef]
- Ilinova, A.; Dmitrieva, D.; Kraslawski, A. Influence of COVID-19 pandemic on fertilizer companies: The role of competitive advantages. Resour. Policy 2021, 71, 102019. [Google Scholar] [CrossRef]
- Kolahchi, Z.; De Domenico, M.; Uddin, L.Q.; Cauda, V.; Grossmann, I.; Lacasa, L.; Grancini, G.; Mahmoudi, M.; Rezaei, N. COVID-19 and its global economic impact. In Coronavirus Disease-COVID-19; Springer: Berlin/Heidelberg, Germany, 2021; Volume 1318, pp. 825–837. [Google Scholar] [CrossRef]
- Svabova, L.; Kramarova, K.; Chabadova, D. Impact of the COVID-19 pandemic on the business environment in Slovakia. Economies 2022, 10, 244. [Google Scholar] [CrossRef]
- Adamikova, E.; Corejova, T. Creative accounting and the possibility of its detection in the evaluation of the company by expert. J. Risk Financ. Manag. 2021, 14, 327. [Google Scholar] [CrossRef]
- Wielechowski, M.; Czech, K.; Grzęda, L. Decline in mobility: Public transport in Poland in the time of the COVID-19 pandemic. Economies 2020, 8, 78. [Google Scholar] [CrossRef]
- Griffiths, I. Creative Accounting; Sidgwick & Jackson: London, UK, 1986. [Google Scholar]
- Ado, A.B.; Rashid, N.N.M.; Mustapha, U.A.; Ademola, L.S. Audit quality and creative accounting strategy: Evidence from Nigerian public listed companies. Australas. Account. Bus. 2022, 16, 40–54. [Google Scholar] [CrossRef]
- Durana, P.; Michalkova, L.; Privara, A.; Marousek, J.; Tumpach, M. Does the life cycle affect earnings management and bankruptcy? Oecon. Copernic. 2021, 12, 425–461. [Google Scholar] [CrossRef]
- Blazek, R.; Durana, P.; Valaskova, K. Creative accounting as an apparatus for reporting profits in agribusiness. J. Risk Financ. Manag. 2020, 13, 261. [Google Scholar] [CrossRef]
- Kliestik, T.; Sedlackova, A.N.; Bugaj, M.; Novak, A. Stability of profits and earnings management in the transport sector of Visegrad countries. Oecon. Copernic. 2022, 13, 475–509. [Google Scholar] [CrossRef]
- Omurgonulsen, M.; Omurgonulsen, U. Critical thinking about creative accounting in the face of a recent scandal in the Turkish banking sector. Crit. Perspect. Account. 2009, 20, 651–673. [Google Scholar] [CrossRef]
- Ababneh, T.E.A.M.; Aga, M. The impact of sustainable financial data governance, political connections, and creative accounting practices on organizational outcomes. Sustainability 2019, 11, 5676. [Google Scholar] [CrossRef]
- Ruddy, T.; Everingham, G.K. Creative accounting, accounting errors, and the ability of users to detect and adjust for them. J. Account. Res. 2008, 22, 45–95. [Google Scholar] [CrossRef]
- Poradova, M.; Kollar, B. Creative accounting as a possible source of fraudulennt behaviour in commercial corporations. In Proceedings of the 9th International Scientific Symposium Region Entrepreneurship Development, Osijek, Croatia, 9–11 June 2020; pp. 1261–1271. [Google Scholar]
- Jarah, B.A.F.; Al Jarrah, M.A.; Al-Zaqeba, M.A.A.; Al-Jarrah, M.F.M. The role of internal audit to reduce the effects of creative accounting on the reliability of financial statements in the Jordanian islamic banks. Int. J. Financ. Econ. 2022, 10, 60. [Google Scholar] [CrossRef]
- Gowthorpe, C.; Amat, O. Creative accounting: Some ethical issues of macro-and micro-manipulation. J. Bus. Ethics 2005, 57, 55–64. [Google Scholar] [CrossRef]
- Popescu, V.A.; Popescu, G.N.; Roman, C.; Popescu, C.R. From creative accounting to the moral and financial crisis. Metal. Int. 2009, 14, 141–149. [Google Scholar]
- Dias, A.G.G.; da Cruz Cunha, J.H.; Sales, I.C.H.; Bezerra, P.C.S. Creative Accounting, Ethics and Earnings Management: Auditors versus Academics. Rev. Adm. Em Diálogo 2016, 18, 133–151. [Google Scholar]
- Shah, A.K. Creative compliance in financial reporting. Account. Organ. Soc. 1996, 21, 23–39. [Google Scholar] [CrossRef]
- Svabova, L.; Kramarova, K.; Chutka, J.; Strakova, L. Detecting earnings manipulation and fraudulent financial reporting in Slovakia. Oecon. Copernic. 2020, 11, 485–508. [Google Scholar] [CrossRef]
- Abed, I.A.; Hussin, N.; Ali, M.A.; Haddad, H.; Shehadeh, M.; Hasan, E.F. Creative accounting determinants and financial reporting quality: Systematic literature review. Risks 2022, 10, 76. [Google Scholar] [CrossRef]
- Milesi-Ferretti, G.M. Good, bad or ugly? On the effects of fiscal rules with creative accounting. J. Public Econ. 2004, 88, 377–394. [Google Scholar] [CrossRef]
- Ozkaya, A. Creative accounting practices and measurement methods: Evidence from Turkey. Economics 2014, 8, 1–27. [Google Scholar] [CrossRef]
- Reischmann, M. Creative accounting and electoral motives: Evidence from OECD countries. J. Comp. Econ. 2016, 44, 243–257. [Google Scholar] [CrossRef]
- Hirota, H.; Yunoue, H. Fiscal rules and creative accounting: Evidence from Japanese municipalities. J. Jpn. Int. Econ. 2022, 63, 101172. [Google Scholar] [CrossRef]
- Kovalova, E.; Michalikova, K.F. The creative accounting in determining the bankruptcy of business corporation. SHS Web Conf. 2020, 74, 01017. [Google Scholar] [CrossRef]
- Valaskova, K.; Gajdosikova, D.; Kramaric, T.P. How important is the business environment for the performance of enterprises? case study of selected European countries. Cent. Eur. Bus. Rev. 2022, 11, 85–110. [Google Scholar] [CrossRef]
- Michalkova, L.; Cepel, M.; Valaskova, K.; Vincurova, Z. Earnings quality and corporate life cycle before the crisis. A study of transport companies across Europe. Amfiteatru Econ. 2022, 24, 782–796. [Google Scholar] [CrossRef]
- Gajdosikova, D.; Valaskova, K. The impact of firm size on corporate indebtedness: A case study of Slovak enterprises. Folia Oeconomica Stetin. 2022, 22, 63–84. [Google Scholar] [CrossRef]
- Nagy, M.; Valaskova, K.; Durana, P. The effect of CSR Policy on earnings management behavior: Evidence from Visegrad Publicly listed enterprises. Risks 2022, 10, 203. [Google Scholar] [CrossRef]
- Kliestik, T.; Blazek, R.; Belas, J. CEO monitoring and accounting record manipulation: Evidence from Slovak agriculture companies. Econ. Sociol. 2022, 15, 204–218. [Google Scholar] [CrossRef]
- Valaskova, K.; Androniceanu, A.-M.; Zvarikova, K.; Olah, J. Bonds between earnings management and corporate financial stability in the context of the competitive ability of enterprises. J. Compet. 2021, 13, 167–184. [Google Scholar] [CrossRef]
- Valaskova, K.; Adamko, P.; Michalikova, K.F.; Macek, J. Quo Vadis, earnings management? Analysis of manipulation determinants in Central European environment. Oecon. Copernic. 2021, 12, 631–669. [Google Scholar] [CrossRef]
- Gajdosikova, D.; Valaskova, K.; Kliestik, T.; Machova, V. COVID-19 pandemic and its impact on challenges in the construction sector: A case study of Slovak enterprises. Mathematics 2022, 10, 3130. [Google Scholar] [CrossRef]
- Gajdosikova, D.; Valaskova, K.; Durana, P. Earnings management and corporate performance in the scope of firm-specific features. J. Risk Financ. Manag. 2022, 15, 426. [Google Scholar] [CrossRef]
- Kovacova, M.; Kliestik, T.; Valaskova, K.; Durana, P.; Juhaszova, Z. Systematic review of variables applied in bankruptcy prediction models of Visegrad group countries. Oecon. Copernic. 2019, 10, 743–772. [Google Scholar] [CrossRef]
- Czech, K.; Wielechowski, M.; Kotyza, P.; Benesova, I.; Laputkova, A. Shaking stability: COVID-19 impact on the Visegrad Group countries’ financial markets. Sustainability 2020, 12, 6282. [Google Scholar] [CrossRef]
- Kochanek, E. The role of hydrogen in the visegrad group approach to energy transition. Energies 2022, 15, 7235. [Google Scholar] [CrossRef]
- Lacko, R.; Hajduova, Z.; Zawada, M. The efficiency of circular economies: A comparison of Visegrád Group countries. Energies 2021, 14, 1680. [Google Scholar] [CrossRef]
- Kochanek, E. The energy transition in the Visegrad group countries. Energies 2021, 14, 2212. [Google Scholar] [CrossRef]
- Pavlicko, M.; Durica, M.; Mazanec, J. Ensemble model of the financial distress prediction in Visegrad group countries. Mathematics 2021, 9, 1886. [Google Scholar] [CrossRef]
- Tucki, K.; Krzywonos, M.; Orynycz, O.; Kupczyk, A.; Bączyk, A.; Wielewska, I. Analysis of the possibility of fulfilling the paris agreement by the Visegrad Group countries. Sustainability 2021, 13, 8826. [Google Scholar] [CrossRef]
- Godawska, J.; Wyrobek, J. The impact of environmental policy stringency on renewable energy production in the Visegrad Group countries. Energies 2021, 14, 6225. [Google Scholar] [CrossRef]
- Lyan, G.; Gross-Amblard, D.; Jezequel, J.M.; Malinowski, S. Impact of Data Cleansing for Urban Bus Commercial Speed Prediction. SN Comput. Sci. 2022, 3, 82. [Google Scholar] [CrossRef]
- Yang, K.; Ding, Y.; Jiang, H.; Zhao, H.; Luo, G. A two-stage data cleansing method for bridge global positioning system monitoring data based on bi-direction long and short term memory anomaly identification and conditional generative adversarial networks data repair. Struct. Control Health Monit. 2022, 29, e2993. [Google Scholar] [CrossRef]
- Chung, Y.; Lu, W.; Tian, X. Data cleansing for salt dome dataset with noise robust network on segmentation task. IEEE Geosci. Remote Sens. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Garrido-Izard, M.; Correa, E.C.; Requejo, J.M.; Villarroel, M.; Diezma, B. Cleansing data from an electronic feeding station to improve estimation of feed efficiency. Biosyst. Eng. 2022, 224, 361–369. [Google Scholar] [CrossRef]
- Suzuki, K.; Kobayashi, Y.; Narihira, T. Data cleansing for deep neural networks with storage-efficient approximation of influence functions. arXiv 2021, arXiv:2103.11807. [Google Scholar]
- Mousavi, M.; Zimon, G.; Salehi, M.; Stępnicka, N. The effect of corporate governance structure on fraud and money laundering. Risks 2022, 10, 176. [Google Scholar] [CrossRef]
- Micah, E.E.M.; Ibitomi, T.; Ibrahim, S. Audit quality and earnings manipulations in Nigeria: Beneish model. J. Account. Audit. 2022, 10, 56–73. [Google Scholar] [CrossRef]
- Sasongko, D.; Supriyadi, D.; Kosasih, K. Pendeteksian Kecurangan Laporan Keuangan Dengan Beneish Model. Bus. Innov. Entrep. J. 2022, 4, 251–261. [Google Scholar] [CrossRef]
- Novianti, D.R.M.; Habbe, A.H.; Nirwana, N. Analisis pengaruh fraud pentagon terhadap fraudulent financial reporting menggunakan Beneish model. Bongaya J. Res. Account. 2022, 5, 60–68. [Google Scholar] [CrossRef]
- Khatun, A.; Ghosh, R.; Kabir, S. Earnings manipulation behavior in the banking industry of Bangladesh: The strategical implication of Beneish M-score model. Arab Gulf J. Sci. Res. 2022, 40, 302–328. [Google Scholar] [CrossRef]
- Febrilia, E. Analisis Fraudulent Financial Reporting Menggunakan Beneish M-score Model Dengan Pengendalian Internal Sebagai Variabel Moderasi (Studi Empiris pada Perusahaan Pertambangan Batubara yang Terdaftar di Bursa Efek Indonesia tahun 2017–2020). Ph.D. Dissertation, UNSADA, Jakarta, Indonesia, 2022. [Google Scholar]
- Toplu, N.; Calayoglu, I.; Azaltun, M. Finansal bilgi manipülasyonu ortaya çikarmaya yönelik bir araştirma (Beneish model). Muhasebe Ve Finans. İncelemeleri Derg. 2021, 4, 16–25. [Google Scholar] [CrossRef]
- Nugroho, A.H.D.; Ardinata, M.; Ambarsari, R.Y. The effectiveness of pentagon fraud in detecting fraudulent financial reporting: Using the Beneish model in manufacturing companies on the Indonesia stock exchange. Adv. Econ. Bus. Manag. Res. 2020, 169, 389–394. [Google Scholar] [CrossRef]
- Valaskova, K.; Kliestik, T.; Svabova, L.; Adamko, P. Financial risk measurement and prediction modelling for sustainable development of business entities using regression analysis. Sustainability 2018, 10, 2144. [Google Scholar] [CrossRef]
- Olah, J.; Tudor, A.T.; Pashkus, V.; Alpatov, G. Preferences of Central European consumers in circular economy. Ekon. Manaz. Spektrum 2021, 15, 99–110. [Google Scholar] [CrossRef]
- Musova, Z.; Musa, H.; Drugdova, J.; Lazaroiu, G.; Alayasa, J. Consumer attitudes towards new circular models in the fashion industry. J. Compet. 2021, 13, 111–128. [Google Scholar] [CrossRef]
- Plumeyer, A.; Kottemann, P.; Boger, D.; Decker, R. Measuring brand image: A systematic review, practical guidance, and future research directions. Rev. Manag. Sci. 2019, 13, 227–265. [Google Scholar] [CrossRef]
- Cygler, J.; Wyka, S. Internal barriers to international R&D cooperation: The case of Polish high tech firms. Forum Sci. Oeconomia 2019, 7, 25–45. [Google Scholar] [CrossRef]
- Kral, P.; Kanderova, M.; Kascakova, A.; Nedelova, G.; Valencakova, V. Multivariate Statistical Methods with a Focus on Solving Problems of Economic Practice; Faculty of Economics UMB: Banska, Bystrica, 2009. [Google Scholar]
- Kliestik, T.; Valaskova, K.; Lazaroiu, G.; Kovacova, M.; Vrbka, J. Remaining financially healthy and competitive: The role of financial predictors. J. Compet. 2020, 12, 74–92. [Google Scholar] [CrossRef]
- Rilo, A.; Tavares, A.O.; Freire, P.; Zezere, J.L.; Haigh, I.D. Improving estuarine flood risk knowledge through documentary data using multiple correspondence analysis. Water 2022, 14, 3161. [Google Scholar] [CrossRef]
- Lyons, M. Creative Accounting? Assessing the Economic Impact of the Creative Industries: An input-output Approach for the Cardiff City-Region. Ph.D. Dissertation, Cardiff University, Cardiff, UK, 2022. [Google Scholar]
- Jouali, Y.; Kassi, M.A.; Faracha, A. Capital structure and company size as a determinant of creative accounting. Altern. Manag. Econ. 2022, 4, 101–118. [Google Scholar]
- Meldona, M.; Sudarmiatin, S.; Bidin, R. SMEs’ internationalization strategy in export creative industry: Case study from Kendang Djembe Creators at Blitar, East Java, Indonesia. Int. J. Res. Soc. Sci. Educ. 2022, 3, 1067–1079. [Google Scholar] [CrossRef]
- Poradova, M.; Kollar, B. Methods of earnings and risks management in insurance companies. In Proceedings of the Fifth International Conference on Economic and Business Management, Sanya, China, 17–19 October 2020; Volume 159, pp. 374–377. [Google Scholar]
- Denich, E.; Hajdu, D. Measurement of creative accounting by transparency and disclosure index (TDI) method in automobile industry. Public Financ. Q. 2021, 66, 381–396. [Google Scholar] [CrossRef]
- Musanovic, E.B.; Halilbegovic, S. Financial statement manipulation in failing small and medium-sized enterprises in Bosnia and Herzegovina. J. East. Eur. Cent. Asian Res. 2021, 8, 556–569. [Google Scholar]
- Achmad, T.; Ghozali, I.; Pamungkas, I.D. Hexagon fraud: Detection of fraudulent financial reporting in state-owned enterprises Indonesia. Economies 2022, 10, 13. [Google Scholar] [CrossRef]
- Drabkova, Z. CFEBT risk triangle of accounting errors and frauds–analytical tool of fraud risk management and reduction of information asymmetry between creators and users of accounting reports. In I. Jindrichovska & D. Kubickova, IFRS: Global Rules and Local Use; Anglo-American University: Prague, Czechia, 2017; pp. 286–299. [Google Scholar]
- Patel, P.C.; Tsionas, M.G.; Guedes, M.J. Benford’s law, small business financial reporting, and survival. MDE Manag. Decis. Econ. 2022, 43, 3301–3315. [Google Scholar] [CrossRef]
Size of the Enterprise | Criterion | ||
---|---|---|---|
Operational Revenue | Total Assets | Number of Employees | |
Medium | ≥1 million euros | ≥2 million euros | ≥15 |
Large | ≥10 million euros | ≥20 million euros | ≥150 |
Very large | ≥100 million euros | ≥200 million euros | ≥1000 |
Size of the Enterprise | Number |
---|---|
Small | 1168 |
Medium | 4349 |
Large | 1264 |
Very large | 225 |
Number of valid cases | 7006 |
Abbreviations | Variable |
---|---|
DSRI | Days’ sales as a receivable index |
GMI | Gross margin index |
AQI | Asset quality index |
SGI | Sales growth index |
DEPI | Depreciation index |
SGAI | Sales and general and administrative expenses index |
LVGI | Leverage index |
TATA | Total accruals to total assets |
Test | Value | Degrees of Freedom | p-Value |
---|---|---|---|
Pearson Chi-Square | 20.137 a | 6 | 0.003 |
Number of valid cases | 7006 |
Coefficient | Value | p-Value | |
---|---|---|---|
Nominal by nominal | Cramer’s V | 0.038 | 0.003 |
Contingency coefficient | 0.054 | 0.003 | |
Number of valid cases | 7006 |
M-Score 2019 | Mass | Score in Dimension | Inertia | Contribution | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | of Point to Inertia of Dimension | of Dimension to Inertia of Point | ||||||
1 | 2 | 1 | 2 | Total | |||||
Non-manipulated | 0.333 | −0.112 | 0.154 | 0.000 | 0.109 | 0.557 | 0.584 | 0.416 | 1.000 |
Possible manipulator | 0.333 | 0.274 | −0.018 | 0.001 | 0.659 | 0.008 | 0.998 | 0.002 | 1.000 |
Handling company | 0.333 | −0.162 | −0.136 | 0.000 | 0.231 | 0.435 | 0.791 | 0.209 | 1.000 |
Active total | 1.000 | 0.002 | 1.000 | 1.000 |
Size Classification 2019 | Mass | Score in Dimension | Inertia | Contribution | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | of Point to Inertia of Dimension | of Dimension to Inertia of Point | ||||||
1 | 2 | 1 | 2 | Total | |||||
Small company | 0.250 | −0.052 | 0.203 | 0.000 | 0.018 | 0.722 | 0.151 | 0.849 | 1.000 |
Medium sized company | 0.250 | −0.190 | −0.070 | 0.000 | 0.238 | 0.086 | 0.952 | 0.048 | 1.000 |
Large company | 0.250 | 0.326 | −0.034 | 0.001 | 0.698 | 0.020 | 0.996 | 0.004 | 1.000 |
Very large company | 0.250 | −0.083 | −0.099 | 0.000 | 0.046 | 0.173 | 0.653 | 0.347 | 1.000 |
Active total | 1.000 | 0.002 | 1.000 | 1.000 |
Test | Value | Degrees of Freedom | p-Value |
---|---|---|---|
Pearson Chi-Square | 14.786 b | 6 | 0.022 |
Number of valid cases | 7006 |
Coefficient | Value | p-Value | |
---|---|---|---|
Nominal by nominal | Cramer’s V | 0.032 | 0.022 |
Contingency coefficient | 0.046 | 0.022 | |
Number of valid cases | 7006 |
M-Score 2020 | Mass | Score in Dimension | Inertia | Contribution | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | of Point to Inertia of Dimension | of Dimension to Inertia of Point | ||||||
1 | 2 | 1 | 2 | Total | |||||
Non-manipulated | 0.333 | −0.051 | 0.189 | 0.000 | 0.022 | 0.645 | 0.132 | 0.868 | 1.000 |
Possible manipulator | 0.333 | 0.263 | −0.064 | 0.001 | 0.592 | 0.075 | 0.972 | 0.028 | 1.000 |
Handling company | 0.333 | −0.212 | −0.125 | 0.001 | 0.386 | 0.281 | 0.859 | 0.141 | 1.000 |
Active total | 1.000 | 0.002 | 1.000 | 1.000 |
Size Classification 2020 | Mass | Score in Dimension | Inertia | Contribution | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | of Point to Inertia of Dimension | of Dimension to Inertia of Point | ||||||
1 | 2 | 1 | 2 | Total | |||||
Small company | 0.250 | 0.265 | 0.145 | 0.001 | 0.452 | 0.285 | 0.876 | 0.124 | 1.000 |
Medium sized company | 0.250 | −0.285 | 0.102 | 0.001 | 0.522 | 0.142 | 0.942 | 0.058 | 1.000 |
Large company | 0.250 | 0.054 | −0.200 | 0.000 | 0.019 | 0.543 | 0.133 | 0.867 | 1.000 |
Very large company | 0.250 | −0.034 | −0.047 | 0.000 | 0.007 | 0.030 | 0.520 | 0.480 | 1.000 |
Active total | 1.000 | 0.002 | 1.000 | 1.000 |
Test | Value | Degrees of Freedom | p-Value |
---|---|---|---|
Pearson Chi-Square | 18.071 c | 6 | 0.006 |
Number of valid cases | 7006 |
Coefficient | Value | p-Value | |
---|---|---|---|
Nominal by nominal | Cramer’s V | 0.036 | 0.006 |
Contingency coefficient | 0.051 | 0.006 | |
Number of valid cases | 7006 |
M-Score 2021 | Mass | Score in Dimension | Inertia | Contribution | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | of Point to Inertia of Dimension | of Dimension to Inertia of Point | ||||||
1 | 2 | 1 | 2 | Total | |||||
Non-manipulated | 0.333 | 0.024 | −0.122 | 0.000 | 0.005 | 0.662 | 0.168 | 0.832 | 1.000 |
Possible manipulator | 0.333 | 0.234 | 0.070 | 0.001 | 0.450 | 0.217 | 0.984 | 0.016 | 1.000 |
Handling company | 0.333 | −0.258 | 0.052 | 0.001 | 0.545 | 0.121 | 0.992 | 0.008 | 1.000 |
Active total | 1.000 | 0.002 | 1.000 | 1.000 |
Size Classification 2021 | Mass | Score in Dimension | Inertia | Contribution | |||||
---|---|---|---|---|---|---|---|---|---|
1 | 2 | of Point to Inertia of Dimension | of Dimension to Inertia of Point | ||||||
1 | 2 | 1 | 2 | Total | |||||
Small company | 0.250 | −0.258 | −0.005 | 0.001 | 0.410 | 0.001 | 1.000 | 0.000 | 1.000 |
Medium sized company | 0.250 | −0.091 | 0.091 | 0.000 | 0.051 | 0.275 | 0.843 | 0.157 | 1.000 |
Large company | 0.250 | 0.290 | 0.052 | 0.001 | 0.517 | 0.090 | 0.994 | 0.006 | 1.000 |
Very large company | 0.250 | 0.059 | −0.138 | 0.000 | 0.021 | 0.634 | 0.496 | 0.504 | 1.000 |
Active total | 1.000 | 0.002 | 1.000 | 1.000 |
Size of the Enterprise | Year | ||
---|---|---|---|
2019 | 2020 | 2021 | |
Small | Non-manipulation | Possible manipulation | Manipulation |
Medium | Manipulation | Non-manipulation | Manipulation |
Large | Possible manipulation | Manipulation | Possible manipulation |
Very large | Manipulation | Manipulation | Non-manipulation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Blazek, R.; Durana, P.; Michulek, J. Renaissance of Creative Accounting Due to the Pandemic: New Patterns Explored by Correspondence Analysis. Stats 2023, 6, 411-430. https://doi.org/10.3390/stats6010025
Blazek R, Durana P, Michulek J. Renaissance of Creative Accounting Due to the Pandemic: New Patterns Explored by Correspondence Analysis. Stats. 2023; 6(1):411-430. https://doi.org/10.3390/stats6010025
Chicago/Turabian StyleBlazek, Roman, Pavol Durana, and Jakub Michulek. 2023. "Renaissance of Creative Accounting Due to the Pandemic: New Patterns Explored by Correspondence Analysis" Stats 6, no. 1: 411-430. https://doi.org/10.3390/stats6010025
APA StyleBlazek, R., Durana, P., & Michulek, J. (2023). Renaissance of Creative Accounting Due to the Pandemic: New Patterns Explored by Correspondence Analysis. Stats, 6(1), 411-430. https://doi.org/10.3390/stats6010025