Arsenic Removal by Adsorbents from Water for Small Communities’ Decentralized Systems: Performance, Characterization, and Effective Parameters
Abstract
:1. Introduction
1.1. Arsenic, A Toxic Metal
1.1.1. Arsenic Occurrence
1.1.2. Arsenic Structure
1.1.3. Arsenic Oxidation and Reduction
1.1.4. Arsenic Treatment
2. Conventional Methods for Arsenic Removal from Aqueous Solutions in Decentralized Systems Other Than Adsorption
2.1. Ion Exchange
2.2. Membrane Technologies
2.3. Coagulation-Flocculation
Type | Membrane Model | Initial Concentration (μg L−1 Unless Indicated Otherwise) | Process Conditions | Result | Ref. |
---|---|---|---|---|---|
RO | SWHR and BW-30 (FILMTEC) | As(V) = 50 AS(III) = 12 | pH: 2.1–10.4 P: 10–35 bar | SWHR rejection %> BW-30 rejection % Final concentration: 2.86 µg L−1 | [85] |
Desal AK, General Electric Co., USApH | As(III) = 50–400 | pH: 2–9 P: 0.41–0.82 MPa | Max: 90% | [86] | |
NF | NF-45, a fully aromatic, polyamide, thin-film composite NF membrane from FilmTec (Minnetonka, MN) | As(V) = 10–316 | pH: 4–8 P: 550 and 690 kPa (80–100 psig) | 60–90% | [87] |
NE 90 membrane (Woongjin Chemical, SouthKorea), a TFC negatively charged polyamidemembrane. | As(V) = 20–100 | pH: 4–10 | As(V): 89–96% As (III): 44–41% | [88] | |
UF | Negatively charged UF membrane, Osmonics (DESAL) GM | As(V)= 50–5000 | pH: 2–11 T: 20–40 °C | 88% | [89] |
Micellar-enhanced ultrafiltration (MEUF) (Amicon 8400, USA) | As(V) =243, 486 | Cationic surfactants: hexadecylpyridinium chloride (CPC), hexadecyltrimethyl ammonium bromide (CTAB), octadecylamine acetate (ODA) and benzalkonium chloride (BC) | CPC: 96%, CTAB: 94%. BC: 57% ODA: 80% | [90] | |
MF | Coagulation/microfiltration: a 0.2 lm membrane disc | As(V) = 100 | pH: 4.57–9.53 Coagulant: Ferric (1–7 mg L−1) | 92.8–98.2% | [91] |
Micro-/nanostructured MnO2 spheres and microfiltration (ADVANTEC MFS Inc., pore size: 0.2 lm, diameter: 47 mm) | As(V) = 0.2 mM | pH: 2–10 | >90% | [92] |
2.4. Oxidation
Photo-Oxidation
3. Adsorption
3.1. Adsorption Kinetic
Methods | Advantages | Disadvantages |
---|---|---|
Ion exchange |
|
|
Membranes |
|
|
Coagulation /flocculation |
|
|
Oxidation/AOP |
|
|
Adsorption |
|
|
3.2. Isotherm Models
3.2.1. Langmuir Isotherm
Adsorbents | Pseudo 1st or 2nd Order Kinetics | Co (mg L−1) | k | qe (µg g−1) | R2 | Ref. |
---|---|---|---|---|---|---|
Untreated powdered eggshell | 1st | 0.5 | 0.717 h−1 | 30 | 0.944 | [148] |
2nd | 18.47 g mg−1·h−1 | 724 | 0.999 | |||
Dolomitic sorbents | 1st | 2 | 6.8×10−3 µg g−1 min−1 | 652.04 | 0.970 | [149] |
2nd | 1.75×10−5 µg g−1 min−1 | 652.04 | 0.975 | |||
A MIL-53(Fe) | 1st 2nd | 5 | 0.016 min−1 0.0120 g mg−1 min−1 | 11,060 5180 | 0.833 0.994 | [150] |
Hematite nanoparticles | 2nd | 10 | 6.45 ± 3.11 g mg−1 h−1 (10–4) | 2899 ± 71.1 | 0.997 | [151] |
Hematite agglomerate | 2nd | 6.45 ± 1.39 g mg−1 h−1 (10–4) | 1689 ± 90.2 | 0.996 | ||
Copper (II) oxide nanoparticles | 1st 2nd | 1 | 0.02 min−1 0.03 g mg−1 min−1 | 742.48 1014.41 | 0.94 0.99 | [152] |
3.2.2. Freundlich Isotherm
4. Characterization Techniques for Investigation of Adsorbents Properties
4.1. Surface Morphology
4.2. Bulk Density and Particle Size
Adsorbents Type | Adsorbent | Proximate Analysis | Ultimate Analysis (%) | Specific Surface Area (m2 g−1) | Bulk Density (g cm−3) | Ref. | ||
---|---|---|---|---|---|---|---|---|
Carbon-based | Activated carbons | Moisture | 7.53% | C | 68.32 | 720 | 0.43 | [164,165] |
Volatile | 15.23% | H | 3.12 | |||||
Fixed carbon | 67.66% | N | 2.12 | |||||
Ash | 9.58% | O | 26.44 | |||||
Natural | Zeolites | Volatile | 9.24% | SiO2 | 86.1 | 211.97 | 0.068 | [166,167] |
Fixed carbon | 3.94% | Al2O3 | 5.79 | |||||
K2O | 0.65 | |||||||
Ash | 86.57% | Na2O | 5.08 | |||||
Fe2O3 | 0.039 | |||||||
CuO | 0.009 | |||||||
MnO | 0.064 | |||||||
Br | 0.04 | |||||||
TiO2 | 0.012 | |||||||
Cl | 2.22 | |||||||
ZnO | 0.005 | |||||||
Agricultural waste | Sawdust | Moisture | 5.83% | C | 46.1 | 303 | 0.152 | [168,169] |
Volatile | 76.44% | H | 6.39 | |||||
Fixed carbon | 12.02% | N | 0.37 | |||||
Ash | 5.73% | O | 41 | |||||
S | 0.55 | |||||||
Industrial waste/byproducts | Fly ash | Volatile content | 3.68% | SiO2 | 60.5 | 450 | 1.01 | [170,171] |
Fixed carbon | 22.30% | Al2O3 | 15.4 | |||||
Ash content | 74.00% | CaO | 2.9 | |||||
Fe2O3 | 4.9 | |||||||
MgO | 0.81 | |||||||
Biosorbent | Chitin/chitosan | Moisture | 15.40% | C | 49.7 | 300 | 1.008 | [172] |
Protein | 14.88% | H | 1.72 | |||||
Fiber | 76.40% | N | 0.2 | |||||
Ash | 9.40% | O | 48.3 | |||||
S | 0.1 |
Adsorbent | FTIR | XRD | Ref. |
---|---|---|---|
Carbon-based (Activated carbons) | [173] | ||
Natural (Zeolites) | [174] | ||
Agricultural waste (Sawdust) | [175] | ||
Industrial waste (Fly ash) | [176] | ||
Biosorbent (Chitosan) | [177] |
4.3. Dynamic Light Scattering (DLS)
4.4. Brunauer-Emmett-Teller (BET)-Surface Area
4.5. Crystallinity
4.6. Ultimate (Elemental) (XRF, CHN/O)
4.7. Proximate Analysis
4.8. Functional Groups
4.9. Zeta Potential (ZP)
5. Adsorbent Performance
5.1. Removal Efficiency and Adsorption Capacity
5.2. Reusability
5.3. Effects of Parameters on Adsorbent Performance
5.3.1. pH
5.3.2. Temperature
5.3.3. Contact Time
5.3.4. Initial Concentration
5.3.5. Adsorbent Dose
6. Arsenic Adsorbents
6.1. Low-Cost Adsorbents
6.1.1. Industrial Waste (Fly Ash-Based Adsorbents)
Adsorbent | Conditions | RE (%) and/or AC (mg g−1) | Ref. |
---|---|---|---|
Activated alumina | pH: 7.6, IC (As(III)) = 1 mg L−1 Contact time: 0–6 h | RE: 96.2 As(III) Rapid removal | [268] |
Manganese oxide | pH:7.9 IC: <1 mg L−1 | AC: (As (V)): 0.172 | [269] |
Porous resin loaded with crystalline hydrous zirconium oxide | IC: 0–5 mmol L−1 pH4.5 for As(V), pH: 8.0 for As(III) | Equilibrium time: ≥6 h AC (As(V)): 79.42, AC (As(III)): 53.94 | [270] |
Iron-oxide-impregnated activated carbon | Adsorbent concentrations 0–0.2 g L−1 pH: 7 IC (As(V)): 1 mg L−1 | AC: 4.5 | [271] |
Titanium dioxide-loaded Amberlite XAD-7 resin | pH (As(v)): 1–5, pH (As(III)): 5–10 Contact time (As(v)): 6 h Contact time (As(III)): 2 h | AC (As(V)): 9.74 AC (As(III)): 4.72 | [272] |
Adsorbate | Adsorbent | pH | Temperature (°C) | Contact Time (h) | As IC (mg L−1) | Adsorbent Dose (g L−1) | Max RE (%) | Max AC (mg g−1) | Ref. |
---|---|---|---|---|---|---|---|---|---|
As(III) As(V) | Industrial waste (fly ash) | 7.3 | 20 | 24 | 1 | 0.5 | 87.6 99.6 | - | [256] |
As(V) | Animal waste (mussel shell) | ~10 | - | 24 | 0.5–100 | 100 | 96 | - | [230] |
As(V) | Agricultural waste (1: natural orange peel 2: charred orange peel) | 6.5 | 20 | 24 | 200 | 4 | 68 98 | 32.7 60.9 | [273] |
As(III) | Natural materials (Fe–Mn binary oxides-loaded zeolite) | 7.0 | 25 | 3 | 2 mg L−1 | 0.5 | 99 | - | |
As(III) As(V) | Biosorbent (modified chitosan beads) | 7.0 | 25 | 36 | 5–60 | 1 | - | 54.2 39.1 | [198] |
6.1.2. Animal Waste (Fisheries Waste-Based Adsorbents)
Fly Ash Type | SiO2 | CaO | Al2O3 | Fe2O3 | K2O | MgO | Na2O | P2O5 | TiO2 |
---|---|---|---|---|---|---|---|---|---|
Coal | 54.08 | 3.27 | 26.38 | 6.12 | 1.64 | 1.55 | 0.51 | 0.80 | 1.44 |
Biomass | 36.03 | 27.41 | 8.33 | 4.12 | 4.92 | 3.56 | 0.87 | 3.21 | 0.94 |
Biomass | 44.41 | 23.84 | 10.80 | 3.63 | 3.99 | 3.76 | 1.27 | 2.02 | 1.05 |
Biomass | 20.38 | 40.13 | 8.20 | 17.40 | 2.41 | 3.26 | 0.43 | 3.20 | 0.42 |
Biomass | 37.43 | 10.96 | 12.97 | 9.74 | 3.21 | 2.30 | 1.50 | 1.61 | 0.91 |
6.1.3. Natural Materials (Zeolites)
6.1.4. Bio-Adsorbent (Chitin/Chitosan)
6.1.5. Agricultural Waste (Fruit Peels)
7. Application of Adsorption in Drinking Water Treatment Systems
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Z.; Ma, Z.; van der Kuijp, T.J.; Yuan, Z.; Huang, L. A Review of Soil Heavy Metal Pollution from Mines in China: Pollution and Health Risk Assessment. Sci. Total Environ. 2014, 468–469. [Google Scholar] [CrossRef]
- Tchounwou, P.B.; Yedjou, C.G.; Patlolla, A.K.; Sutton, D.J. Heavy Metal Toxicity and the Environment. EXS 2012, 101. Available online: https://sci-hub.mksa.top/10.1007/978-3-7643-8340-4_6 (accessed on 13 December 2022).
- Karcioglu, O.; Arslan, B. Poisoning in the Modern World: New Tricks for an Old Dog? BoD–Books on Demand: Norderstedt, Germany, 2019; ISBN 1838807853. [Google Scholar] [CrossRef]
- An, H.K.; Park, B.Y.; Kim, D.S. Crab Shell for the Removal of Heavy Metals from Aqueous Solution. Water Res. 2001, 35. [Google Scholar] [CrossRef] [PubMed]
- Chakraborty, R.; Asthana, A.; Singh, A.K.; Jain, B.; Susan, A.B.H. Adsorption of Heavy Metal Ions by Various Low-Cost Adsorbents: A Review. Int. J. Environ. Anal. Chem. 2022, 102, 342–379. [Google Scholar] [CrossRef]
- Lata, S.; Samadder, S.R. Removal of Arsenic from Water Using Nano Adsorbents and Challenges: A Review. J. Environ. Manag. 2016, 166, 387–406. [Google Scholar] [CrossRef]
- Shaji, E.; Santosh, M.; Sarath, K.V.; Prakash, P.; Deepchand, V.; Divya, B. V Arsenic Contamination of Groundwater: A Global Synopsis with Focus on the Indian Peninsula. Geosci. Front. 2021, 12, 101079. [Google Scholar] [CrossRef]
- Otgon, N.; Zhang, G.; Yang, C. Arsenic Removal from Waste Water by Ozone Oxidation Combined with Ferric Precipitation. Mong. J. Chem. 2016, 17, 18–22. [Google Scholar]
- Al-Ali, F.; Barrow, T.; Duan, L.; Jefferson, A.; Louis, S.; Luke, K.; Major, K.; Smoker, S.; Walker, S.; Yacobozzi, M. Vertebral Artery Ostium Atherosclerotic Plaque as a Potential Source of Posterior Circulation Ischemic Stroke: Result from Borgess Medical Center Vertebral Artery Ostium Stenting Registry. Stroke 2011, 42, 2544–2549. [Google Scholar] [CrossRef] [PubMed]
- Moon, K.; Guallar, E.; Navas-Acien, A. Arsenic Exposure and Cardiovascular Disease: An Updated Systematic Review. Curr. Atheroscler. Rep. 2012, 14, 542–555. [Google Scholar] [CrossRef] [Green Version]
- Moon, K.A.; Guallar, E.; Umans, J.G.; Devereux, R.B.; Best, L.G.; Francesconi, K.A.; Goessler, W.; Pollak, J.; Silbergeld, E.K.; Howard, B. V Association between Exposure to Low to Moderate Arsenic Levels and Incident Cardiovascular Disease: A Prospective Cohort Study. Ann. Intern. Med. 2013, 159, 649–659. [Google Scholar] [CrossRef] [Green Version]
- Kunrath, J.; Gurzau, E.; Gurzau, A.; Goessler, W.; Gelmann, E.R.; Thach, T.-T.; Mccarty, K.M.; Yeckel, C.W. Blood Pressure Hyperreactivity: An Early Cardiovascular Risk in Normotensive Men Exposed to Low-to-Moderate Inorganic Arsenic in Drinking Water. J. Hypertens. 2013, 31, 361. [Google Scholar] [CrossRef] [Green Version]
- Mazumder, D.N.G. Effect of Chronic Intake of Arsenic-Contaminated Water on Liver. Toxicol. Appl. Pharmacol. 2005, 206, 169–175. [Google Scholar] [CrossRef]
- Viraraghavan, T.; Subramanian, K.S.; Aruldoss, J.A. Arsenic in Drinking Water—Problems and Solutions. Water Sci. Technol. 1999, 40, 69–76. [Google Scholar] [CrossRef]
- Smedley, P.L.; Kinniburgh, D.G. A Review of the Source, Behaviour and Distribution of Arsenic in Natural Waters. Appl. Geochem. 2002, 17, 517–568. [Google Scholar] [CrossRef] [Green Version]
- Gong, Z.; Lu, X.; Ma, M.; Watt, C.; Le, X.C. Arsenic Speciation Analysis. Talanta 2002, 58, 77–96. [Google Scholar] [CrossRef]
- Bissen, M.; Frimmel, F.H. Arsenic—A Review. Part II: Oxidation of Arsenic and Its Removal in Water Treatment. Acta Hydrochim. Hydrobiol. 2003, 31, 97–107. [Google Scholar] [CrossRef]
- Flora, S.J.S. Arsenic: Chemistry, Occurrence, and Exposure. In Handbook of Arsenic Toxicology; Elsevier: Amsterdam, The Netherlands, 2015; pp. 1–49. [Google Scholar]
- O’Day, P.A. Chemistry and Mineralogy of Arsenic. Elements 2006, 2, 77–83. [Google Scholar] [CrossRef]
- Mohanty, D. Conventional as Well as Emerging Arsenic Removal Technologies—A Critical Review. Water Air Soil Pollut. 2017, 228, 1–21. [Google Scholar] [CrossRef]
- Huang, H.-H. The Eh-PH Diagram and Its Advances. Metals 2016, 6, 23. [Google Scholar] [CrossRef] [Green Version]
- Aghaei, E.; Wang, Z.; Tadesse, B.; Tabelin, C.B.; Quadir, Z.; Alorro, R.D. Performance Evaluation of Fe-Al Bimetallic Particles for the Removal of Potentially Toxic Elements from Combined Acid Mine Drainage-Effluents from Refractory Gold Ore Processing. Minerals 2021, 11, 590. [Google Scholar] [CrossRef]
- Rakhunde, R.; Jasudkar, D.; Deshpande, L.; Juneja, H.D.; Labhasetwar, P. Health Effects and Significance of Arsenic Speciation in Water. Int. J. Environ. Sci. Res. 2012, 1, 92–96. [Google Scholar]
- Asere, T.G.; Stevens, C.V.; Du Laing, G. Use of (Modified) Natural Adsorbents for Arsenic Remediation: A Review. Sci. Total Environ. 2019, 676, 706–720. [Google Scholar] [CrossRef]
- Mondal, M.K.; Garg, R. A Comprehensive Review on Removal of Arsenic Using Activated Carbon Prepared from Easily Available Waste Materials. Environ. Sci. Pollut. Res. 2017, 24, 13295–13306. [Google Scholar] [CrossRef] [PubMed]
- Mazumder, D.G.; Dasgupta, U.B. Chronic Arsenic Toxicity: Studies in West Bengal, India. Kaohsiung J. Med. Sci. 2011, 27, 360–370. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guan, X.; Du, J.; Meng, X.; Sun, Y.; Sun, B.; Hu, Q. Application of Titanium Dioxide in Arsenic Removal from Water: A Review. J. Hazard. Mater. 2012, 215, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Hao, L.; Liu, M.; Wang, N.; Li, G. A Critical Review on Arsenic Removal from Water Using Iron-Based Adsorbents. RSC Adv. 2018, 8, 39545–39560. [Google Scholar] [CrossRef]
- Shevade, S.S. Utility of Zeolites in Arsenic Removal from Water. In Proceedings of the Abstracts of Papers of the American Chemical Society 1155 16th St, Nw, Washington, DC, USA, 7–11 September 2003; Volume 226, pp. U589–U590. [Google Scholar]
- Camacho, L.M.; Ponnusamy, S.; Campos, I.; Davis, T.A.; Deng, S. Evaluation of Novel Modified Activated Alumina as Adsorbent for Arsenic Removal. In Handbook of Arsenic Toxicology; Elsevier: Amsterdam, The Netherlands, 2015; pp. 121–136. [Google Scholar]
- Habuda-Stanić, M.; Nujić, M. Arsenic Removal by Nanoparticles: A Review. Environ. Sci. Pollut. Res. 2015, 22, 8094–8123. [Google Scholar] [CrossRef]
- Hua, J. Synthesis and Characterization of Gold Nanoparticles (AuNPs) and ZnO Decorated Zirconia as a Potential Adsorbent for Enhanced Arsenic Removal from Aqueous Solution. J. Mol. Struct. 2021, 1228, 129482. [Google Scholar] [CrossRef]
- Reddy, K.J.; McDonald, K.J.; King, H. A Novel Arsenic Removal Process for Water Using Cupric Oxide Nanoparticles. J. Colloid Interface Sci. 2013, 397, 96–102. [Google Scholar] [CrossRef] [Green Version]
- Kalaruban, M.; Loganathan, P.; Nguyen, T.V.; Nur, T.; Johir, M.A.H.; Nguyen, T.H.; Trinh, M.V.; Vigneswaran, S. Iron-Impregnated Granular Activated Carbon for Arsenic Removal: Application to Practical Column Filters. J. Environ. Manag. 2019, 239, 235–243. [Google Scholar] [CrossRef]
- Basu, T.; Ghosh, U.C. Influence of Groundwater Occurring Ions on the Kinetics of As (III) Adsorption Reaction with Synthetic Nanostructured Fe (III)–Cr (III) Mixed Oxide. Desalination 2011, 266, 25–32. [Google Scholar] [CrossRef]
- Balouch, A.; Jagirani, M.S.; Mustafai, F.A.; Tunio, A.; Sabir, S.; Mahar, A.M.; Rajar, K.; Shah, M.T.; Samoon, M.K. Arsenic Remediation by Synthetic and Natural Adsorbents. Pak. J. Anal. Environ. Chem. 2017, 18, 18–36. [Google Scholar]
- Bhowmik, T.; Sarkar, S.; Bhattacharya, A.; Mukherjee, A. A Review of Arsenic Mitigation Strategies in Community Water Supply with Insights from South Asia: Options, Opportunities and Constraints. Environ. Sci. Water Res. Technol. 2022, 8, 2491–2520. [Google Scholar] [CrossRef]
- Adeloju, S.B.; Khan, S.; Patti, A.F. Arsenic Contamination of Groundwater and Its Implications for Drinking Water Quality and Human Health in Under-Developed Countries and Remote Communities—A Review. Appl. Sci. 2021, 11, 1926. [Google Scholar] [CrossRef]
- Gikas, P.; Tchobanoglous, G. The Role of Satellite and Decentralized Strategies in Water Resources Management. J. Environ. Manag. 2009, 90, 144–152. [Google Scholar] [CrossRef] [PubMed]
- Zaharia, C. Decentralized Wastewater Treatment Systems: Efficiency and Its Estimated Impact against Onsite Natural Water Pollution Status. A Romanian Case Study. Process Saf. Environ. Prot. 2017, 108, 74–88. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Tran, H.N.; Vu, H.A.; Trinh, M.V.; Nguyen, T.V.; Loganathan, P.; Vigneswaran, S.; Nguyen, T.M.; Vu, D.L.; Nguyen, T.H.H. Laterite as a Low-Cost Adsorbent in a Sustainable Decentralized Filtration System to Remove Arsenic from Groundwater in Vietnam. Sci. Total Environ. 2020, 699, 134267. [Google Scholar] [CrossRef] [PubMed]
- Qu, X.; Brame, J.; Li, Q.; Alvarez, P.J.J. Nanotechnology for a Safe and Sustainable Water Supply: Enabling Integrated Water Treatment and Reuse. Acc. Chem. Res. 2013, 46, 834–843. [Google Scholar] [CrossRef]
- Le, D.Q.; Pham, T.T.; Pham, H.G.; Nguyen, M.K. Evaluation of Iron-Rich Adsorbent to Remove Arsenic from Groundwater in Decentralized Water Supply Treatment. Vietnam. J. Sci. Technol. Eng. 2018, 60, 78–81. [Google Scholar] [CrossRef] [Green Version]
- Nanseu-Njiki, C.P.; Gwenzi, W.; Pengou, M.; Rahman, M.A.; Noubactep, C. Fe0/H2O Filtration Systems for Decentralized Safe Drinking Water: Where to from Here? Water 2019, 11, 429. [Google Scholar] [CrossRef] [Green Version]
- Decentralized Water Treatment Market | Size, Growth | 2021-26. Available online: https://www.arizton.com/market-reports/decentralized-water-treatment-market (accessed on 13 December 2022).
- Kabir, F.; Chowdhury, S. Arsenic Removal Methods for Drinking Water in the Developing Countries: Technological Developments and Research Needs. Environ. Sci. Pollut. Res. 2017, 24, 24102–24120. [Google Scholar] [CrossRef]
- Nalbandian, M.J.; Kim, S.; Gonzalez, H.; Myung, N.V.; Cwiertny, D.M. Recent Advances and Remaining Barriers to the Development of Electrospun Nanofiber and Nanofiber Composites for Point-of-Use and Point-of-Entry Water Treatment Systems. J. Hazard. Mater. Adv. 2022, 8, 100204. [Google Scholar] [CrossRef]
- Chen, A.S.C.; Wang, L.; Sorg, T.J.; Lytle, D.A. Removing Arsenic and Co-Occurring Contaminants from Drinking Water by Full-Scale Ion Exchange and Point-of-Use/Point-of-Entry Reverse Osmosis Systems. Water Res. 2020, 172, 115455. [Google Scholar] [CrossRef]
- Sarode, S.; Upadhyay, P.; Khosa, M.A.; Mak, T.; Shakir, A.; Song, S.; Ullah, A. Overview of Wastewater Treatment Methods with Special Focus on Biopolymer Chitin-Chitosan. Int. J. Biol. Macromol. 2019, 121, 1086–1100. [Google Scholar] [CrossRef]
- Al-Asheh, S.; Aidan, A. A Comprehensive Method of Ion Exchange Resins Regeneration and Its Optimization for Water Treatment. In Promising Techniques for Wastewater Treatment and Water Quality Assessment; IntechOpen, 2020; ISBN 1838819010. [Google Scholar] [CrossRef]
- Zakhar, R.; Derco, J.; Cacho, F. An Overview of Main Arsenic Removal Technologies. Acta Chim. Slovaca 2018, 11, 107–113. [Google Scholar] [CrossRef] [Green Version]
- Kartinen, E.O., Jr.; Martin, C.J. An Overview of Arsenic Removal Processes. Desalination 1995, 103, 79–88. [Google Scholar] [CrossRef]
- Dixit, F.; Dutta, R.; Barbeau, B.; Berube, P.; Mohseni, M. PFAS Removal by Ion Exchange Resins: A Review. Chemosphere 2021, 272, 129777. [Google Scholar] [CrossRef]
- Höll, W.H. Mechanisms of Arsenic Removal from Water. Environ. Geochem. Health 2010, 32, 287–290. [Google Scholar] [CrossRef]
- Petrusevski, B.; Sharma, S.; Schippers, J.C.; Shordt, K. Arsenic in Drinking Water. Delft IRC Int. Water Sanit. Cent. 2007, 17, 36–44. [Google Scholar]
- Fox, K.R. Field Experience With Point-of-Use Treatment Systems for Arsenic Removal. J.-Am. Water Work Assoc. 1989, 81, 94–101. [Google Scholar] [CrossRef]
- Wang, L.; Chen, A.; Fields, K. Arsenic Removal from Drinking Water by Ion Exchange and Activated Alumina Plants; Environmental Protection Agency: Cincinnati, OH, USA, 2000.
- Greenleaf, J.E.; Lin, J.C.; Sengupta, A.K. Two Novel Applications of Ion Exchange Fibers: Arsenic Removal and Chemical-Free Softening of Hard Water. Environ. Prog. 2006, 25. [Google Scholar] [CrossRef]
- Urbano, B.F.; Rivas, B.L.; Martinez, F.; Alexandratos, S.D. Water-Insoluble Polymer-Clay Nanocomposite Ion Exchange Resin Based on N-Methyl-d-Glucamine Ligand Groups for Arsenic Removal. React. Funct. Polym. 2012, 72. [Google Scholar] [CrossRef]
- Çermikli, E.; Şen, F.; Altıok, E.; Wolska, J.; Cyganowski, P.; Kabay, N.; Bryjak, M.; Arda, M.; Yüksel, M. Performances of Novel Chelating Ion Exchange Resins for Boron and Arsenic Removal from Saline Geothermal Water Using Adsorption-Membrane. Filtr. Hybrid Process. Desalination 2020, 491, 114504. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, K.; Tian, Z.; Huang, W.; Zhao, L. Removal of Arsenic in Water by an Ion-exchange Fiber with Amino Groups. J. Appl. Polym. Sci. 2008, 110, 3934–3940. [Google Scholar] [CrossRef]
- Lee, C.-G.; Alvarez, P.J.J.; Nam, A.; Park, S.-J.; Do, T.; Choi, U.-S.; Lee, S.-H. Arsenic (V) Removal Using an Amine-Doped Acrylic Ion Exchange Fiber: Kinetic, Equilibrium, and Regeneration Studies. J. Hazard. Mater. 2017, 325, 223–229. [Google Scholar] [CrossRef]
- Rathi, B.S.; Kumar, P.S.; Ponprasath, R.; Rohan, K.; Jahnavi, N. An Effective Separation of Toxic Arsenic from Aquatic Environment Using Electrochemical Ion Exchange Process. J. Hazard. Mater. 2021, 412, 125240. [Google Scholar] [CrossRef] [PubMed]
- Ghurye, G.L.; Clifford, D.A.; Tripp, A.R. Combined Arsenic and Nitrate Removal by Ion Exchange. J.-Am. Water Work. Assoc. 1999, 91, 85–96. [Google Scholar] [CrossRef]
- Amini, A.; Kim, Y.; Zhang, J.; Boyer, T.; Zhang, Q. Environmental and Economic Sustainability of Ion Exchange Drinking Water Treatment for Organics Removal. J. Clean. Prod. 2015, 104, 413–421. [Google Scholar] [CrossRef]
- Edgar, M.; Boyer, T.H. Nitrate Adsorption and Desorption during Biological Ion Exchange. Sep. Purif. Technol. 2022, 285, 120363. [Google Scholar] [CrossRef]
- Korak, J.A.; Mungan, A.L.; Watts, L.T. Critical Review of Waste Brine Management Strategies for Drinking Water Treatment Using Strong Base Ion Exchange. J. Hazard. Mater. 2022, 441, 129473. [Google Scholar] [CrossRef]
- Gaikwad, R.W.; Sapkal, V.S.; Sapkal, R.S. Ion Exchange System Design for Removal of Heavy Metals from Acid Mine Drainage Wastewater. Acta Montan. Slovaca 2010, 15, 298. [Google Scholar]
- Mohan, D.; Pittman Jr, C.U. Arsenic Removal from Water/Wastewater Using Adsorbents—A Critical Review. J. Hazard. Mater. 2007, 142, 1–53. [Google Scholar] [CrossRef]
- Tarpeh, W.A.; Udert, K.M.; Nelson, K.L. Comparing Ion Exchange Adsorbents for Nitrogen Recovery from Source-Separated Urine. Environ. Sci. Technol. 2017, 51, 2373–2381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Inglezakis, V.J.; Zorpas, A.A.; Loizidou, M.D.; Grigoropoulou, H.P. The Effect of Competitive Cations and Anions on Ion Exchange of Heavy Metals. Sep. Purif. Technol. 2005, 46, 202–207. [Google Scholar] [CrossRef]
- Inglezakis, V.J.; Zorpas, A.A.; Loizidou, M.D.; Grigoropoulou, H.P. Simultaneous Removal of Metals Cu2+, Fe3+ and Cr3+ with Anions SO42− and HPO42− Using Clinoptilolite. Microporous Mesoporous Mater. 2003, 61, 167–171. [Google Scholar] [CrossRef]
- Shih, M.-C. An Overview of Arsenic Removal by Pressure-Drivenmembrane Processes. Desalination 2005, 172, 85–97. [Google Scholar] [CrossRef]
- Askenaizer, D. Drinking Water Quality and Treatment. Encycl. Phys. Sci. Technol. 2003, 3, 651–751. [Google Scholar]
- Liu, X.; Ren, Z.; Ngo, H.H.; He, X.; Desmond, P.; Ding, A. Membrane Technology for Rainwater Treatment and Reuse: A Mini Review. Water Cycle 2021, 2, 51–63. [Google Scholar] [CrossRef]
- Peter-Varbanets, M.; Zurbrügg, C.; Swartz, C.; Pronk, W. Decentralized Systems for Potable Water and the Potential of Membrane Technology. Water Res. 2009, 43, 245–265. [Google Scholar] [CrossRef]
- Abdel-Karim, A.; Leaper, S.; Skuse, C.; Zaragoza, G.; Gryta, M.; Gorgojo, P. Membrane Cleaning and Pretreatments in Membrane Distillation–a Review. Chem. Eng. J. 2021, 422, 129696. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, J.; Tang, C.Y.; Kimura, K.; Wang, Q.; Han, X. Membrane Cleaning in Membrane Bioreactors: A Review. J. Memb. Sci. 2014, 468, 276–307. [Google Scholar] [CrossRef]
- Peters, C.D.; Rantissi, T.; Gitis, V.; Hankins, N.P. Retention of Natural Organic Matter by Ultrafiltration and the Mitigation of Membrane Fouling through Pre-Treatment, Membrane Enhancement, and Cleaning-A Review. J. Water Process Eng. 2021, 44, 102374. [Google Scholar] [CrossRef]
- Choong, T.S.Y.; Chuah, T.G.; Robiah, Y.; Koay, F.L.G.; Azni, I. Arsenic Toxicity, Health Hazards and Removal Techniques from Water: An Overview. Desalination 2007, 217, 139–166. [Google Scholar] [CrossRef]
- Sonal, S.; Mishra, B.K. Role of Coagulation/Flocculation Technology for the Treatment of Dye Wastewater: Trend and Future Aspects. In Water Pollution and Management Practices; Springer: Berlin/Heidelberg, Germany, 2021; pp. 303–331. [Google Scholar]
- Naceradska, J.; Pivokonska, L.; Pivokonsky, M. On the Importance of PH Value in Coagulation. J. Water Supply Res. Technol. 2019, 68, 222–230. [Google Scholar] [CrossRef]
- Ranjbar, F.; Karrabi, M.; Danesh, S.; Gheibi, M. Improvement of Wastewater Sludge Dewatering Using Ferric Chloride, Aluminum Sulfate, and Calcium Oxide (Experimental Investigation and Descriptive Statistical Analysis). Water Environ. Res. 2021, 93, 1138–1149. [Google Scholar] [CrossRef]
- Mendoza-Chávez, C.E.; Carabin, A.; Dirany, A.; Drogui, P.; Buelna, G.; Meza-Montenegro, M.M.; Ulloa-Mercado, R.G.; Diaz-Tenorio, L.M.; Leyva-Soto, L.A.; Gortáres-Moroyoqui, P. Statistical Optimization of Arsenic Removal from Synthetic Water by Electrocoagulation System and Its Application with Real Arsenic-Polluted Groundwater. Environ. Technol. 2021, 42, 3463–3474. [Google Scholar] [CrossRef] [PubMed]
- Akin, I.; Arslan, G.; Tor, A.; Cengeloglu, Y.; Ersoz, M. Removal of Arsenate [As (V)] and Arsenite [As (III)] from Water by SWHR and BW-30 Reverse Osmosis. Desalination 2011, 281, 88–92. [Google Scholar] [CrossRef]
- Chang, F.; Liu, W.; Wang, X. Comparison of Polyamide Nanofiltration and Low-Pressure Reverse Osmosis Membranes on As (III) Rejection under Various Operational Conditions. Desalination 2014, 334, 10–16. [Google Scholar] [CrossRef]
- Vrijenhoek, E.M.; Waypa, J.J. Arsenic Removal from Drinking Water by a “Loose” Nanofiltration Membrane. Desalination 2000, 130, 265–277. [Google Scholar] [CrossRef]
- Nguyen, C.M.; Bang, S.; Cho, J.; Kim, K.-W. Performance and Mechanism of Arsenic Removal from Water by a Nanofiltration Membrane. Desalination 2009, 245, 82–94. [Google Scholar] [CrossRef]
- Brandhuber, P.; Amy, G. Arsenic Removal by a Charged Ultrafiltration Membrane—Influences of Membrane Operating Conditions and Water Quality on Arsenic Rejection. Desalination 2001, 140, 1–14. [Google Scholar] [CrossRef]
- Iqbal, J.; Kim, H.-J.; Yang, J.-S.; Baek, K.; Yang, J.-W. Removal of Arsenic from Groundwater by Micellar-Enhanced Ultrafiltration (MEUF). Chemosphere 2007, 66, 970–976. [Google Scholar] [PubMed]
- Zhang, G.; Li, X.; Wu, S.; Gu, P. Effect of Source Water Quality on Arsenic (V) Removal from Drinking Water by Coagulation/Microfiltration. Environ. Earth Sci. 2012, 66, 1269–1277. [Google Scholar] [CrossRef]
- Zhang, T.; Sun, D.D. Removal of Arsenic from Water Using Multifunctional Micro-/Nano-Structured MnO2 Spheres and Microfiltration. Chem. Eng. J. 2013, 225, 271–279. [Google Scholar] [CrossRef]
- Laky, D.; Licskó, I. Arsenic Removal by Ferric-Chloride Coagulation–Effect of Phosphate, Bicarbonate and Silicate. Water Sci. Technol. 2011, 64, 1046–1055. [Google Scholar] [CrossRef]
- Baskan, M.B.; Pala, A. A Statistical Experiment Design Approach for Arsenic Removal by Coagulation Process Using Aluminum Sulfate. Desalination 2010, 254, 42–48. [Google Scholar] [CrossRef]
- Song, S.; Lopez-Valdivieso, A.; Hernandez-Campos, D.J.; Peng, C.; Monroy-Fernandez, M.G.; Razo-Soto, I. Arsenic Removal from High-Arsenic Water by Enhanced Coagulation with Ferric Ions and Coarse Calcite. Water Res. 2006, 40, 364–372. [Google Scholar] [CrossRef] [PubMed]
- Lichtfouse, E.; Morin-Crini, N.; Fourmentin, M.; Zemmouri, H.; do Carmo Nascimento, I.O.; Queiroz, L.M.; Tadza, M.Y.M.; Picos-Corrales, L.A.; Pei, H.; Wilson, L.D. Chitosan for Direct Bioflocculation of Wastewater. Environ. Chem. Lett. 2019, 17, 1603–1621. [Google Scholar] [CrossRef] [Green Version]
- Sieliechi, J.M.; Kayem, G.J.; Sandu, I. Effect of Water Treatment Residuals (Aluminum and Iron Ions) on Human Health and Drinking Water Distribution Systems. Int. J. Conserv. Sci. 2010, 1, 175–182. [Google Scholar]
- Muruganandam, L.; Kumar, M.P.S.; Jena, A.; Gulla, S.; Godhwani, B. Treatment of Waste Water by Coagulation and Flocculation Using Biomaterials. IOP Conf. Ser. Mater. Sci. Eng. 2017, 263, 032006. [Google Scholar] [CrossRef]
- Jeon, S.-B.; Kim, S.; Park, S.-J.; Seol, M.-L.; Kim, D.; Chang, Y.K.; Choi, Y.-K. Self-Powered Electro-Coagulation System Driven by a Wind Energy Harvesting Triboelectric Nanogenerator for Decentralized Water Treatment. Nano Energy 2016, 28, 288–295. [Google Scholar] [CrossRef]
- McBeath, S.T.; English, J.T.; Wilkinson, D.P.; Graham, N.J.D. Circumneutral Electrosynthesis of Ferrate Oxidant: An Emerging Technology for Small, Remote and Decentralised Water Treatment Applications. Curr. Opin. Electrochem. 2021, 27, 100680. [Google Scholar] [CrossRef]
- Holt, P.K.; Barton, G.W.; Mitchell, C.A. The Future for Electrocoagulation as a Localised Water Treatment Technology. Chemosphere 2005, 59, 355–367. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Um, I.; Yoon, J. Arsenic (III) Oxidation by Iron (VI)(Ferrate) and Subsequent Removal of Arsenic (V) by Iron (III) Coagulation. Environ. Sci. Technol. 2003, 37, 5750–5756. [Google Scholar] [CrossRef] [PubMed]
- Sharma, V.K.; Dutta, P.K.; Ray, A.K. Review of Kinetics of Chemical and Photocatalytical Oxidation of Arsenic (III) as Influenced by PH. J. Environ. Sci. Health Part A 2007, 42, 997–1004. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-J.; Nriagu, J. Oxidation of Arsenite in Groundwater Using Ozone and Oxygen. Sci. Total Environ. 2000, 247, 71–79. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Qu, J. Review on Heterogeneous Oxidation and Adsorption for Arsenic Removal from Drinking Water. J. Environ. Sci. 2021, 110, 178–188. [Google Scholar] [CrossRef]
- Sorlini, S.; Gialdini, F. Conventional Oxidation Treatments for the Removal of Arsenic with Chlorine Dioxide, Hypochlorite, Potassium Permanganate and Monochloramine. Water Res. 2010, 44, 5653–5659. [Google Scholar] [CrossRef]
- Ike, I.A.; Linden, K.G.; Orbell, J.D.; Duke, M. Critical Review of the Science and Sustainability of Persulphate Advanced Oxidation Processes. Chem. Eng. J. 2018, 338, 651–669. [Google Scholar] [CrossRef]
- Du, J.; Zhang, B.; Li, J.; Lai, B. Decontamination of Heavy Metal Complexes by Advanced Oxidation Processes: A Review. Chin. Chem. Lett. 2020, 31, 2575–2582. [Google Scholar] [CrossRef]
- Mohammed, H.A.; Ali, S.A.K.; Basheer, M.I. Heavy Metal Ions Removal Using Advanced Oxidation (UV/H2O2) Technique. IOP Conf. Ser. Mater. Sci. Eng. 2020, 870, 12026. [Google Scholar] [CrossRef]
- Matilainen, A.; Sillanpää, M. Removal of Natural Organic Matter from Drinking Water by Advanced Oxidation Processes. Chemosphere 2010, 80, 351–365. [Google Scholar] [CrossRef] [PubMed]
- Hodges, B.C.; Cates, E.L.; Kim, J.-H. Challenges and Prospects of Advanced Oxidation Water Treatment Processes Using Catalytic Nanomaterials. Nat. Nanotechnol. 2018, 13, 642–650. [Google Scholar] [CrossRef] [PubMed]
- Miklos, D.B.; Remy, C.; Jekel, M.; Linden, K.G.; Drewes, J.E.; Hübner, U. Evaluation of Advanced Oxidation Processes for Water and Wastewater Treatment–A Critical Review. Water Res. 2018, 139, 118–131. [Google Scholar] [CrossRef]
- von Gunten, U. Oxidation Processes in Water Treatment: Are We on Track? Environ. Sci. Technol. 2018, 52, 5062–5075. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wang, H.; Li, Y.; Wang, B.; Huang, J.; Deng, S.; Yu, G.; Wang, Y. Removal of Micropollutants by an Electrochemically Driven UV/Chlorine Process for Decentralized Water Treatment. Water Res. 2020, 183, 116115. [Google Scholar] [CrossRef]
- Gurung, K.; Ncibi, M.C.; Shestakova, M.; Sillanpää, M. Removal of Carbamazepine from MBR Effluent by Electrochemical Oxidation (EO) Using a Ti/Ta2O5-SnO2 Electrode. Appl. Catal. B Environ. 2018, 221, 329–338. [Google Scholar] [CrossRef]
- Oturan, M.A.; Aaron, J.-J. Advanced Oxidation Processes in Water/Wastewater Treatment: Principles and Applications. A Review. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2577–2641. [Google Scholar] [CrossRef]
- Yu, X.-Y.; Luo, T.; Jia, Y.; Zhang, Y.-X.; Liu, J.-H.; Huang, X.-J. Porous Hierarchically Micro-/Nanostructured MgO: Morphology Control and Their Excellent Performance in As (III) and As (V) Removal. J. Phys. Chem. C 2011, 115, 22242–22250. [Google Scholar] [CrossRef]
- Iervolino, G.; Vaiano, V.; Rizzo, L.; Sarno, G.; Farina, A.; Sannino, D. Removal of Arsenic from Drinking Water by Photo-catalytic Oxidation on MoOx/TiO2 and Adsorption on Γ-Al2O3. J. Chem. Technol. Biotechnol. 2016, 91, 88–95. [Google Scholar] [CrossRef]
- Rosales, M.; Garcia, A.; Fuenzalida, V.M.; Espinoza-González, R.; Song, G.; Wang, B.; Yu, J.; Gracia, F.; Rosenkranz, A. Unprecedented Arsenic Photo-Oxidation Behavior of Few-and Multi-Layer Ti3C2Tx Nano-Sheets. Appl. Mater. Today 2020, 20, 100769. [Google Scholar] [CrossRef]
- Ray, S.; Lalman, J.A. Fabrication and Characterization of an Immobilized Titanium Dioxide (TiO2) Nanofiber Photocatalyst. Mater. Today Proc. 2016, 3, 1582–1591. [Google Scholar]
- Lescano, M.; Zalazar, C.; Cassano, A.; Brandi, R. Kinetic Modeling of Arsenic (III) Oxidation in Water Employing the UV/H2O2 Process. Chem. Eng. J. 2012, 211, 360–368. [Google Scholar] [CrossRef]
- Miller, S.M.; Zimmerman, J.B. Novel, Bio-Based, Photoactive Arsenic Sorbent: TiO2-Impregnated Chitosan Bead. Water Res. 2010, 44, 5722–5729. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Feng, W.; Xu, W.; Liu, P. An in Situ Gold-Decorated 3D Branched ZnO Nanocomposite and Its Enhanced Absorption and Photo-Oxidation Performance for Removing Arsenic from Water. RSC Adv. 2016, 6, 112877–112884. [Google Scholar] [CrossRef]
- Zaw, M.; Emett, M.T. Arsenic Removal from Water Using Advanced Oxidation Processes. Toxicol. Lett. 2002, 133, 113–118. [Google Scholar] [CrossRef]
- Gallegos-Garcia, M.; Ramírez-Muñiz, K.; Song, S. Arsenic Removal from Water by Adsorption Using Iron Oxide Minerals as Adsorbents: A Review. Miner. Process. Extr. Metall. Rev. 2012, 33, 301–315. [Google Scholar] [CrossRef]
- Siddiqui, S.I.; Chaudhry, S.A. Iron Oxide and Its Modified Forms as an Adsorbent for Arsenic Removal: A Comprehensive Recent Advancement. Process Saf. Environ. Prot. 2017, 111, 592–626. [Google Scholar] [CrossRef]
- Babaee, Y.; Mulligan, C.N.; Rahaman, M.S. Removal of Arsenic (III) and Arsenic (V) from Aqueous Solutions through Adsorption by Fe/Cu Nanoparticles. J. Chem. Technol. Biotechnol. 2018, 93, 63–71. [Google Scholar] [CrossRef]
- Elwakeel, K.Z.; Elgarahy, A.M.; Khan, Z.A.; Almughamisi, M.S.; Al-Bogami, A.S. Perspectives Regarding Metal/Mineral-Incorporating Materials for Water Purification: With Special Focus on Cr (vi) Removal. Mater. Adv. 2020, 1, 1546–1574. [Google Scholar] [CrossRef]
- Dhoke, C.; Zaabout, A.; Cloete, S.; Amini, S. Review on Reactor Configurations for Adsorption-Based CO2 Capture. Ind. Eng. Chem. Res. 2021, 60, 3779–3798. [Google Scholar] [CrossRef]
- Brandani, S. Kinetics of Liquid Phase Batch Adsorption Experiments. Adsorption 2021, 27, 353–368. [Google Scholar] [CrossRef]
- Revellame, E.D.; Fortela, D.L.; Sharp, W.; Hernandez, R.; Zappi, M.E. Adsorption Kinetic Modeling Using Pseudo-First Order and Pseudo-Second Order Rate Laws: A Review. Clean. Eng. Technol. 2020, 1, 100032. [Google Scholar] [CrossRef]
- Núñez, D.; Serrano, J.A.; Mancisidor, A.; Elgueta, E.; Varaprasad, K.; Oyarzún, P.; Cáceres, R.; Ide, W.; Rivas, B.L. Heavy Metal Removal from Aqueous Systems Using Hydroxyapatite Nanocrystals Derived from Clam Shells. RSC Adv. 2019, 9. [Google Scholar] [CrossRef] [Green Version]
- Jasrotia, S.; Kansal, A.; Kishore, V.V.N. Application of Solar Energy for Water Supply and Sanitation in Arsenic Affected Rural Areas: A Study for Kaudikasa Village, India. J. Clean. Prod. 2013, 60, 102–106. [Google Scholar] [CrossRef]
- Baigorria, E.; Cano, L.; Alvarez, V.A. Nanoclays as Eco-Friendly Adsorbents of Arsenic for Water Purification. In Handbook of Nanomaterials and Nanocomposites for Energy and Environmental Applications; Springer: Cham, Switzerland, 2021; pp. 455–470. [Google Scholar]
- Ahmed, M.F. An Overview of Arsenic Removal Technologies in Bangladesh and India. In Proceedings of the BUET-UNU International Workshop on Technologies for Arsenic Removal from Drinking Water, Citeseer, Dhaka, Bengal, 5 May 2001; pp. 5–7. [Google Scholar]
- Alka, S.; Shahir, S.; Ibrahim, N.; Ndejiko, M.J.; Vo, D.-V.N.; Abd Manan, F. Arsenic Removal Technologies and Future Trends: A Mini Review. J. Clean. Prod. 2021, 278, 123805. [Google Scholar] [CrossRef]
- Zhang, W.; Cheng, W.; Ziemann, E.; Be’er, A.; Lu, X.; Elimelech, M.; Bernstein, R. Functionalization of Ultrafiltration Membrane with Polyampholyte Hydrogel and Graphene Oxide to Achieve Dual Antifouling and Antibacterial Properties. J. Memb. Sci. 2018, 565, 293–302. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, H.; Bernstein, R. Zwitterionic Hydrogel Modified Reduced Graphene Oxide/ZnO Nanocomposite Blended Membrane with High Antifouling and Antibiofouling Performances. J. Colloid Interface Sci. 2022, 613, 426–434. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, Y.; Ziemann, E.; Be’Er, A.; Bashouti, M.Y.; Elimelech, M.; Bernstein, R. One-Step Sonochemical Synthesis of a Reduced Graphene Oxide–ZnO Nanocomposite with Antibacterial and Antibiofouling Properties. Environ. Sci. Nano 2019, 6, 3080–3090. [Google Scholar] [CrossRef]
- Zhang, W.; Yang, Z.; Kaufman, Y.; Bernstein, R. Surface and Anti-Fouling Properties of a Polyampholyte Hydrogel Grafted onto a Polyethersulfone Membrane. J. Colloid Interface Sci. 2018, 517, 155–165. [Google Scholar] [CrossRef]
- Cheng, W.; Lu, X.; Kaneda, M.; Zhang, W.; Bernstein, R.; Ma, J.; Elimelech, M. Graphene Oxide-Functionalized Membranes: The Importance of Nanosheet Surface Exposure for Biofouling Resistance. Environ. Sci. Technol. 2019, 54, 517–526. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Yang, K.; Fang, Y.; Ding, J.; Zhang, H. Removal of Phosphate from Wastewater with a Recyclable La-Based Particulate Adsorbent in a Small-Scale Reactor. Water 2022, 14, 2326. [Google Scholar] [CrossRef]
- Rezk, R.A.; Galmed, A.H.; Abdelkreem, M.; Abdel Ghany, N.A.; Harith, M.A. Detachment of Cu (II) and Co (II) Ions from Synthetic Wastewater via Adsorption on Lates Niloticus Fish Bones Using LIBS and XRF. J. Adv. Res. 2018, 14. [Google Scholar] [CrossRef]
- Yan, X.-F.; Fan, X.-R.; Wang, Q.; Shen, Y. An Adsorption Isotherm Model for Adsorption Performance of Silver-Loaded Activated Carbon. Therm. Sci. 2017, 21, 1645–1649. [Google Scholar] [CrossRef] [Green Version]
- Awad, A.M.; Shaikh, S.M.R.; Jalab, R.; Gulied, M.H.; Nasser, M.S.; Benamor, A.; Adham, S. Adsorption of Organic Pollutants by Natural and Modified Clays: A Comprehensive Review. Sep. Purif. Technol. 2019, 228, 115719. [Google Scholar] [CrossRef]
- Ma, M.-D.; Wu, H.; Deng, Z.-Y.; Zhao, X. Arsenic Removal from Water by Nanometer Iron Oxide Coated Single-Wall Carbon Nanotubes. J. Mol. Liq. 2018, 259, 369–375. [Google Scholar] [CrossRef]
- Latour, R.A. The Langmuir Isotherm: A Commonly Applied but Misleading Approach for the Analysis of Protein Adsorption Behavior. J. Biomed. Mater. Res. Part A 2015, 103, 949–958. [Google Scholar] [CrossRef]
- Oke, I.A.; Olarinoye, N.O.; Adewusi, S.R.A. Adsorption Kinetics for Arsenic Removal from Aqueous Solutions by Untreated Powdered Eggshell. Adsorption 2008, 14, 73–83. [Google Scholar] [CrossRef]
- Salameh, Y.; Al-Lagtah, N.; Ahmad, M.N.M.; Allen, S.J.; Walker, G.M. Kinetic and Thermodynamic Investigations on Arsenic Adsorption onto Dolomitic Sorbents. Chem. Eng. J. 2010, 160, 440–446. [Google Scholar] [CrossRef]
- Vu, T.A.; Le, G.H.; Dao, C.D.; Dang, L.Q.; Nguyen, K.T.; Nguyen, Q.K.; Dang, P.T.; Tran, H.T.K.; Duong, Q.T.; Nguyen, T. V Arsenic Removal from Aqueous Solutions by Adsorption Using Novel MIL-53 (Fe) as a Highly Efficient Adsorbent. Rsc Adv. 2015, 5, 5261–5268. [Google Scholar] [CrossRef]
- Dickson, D.; Liu, G.; Cai, Y. Adsorption Kinetics and Isotherms of Arsenite and Arsenate on Hematite Nanoparticles and Aggregates. J. Environ. Manag. 2017, 186, 261–267. [Google Scholar] [CrossRef] [Green Version]
- Goswami, A.; Raul, P.K.; Purkait, M.K. Arsenic Adsorption Using Copper (II) Oxide Nanoparticles. Chem. Eng. Res. Des. 2012, 90, 1387–1396. [Google Scholar] [CrossRef]
- Mohan, D.; Dey, S.; Dwivedi, S.B.; Shukla, S.P. Adsorption of Arsenic Using Low Cost Adsorbents: Guava Leaf Biomass, Mango Bark and Bagasse. Curr. Sci. 2019, 117, 649–661. [Google Scholar] [CrossRef]
- Chutia, P.; Kato, S.; Kojima, T.; Satokawa, S. Arsenic Adsorption from Aqueous Solution on Synthetic Zeolites. J. Hazard. Mater. 2009, 162, 440–447. [Google Scholar] [CrossRef]
- Sherlala, A.I.A.; Raman, A.A.A.; Bello, M.M.; Buthiyappan, A. Adsorption of Arsenic Using Chitosan Magnetic Graphene Oxide Nanocomposite. J. Environ. Manag. 2019, 246, 547–556. [Google Scholar] [CrossRef]
- Shakoor, M.B.; Niazi, N.K.; Bibi, I.; Shahid, M.; Sharif, F.; Bashir, S.; Shaheen, S.M.; Wang, H.; Tsang, D.C.W.; Ok, Y.S. Arsenic Removal by Natural and Chemically Modified Water Melon Rind in Aqueous Solutions and Groundwater. Sci. Total Environ. 2018, 645, 1444–1455. [Google Scholar] [CrossRef]
- Ribeiro, I.C.A.; Vasques, I.C.F.; Teodoro, J.C.; Guerra, M.B.B.; da Silva Carneiro, J.S.; Melo, L.C.A.; Guilherme, L.R.G. Fast and Effective Arsenic Removal from Aqueous Solutions by a Novel Low-Cost Eggshell Byproduct. Sci. Total Environ. 2021, 783, 147022. [Google Scholar] [CrossRef]
- Siddiqui, S.I.; Singh, P.N.; Tara, N.; Pal, S.; Chaudhry, S.A.; Sinha, I. Arsenic Removal from Water by Starch Functionalized Maghemite Nano-Adsorbents: Thermodynamics and Kinetics Investigations. Colloid Interface Sci. Commun. 2020, 36, 100263. [Google Scholar] [CrossRef]
- Bläker, C.; Muthmann, J.; Pasel, C.; Bathen, D. Characterization of Activated Carbon Adsorbents–State of the Art and Novel Approaches. ChemBioEng Rev. 2019, 6, 119–138. [Google Scholar] [CrossRef]
- Sihem, A.; Lehocine, M.B.; Miniai, H.A. Preparation and Characterisation of an Natural Adsorbent Used for Elimination of Pollutants in Wastewater. Energy Procedia 2012, 18, 1145–1151. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.S.K.; Jiang, S.-J. Preparation and Characterization of Exfoliated Graphene Oxide–L-Cystine as an Effective Adsorbent of Hg (II) Adsorption. RSC Adv. 2015, 5, 6294–6304. [Google Scholar] [CrossRef]
- Al-Maadeed, M.A.A.; Ponnamma, D.; Carignano, M.A. Polymer Science and Innovative Applications: Materials, Techniques, and Future Developments; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 0128173033. [Google Scholar]
- Bakdach, W.M.M.; Haiba, M.; Hadad, R. Changes in Surface Morphology, Chemical and Mechanical Properties of Clear Aligners during Intraoral Usage: A Systematic Review and Meta-Analysis. Int. Orthod. 2022, 20, 100610. [Google Scholar] [CrossRef]
- Wirasnita, R.; Hadibarata, T.; Yusoff, A.R.M.; Lazim, Z.M. Preparation and Characterization of Activated Carbon from Oil Palm Empty Fruit Bunch Wastes Using Zinc Chloride. J. Teknol. 2015, 74, 77–81. [Google Scholar] [CrossRef] [Green Version]
- Hidayu, A.R.; Mohamad, N.F.; Matali, S.; Sharifah, A. Characterization of Activated Carbon Prepared from Oil Palm Empty Fruit Bunch Using BET and FT-IR Techniques. Procedia Eng. 2013, 68, 379–384. [Google Scholar] [CrossRef] [Green Version]
- Quan, C.; Chu, H.; Zhou, Y.; Su, S.; Su, R.; Gao, N. Amine-Modified Silica Zeolite from Coal Gangue for CO2 Capture. Fuel 2022, 322, 124184. [Google Scholar] [CrossRef]
- Hung, C.; Bai, H.; Karthik, M. Ordered Mesoporous Silica Particles and Si-MCM-41 for the Adsorption of Acetone: A Comparative Study. Sep. Purif. Technol. 2009, 64, 265–272. [Google Scholar] [CrossRef]
- Mierzwa-Hersztek, M.; Gondek, K.; Jewiarz, M.; Dziedzic, K. Assessment of Energy Parameters of Biomass and Biochars, Leachability of Heavy Metals and Phytotoxicity of Their Ashes. J. Mater. Cycles Waste Manag. 2019, 21, 786–800. [Google Scholar] [CrossRef]
- Chatterjee, R.; Sajjadi, B.; Chen, W.-Y.; Mattern, D.L.; Hammer, N.; Raman, V.; Dorris, A. Effect of Pyrolysis Temperature on Physicochemical Properties and Acoustic-Based Amination of Biochar for Efficient CO2 Adsorption. Front. Energy Res. 2020, 8, 85. [Google Scholar] [CrossRef]
- Ali, I.; Al-Othman, Z.A.; Alwarthan, A.; Asim, M.; Khan, T.A. Removal of Arsenic Species from Water by Batch and Column Operations on Bagasse Fly Ash. Environ. Sci. Pollut. Res. 2014, 21, 3218–3229. [Google Scholar] [CrossRef]
- Balsamo, M.; Di Natale, F.; Erto, A.; Lancia, A.; Montagnaro, F.; Santoro, L. Arsenate Removal from Synthetic Wastewater by Adsorption onto Fly Ash. Desalination 2010, 263, 58–63. [Google Scholar] [CrossRef]
- Olafadehan, O.A.; Abhulimen, K.E.; Adeleke, A.I.; Njoku, C.V.; Amoo, K.O. Production and Characterization of Derived Composite Biosorbents from Animal Bone. Afr. J. Pure Appl. Chem. 2019, 13, 12–26. [Google Scholar] [CrossRef] [Green Version]
- de Souza, C.C.; de Souza, L.Z.M.; Yılmaz, M.; de Oliveira, M.A.; da Silva Bezerra, A.C.; da Silva, E.F.; Dumont, M.R.; Machado, A.R.T. Activated Carbon of Coriandrum Sativum for Adsorption of Methylene Blue: Equilibrium and Kinetic Modeling. Clean. Mater. 2022, 3, 100052. [Google Scholar] [CrossRef]
- Elaiopoulos, K.; Perraki, T.; Grigoropoulou, E. Monitoring the Effect of Hydrothermal Treatments on the Structure of a Natural Zeolite through a Combined XRD, FTIR, XRF, SEM and N2-Porosimetry Analysis. Microporous Mesoporous Mater. 2010, 134, 29–43. [Google Scholar] [CrossRef]
- Hao, L.; Zheng, T.; Jiang, J.; Zhang, G.; Wang, P. Removal of As (III) and As (V) from Water Using Iron Doped Amino Functionalized Sawdust: Characterization, Adsorptive Performance and UF Membrane Separation. Chem. Eng. J. 2016, 292, 163–173. [Google Scholar] [CrossRef]
- Wang, C.; Liu, K.; Huang, D.; Chen, Q.; Tu, M.; Wu, K.; Shui, Z. Utilization of Fly Ash as Building Material Admixture: Basic Properties and Heavy Metal Leaching. Case Stud. Constr. Mater. 2022, 17, e01422. [Google Scholar] [CrossRef]
- Iber, B.T.; Torsabo, D.; Chik, C.E.N.C.E.; Wahab, F.; Abdullah, S.R.S.; Hassan, H.A.; Kasan, N.A. The Impact of Re-Ordering the Conventional Chemical Steps on the Production and Characterization of Natural Chitosan from Biowaste of Black Tiger Shrimp, Penaeus Monodon. J. Sea Res. 2022, 190, 102306. [Google Scholar] [CrossRef]
- Tauk, M.; Bechelany, M.; Lagerge, S.; Sistat, P.; Habchi, R.; Cretin, M.; Zaviska, F. Influence of Particle Size Distribution on Carbon-Based Flowable Electrode Viscosity and Desalination Efficiency in Flow Electrode Capacitive Deionization. Sep. Purif. Technol. 2022, 306 Pt A, 122666. [Google Scholar] [CrossRef]
- Zaiku, X.; Qingling, C.; Bo, C.; Chengfang, Z. Influence of Alkalinity on Particle Size Distribution and Crystalline Structure in Synthesis of Zeolite Beta. Cryst. Eng. 2001, 4, 359–372. [Google Scholar] [CrossRef]
- Bergström, D.; Israelsson, S.; Öhman, M.; Dahlqvist, S.-A.; Gref, R.; Boman, C.; Wästerlund, I. Effects of Raw Material Particle Size Distribution on the Characteristics of Scots Pine Sawdust Fuel Pellets. Fuel Process. Technol. 2008, 89, 1324–1329. [Google Scholar] [CrossRef]
- Lanzerstorfer, C. Fly Ash from Coal Combustion: Dependence of the Concentration of Various Elements on the Particle Size. Fuel 2018, 228, 263–271. [Google Scholar] [CrossRef]
- Rampino, A.; Borgogna, M.; Blasi, P.; Bellich, B.; Cesàro, A. Chitosan Nanoparticles: Preparation, Size Evolution and Stability. Int. J. Pharm. 2013, 455, 219–228. [Google Scholar] [CrossRef]
- Babick, F. Dynamic Light Scattering (DLS). In Characterization of Nanoparticles; Elsevier: Amsterdam, The Netherlands, 2020; pp. 137–172. [Google Scholar]
- Souza, T.G.F.; Ciminelli, V.S.T.; Mohallem, N.D.S. A Comparison of TEM and DLS Methods to Characterize Size Distribution of Ceramic Nanoparticles. J. Phys. Conf. Ser. 2016, 733, 12039. [Google Scholar] [CrossRef] [Green Version]
- Ambroz, F.; Macdonald, T.J.; Martis, V.; Parkin, I.P. Evaluation of the BET Theory for the Characterization of Meso and Microporous MOFs. Small Methods 2018, 2, 1800173. [Google Scholar] [CrossRef] [Green Version]
- Epp, J. X-ray Diffraction (XRD) Techniques for Materials Characterization. In Materials Characterization Using Nondestructive Evaluation (Nde) Methods; Elsevier: Amsterdam, The Netherlands, 2016; pp. 81–124. [Google Scholar]
- Oyedotun, T.D.T. X-ray Fluorescence (XRF) in the Investigation of the Composition of Earth Materials: A Review and an Overview. Geol. Ecol. Landsc. 2018, 2, 148–154. [Google Scholar] [CrossRef]
- Ghosh, U.; Chakraborty, S. Pharmaceutical and Phytochemical Evaluation of a Novel Anti–White Spot Syndrome Virus Drug Derived from Terrestrial Plants. Int. J. Nat. Prod. Res. 2013, 3, 92–101. [Google Scholar]
- Donahue, C.J.; Rais, E.A. Proximate Analysis of Coal. J. Chem. Educ. 2009, 86, 222. [Google Scholar] [CrossRef]
- Khan, S.A.; Khan, S.B.; Khan, L.U.; Farooq, A.; Akhtar, K.; Asiri, A.M. Fourier Transform Infrared Spectroscopy: Fundamentals and Application in Functional Groups and Nanomaterials Characterization. In Handbook of Materials Characterization; Springer: Berlin/Heidelberg, Germany, 2018; pp. 317–344. [Google Scholar]
- Bhattacharjee, S. DLS and Zeta Potential–What They Are and What They Are Not? J. Control. Release 2016, 235, 337–351. [Google Scholar] [CrossRef]
- Lunardi, C.N.; Gomes, A.J.; Rocha, F.S.; De Tommaso, J.; Patience, G.S. Experimental Methods in Chemical Engineering: Zeta Potential. Can. J. Chem. Eng. 2021, 99, 627–639. [Google Scholar] [CrossRef]
- Lim, H.K.; Teng, T.T.; Ibrahim, M.H.; Ahmad, A.; Chee, H.T. Adsorption and Removal of Zinc (II) from Aqueous Solution Using Powdered Fish Bones. APCBEE Procedia 2012, 1. [Google Scholar] [CrossRef] [Green Version]
- Kumar, P.S.; Ejerssa, W.W.; Wegener, C.C.; Korving, L.; Dugulan, A.I.; Temmink, H.; van Loosdrecht, M.C.M.; Witkamp, G.-J. Understanding and Improving the Reusability of Phosphate Adsorbents for Wastewater Effluent Polishing. Water Res. 2018, 145, 365–374. [Google Scholar] [CrossRef] [Green Version]
- Cabrera, F.; De Arambarri, P.; Madrid, L.; Toga, C.G. Desorption of Phosphate from Iron Oxides in Relation to Equilibrium PH and Porosity. Geoderma 1981, 26, 203–216. [Google Scholar] [CrossRef]
- Chitrakar, R.; Tezuka, S.; Sonoda, A.; Sakane, K.; Ooi, K.; Hirotsu, T. Phosphate Adsorption on Synthetic Goethite and Akaganeite. J. Colloid Interface Sci. 2006, 298, 602–608. [Google Scholar] [CrossRef] [PubMed]
- Kunaschk, M.; Schmalz, V.; Dietrich, N.; Dittmar, T.; Worch, E. Novel Regeneration Method for Phosphate Loaded Granular Ferric (Hydr) Oxide–a Contribution to Phosphorus Recycling. Water Res. 2015, 71, 219–226. [Google Scholar] [CrossRef]
- Qi, J.; Zhang, G.; Li, H. Efficient Removal of Arsenic from Water Using a Granular Adsorbent: Fe–Mn Binary Oxide Impregnated Chitosan Bead. Bioresour. Technol. 2015, 193, 243–249. [Google Scholar] [CrossRef]
- Li, Z.-Q.; Yang, J.-C.; Sui, K.-W.; Yin, N. Facile Synthesis of Metal-Organic Framework MOF-808 for Arsenic Removal. Mater. Lett. 2015, 160, 412–414. [Google Scholar] [CrossRef]
- Yoon, Y.; Zheng, M.; Ahn, Y.-T.; Park, W.K.; Yang, W.S.; Kang, J.-W. Synthesis of Magnetite/Non-Oxidative Graphene Composites and Their Application for Arsenic Removal. Sep. Purif. Technol. 2017, 178, 40–48. [Google Scholar] [CrossRef]
- Li, Z.; Liu, X.; Jin, W.; Hu, Q.; Zhao, Y. Adsorption Behavior of Arsenicals on MIL-101 (Fe): The Role of Arsenic Chemical Structures. J. Colloid Interface Sci. 2019, 554, 692–704. [Google Scholar] [CrossRef]
- Bezerra, M.A.; Santelli, R.E.; Oliveira, E.P.; Villar, L.S.; Escaleira, L.A. Response Surface Methodology (RSM) as a Tool for Optimization in Analytical Chemistry. Talanta 2008, 76, 965–977. [Google Scholar] [CrossRef] [PubMed]
- Bashir, M.J.K.; Amr, S.S.A.; Aziz, S.Q.; Aun, N.C.; Sethupathi, S. Wastewater Treatment Processes Optimization Using Response Surface Methodology (RSM) Compared with Conventional Methods: Review and Comparative Study. Middle-East J. Sci. Res. 2015, 23, 244–252. [Google Scholar]
- Roy, P.; Mondal, N.K.; Das, K. Modeling of the Adsorptive Removal of Arsenic: A Statistical Approach. J. Environ. Chem. Eng. 2014, 2, 585–597. [Google Scholar] [CrossRef]
- Phearom, S.; Shahid, M.K.; Choi, Y.-G. Optimization of Arsenic Adsorption by Mill Scale–Derived Magnetite Particles Using Response Surface Methodology. J. Hazard. Toxic Radioact. Waste 2021, 25, 4021022. [Google Scholar] [CrossRef]
- Lingamdinne, L.P.; Choi, J.-S.; Choi, Y.-L.; Chang, Y.-Y.; Yang, J.-K.; Karri, R.R.; Koduru, J.R. Process Modeling and Optimization of an Iron Oxide Immobilized Graphene Oxide Gadolinium Nanocomposite for Arsenic Adsorption. J. Mol. Liq. 2020, 299, 112261. [Google Scholar] [CrossRef]
- Simsek, E.B.; Özdemir, E.; Beker, U. Process Optimization for Arsenic Adsorption onto Natural Zeolite Incorporating Metal Oxides by Response Surface Methodology. Water Air Soil Pollut. 2013, 224, 1–14. [Google Scholar] [CrossRef]
- Sahu, U.K.; Mahapatra, S.S.; Patel, R.K. Application of Box–Behnken Design in Response Surface Methodology for Adsorptive Removal of Arsenic from Aqueous Solution Using CeO2/Fe2O3/Graphene Nanocomposite. Mater. Chem. Phys. 2018, 207, 233–242. [Google Scholar] [CrossRef]
- Farooq, M.U.; Jalees, M.I. Application of Magnetic Graphene Oxide for Water Purification: Heavy Metals Removal and Disinfection. J. Water Process Eng. 2020, 33, 101044. [Google Scholar]
- Du, Z.; Zheng, T.; Wang, P.; Hao, L.; Wang, Y. Fast Microwave-Assisted Preparation of a Low-Cost and Recyclable Carboxyl Modified Lignocellulose-Biomass Jute Fiber for Enhanced Heavy Metal Removal from Water. Bioresour. Technol. 2016, 201, 41–49. [Google Scholar] [CrossRef]
- Charpentier, T.V.J.; Neville, A.; Lanigan, J.L.; Barker, R.; Smith, M.J.; Richardson, T. Preparation of Magnetic Carboxymethylchitosan Nanoparticles for Adsorption of Heavy Metal Ions. ACS Omega 2016, 1, 77–83. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Zhang, K.; Wu, M.; Wu, Q.; Liu, J.; Yang, J.; Zhang, J. Unexpectedly High Adsorption Capacity of Esterified Hydroxyapatite for Heavy Metal Removal. Langmuir 2019, 35, 16111–16119. [Google Scholar] [CrossRef]
- Ali, R.M.; Hamad, H.A.; Hussein, M.M.; Malash, G.F. Potential of Using Green Adsorbent of Heavy Metal Removal from Aqueous Solutions: Adsorption Kinetics, Isotherm, Thermodynamic, Mechanism and Economic Analysis. Ecol. Eng. 2016, 91, 317–332. [Google Scholar] [CrossRef]
- El-Naggar, M.E.; Radwan, E.K.; El-Wakeel, S.T.; Kafafy, H.; Gad-Allah, T.A.; El-Kalliny, A.S.; Shaheen, T.I. Synthesis, Characterization and Adsorption Properties of Microcrystalline Cellulose Based Nanogel for Dyes and Heavy Metals Removal. Int. J. Biol. Macromol. 2018, 113, 248–258. [Google Scholar] [CrossRef]
- Wang, C.; Xiong, C.; He, Y.; Yang, C.; Li, X.; Zheng, J.; Wang, S. Facile Preparation of Magnetic Zr-MOF for Adsorption of Pb (II) and Cr (VI) from Water: Adsorption Characteristics and Mechanisms. Chem. Eng. J. 2021, 415, 128923. [Google Scholar] [CrossRef]
- Tahmasebpoor, M.; Hosseini Nami, S.; Khatamian, M.; Sanaei, L. Arsenate Removal from Contaminated Water Using Fe2O3-Clinoptilolite Powder and Granule. Environ. Technol. 2022, 43, 116–130. [Google Scholar] [CrossRef]
- Wang, Q.; Jiang, F.; Ouyang, X.-K.; Yang, L.-Y.; Wang, Y. Adsorption of Pb (II) from Aqueous Solution by Mussel Shell-Based Adsorbent: Preparation, Characterization, and Adsorption Performance. Materials 2021, 14, 741. [Google Scholar] [CrossRef] [PubMed]
- Seco-Reigosa, N.; Cutillas-Barreiro, L.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M.; Álvarez-Rodríguez, E.; Fernández-Sanjurjo, M.J.; Núñez-Delgado, A. Adsorption, Desorption and Fractionation of As (V) on Untreated and Mussel Shell-Treated Granitic Material. Solid Earth 2015, 6, 337–346. [Google Scholar] [CrossRef] [Green Version]
- Priyadarshni, N.; Nath, P.; Chanda, N. Sustainable Removal of Arsenate, Arsenite and Bacterial Contamination from Water Using Biochar Stabilized Iron and Copper Oxide Nanoparticles and Associated Mechanism of the Remediation Process. J. Water Process Eng. 2020, 37, 101495. [Google Scholar] [CrossRef]
- Wei, Z.; Liang, K.; Wu, Y.; Zou, Y.; Zuo, J.; Arriagada, D.C.; Pan, Z.; Hu, G. The Effect of PH on the Adsorption of Arsenic (III) and Arsenic (V) at the TiO2 Anatase [1 0 1]. Surface. J. Colloid Interface Sci. 2016, 462, 252–259. [Google Scholar] [CrossRef]
- Zhang, G.; Liu, Y.; Wang, J.; Li, H. Efficient Arsenic (III) Removal from Aqueous Solution by a Novel Nanostructured Iron-Copper-Manganese Trimetal Oxide. J. Mol. Liq. 2020, 309, 112993. [Google Scholar] [CrossRef]
- Afroze, S.; Sen, T.K. A Review on Heavy Metal Ions and Dye Adsorption from Water by Agricultural Solid Waste Adsorbents. Water Air Soil Pollut. 2018, 229, 1–50. [Google Scholar] [CrossRef]
- Fernández-López, J.A.; Angosto, J.M.; Roca, M.J.; Miñarro, M.D. Taguchi Design-Based Enhancement of Heavy Metals Bioremoval by Agroindustrial Waste Biomass from Artichoke. Sci. Total Environ. 2019, 653, 55–63. [Google Scholar] [CrossRef]
- Rahdar, S.; Taghavi, M.; Khaksefidi, R.; Ahmadi, S. Adsorption of Arsenic (V) from Aqueous Solution Using Modified Saxaul Ash: Isotherm and Thermodynamic Study. Appl. Water Sci. 2019, 9, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Koohzad, E.; Jafari, D.; Esmaeili, H. Adsorption of Lead and Arsenic Ions from Aqueous Solution by Activated Carbon Prepared from Tamarix Leaves. ChemistrySelect 2019, 4, 12356–12367. [Google Scholar] [CrossRef]
- Hua, J. Adsorption of Low-Concentration Arsenic from Water by Co-Modified Bentonite with Manganese Oxides and Poly (Dimethyldiallylammonium Chloride). J. Environ. Chem. Eng. 2018, 6, 156–168. [Google Scholar] [CrossRef]
- Iftekhar, S.; Ramasamy, D.L.; Srivastava, V.; Asif, M.B.; Sillanpää, M. Understanding the Factors Affecting the Adsorption of Lanthanum Using Different Adsorbents: A Critical Review. Chemosphere 2018, 204, 413–430. [Google Scholar] [CrossRef]
- Rahman, N.A.A.; Said, M.I.M.; Azman, S. Carbonized Green Mussel Shell as Heavy Metal Removal. Malays. J. Civ. Eng. 2017, 29, 56–68. [Google Scholar]
- Hilal, N.M.; Ahmed, I.A.; El-Sayed, R.E. Activated and Nonactivated Date Pits Adsorbents for the Removal of Copper (II) and Cadmium (II) from Aqueous Solutions. Int. Sch. Res. Not. 2012, 2012, 985853. [Google Scholar] [CrossRef] [Green Version]
- Seco-Reigosa, N.; Peña-Rodríguez, S.; Nóvoa-Muñoz, J.C.; Arias-Estévez, M.; Fernández-Sanjurjo, M.J.; Álvarez-Rodríguez, E.; Núñez-Delgado, A. Arsenic, Chromium and Mercury Removal Using Mussel Shell Ash or a Sludge/Ashes Waste Mixture. Environ. Sci. Pollut. Res. 2013, 20, 2670–2678. [Google Scholar] [CrossRef]
- Mahar, F.K.; He, L.; Wei, K.; Mehdi, M.; Zhu, M.; Gu, J.; Zhang, K.; Khatri, Z.; Kim, I. Rapid Adsorption of Lead Ions Using Porous Carbon Nanofibers. Chemosphere 2019, 225, 360–367. [Google Scholar] [CrossRef]
- Alswat, A.A.; Ahmad, M.B.; Saleh, T.A. Zeolite Modified with Copper Oxide and Iron Oxide for Lead and Arsenic Adsorption from Aqueous Solutions. J. Water Supply Res. Technol. 2016, 65, 465–479. [Google Scholar] [CrossRef]
- Khan, M.R.; Hegde, R.A.; Shabiimam, M.A. Adsorption of Lead by Bentonite Clay. Int. J. Sci. Res. Manag. 2017, 5, 5800–5804. [Google Scholar]
- Othmani, A.; Magdouli, S.; Kumar, P.S.; Kapoor, A.; Chellam, P.V.; Gökkuş, Ö. Agricultural Waste Materials for Adsorptive Removal of Phenols, Chromium (VI) and Cadmium (II) from Wastewater: A Review. Environ. Res. 2022, 204, 111916. [Google Scholar] [CrossRef] [PubMed]
- Joshi, S.; Sharma, M.; Kumari, A.; Shrestha, S.; Shrestha, B. Arsenic Removal from Water by Adsorption onto Iron Oxide/Nano-Porous Carbon Magnetic Composite. Appl. Sci. 2019, 9, 3732. [Google Scholar] [CrossRef] [Green Version]
- Hristovski, K.; Baumgardner, A.; Westerhoff, P. Selecting Metal Oxide Nanomaterials for Arsenic Removal in Fixed Bed Columns: From Nanopowders to Aggregated Nanoparticle Media. J. Hazard. Mater. 2007, 147, 265–274. [Google Scholar] [CrossRef]
- Chang, Q.; Lin, W.; Ying, W. Preparation of Iron-Impregnated Granular Activated Carbon for Arsenic Removal from Drinking Water. J. Hazard. Mater. 2010, 184, 515–522. [Google Scholar] [CrossRef] [PubMed]
- Karnib, M.; Kabbani, A.; Holail, H.; Olama, Z. Heavy Metals Removal Using Activated Carbon, Silica and Silica Activated Carbon Composite. Energy Procedia 2014, 50, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Mondal, R.; Mondal, S.; Kurada, K.V.; Bhattacharjee, S.; Sengupta, S.; Mondal, M.; Karmakar, S.; De, S.; Griffiths, I.M. Modelling the Transport and Adsorption Dynamics of Arsenic in a Soil Bed Filter. Chem. Eng. Sci. 2019, 210, 115205. [Google Scholar] [CrossRef]
- Maji, S.K.; Kao, Y.-H.; Wang, Y.-B.; Liu, C.-W. Dynamic Column Adsorption of As on Iron-Oxide-Coated Natural Rock (IOCNR) and Sludge Management. Desalin. Water Treat. 2015, 55, 2171–2182. [Google Scholar] [CrossRef]
- Rouff, A.A.; Ma, N.; Kustka, A.B. Adsorption of Arsenic with Struvite and Hydroxylapatite in Phosphate-Bearing Solutions. Chemosphere 2016, 146, 574–581. [Google Scholar] [CrossRef] [Green Version]
- Sosa, A.; Armienta, M.A.; Aguayo, A.; Cruz, O. Evaluation of the Influence of Main Groundwater Ions on Arsenic Removal by Limestones through Column Experiments. Sci. Total Environ. 2020, 727, 138459. [Google Scholar] [CrossRef] [PubMed]
- Önnby, L.; Pakade, V.; Mattiasson, B.; Kirsebom, H. Polymer Composite Adsorbents Using Particles of Molecularly Imprinted Polymers or Aluminium Oxide Nanoparticles for Treatment of Arsenic Contaminated Waters. Water Res. 2012, 46, 4111–4120. [Google Scholar] [CrossRef]
- Shakoor, M.B.; Niazi, N.K.; Bibi, I.; Shahid, M.; Saqib, Z.A.; Nawaz, M.F.; Shaheen, S.M.; Wang, H.; Tsang, D.C.W.; Bundschuh, J. Exploring the Arsenic Removal Potential of Various Biosorbents from Water. Environ. Int. 2019, 123, 567–579. [Google Scholar] [CrossRef]
- Pokhrel, D.; Viraraghavan, T. Arsenic Removal from an Aqueous Solution by a Modified Fungal Biomass. Water Res. 2006, 40, 549–552. [Google Scholar] [CrossRef]
- Seki, H.; Suzuki, A.; Maruyama, H. Biosorption of Chromium (VI) and Arsenic (V) onto Methylated Yeast Biomass. J. Colloid Interface Sci. 2005, 281, 261–266. [Google Scholar] [CrossRef] [Green Version]
- Ranjan, D.; Talat, M.; Hasan, S.H. Biosorption of Arsenic from Aqueous Solution Using Agricultural Residue ‘Rice Polish’. J. Hazard. Mater. 2009, 166, 1050–1059. [Google Scholar] [CrossRef] [PubMed]
- Sumaila, A.; Ndamitso, M.M.; Iyaka, Y.A.; Abdulkareem, A.S.; Tijani, J.O.; Idris, M.O. Extraction and Characterization of Chitosan from Crab Shells: Kinetic and Thermodynamic Studies of Arsenic and Copper Adsorption from Electroplating Wastewater. Iraqi J. Sci. 2020, 61, 2156–2171. [Google Scholar]
- Bahar, M.M.; Mahbub, K.R.; Naidu, R.; Megharaj, M. As (V) Removal from Aqueous Solution Using a Low-Cost Adsorbent Coir Pith Ash: Equilibrium and Kinetic Study. Environ. Technol. Innov. 2018, 9, 198–209. [Google Scholar] [CrossRef]
- Akpomie, K.G.; Conradie, J. Advances in Application of Cotton-Based Adsorbents for Heavy Metals Trapping, Surface Modifications and Future Perspectives. Ecotoxicol. Environ. Saf. 2020, 201, 110825. [Google Scholar] [CrossRef]
- Alkurdi, S.S.A.; Al-Juboori, R.A.; Bundschuh, J.; Bowtell, L.; McKnight, S. Effect of Pyrolysis Conditions on Bone Char Characterization and Its Ability for Arsenic and Fluoride Removal. Environ. Pollut. 2020, 262, 114221. [Google Scholar] [CrossRef] [PubMed]
- Dehghani, M.H.; Maroosi, M.; Heidarinejad, Z. Experimental Dataset on Adsorption of Arsenic from Aqueous Solution Using Chitosan Extracted from Shrimp Waste; Optimization by Response Surface Methodology with Central Composite Design. Data Brief 2018, 20, 1415–1421. [Google Scholar] [CrossRef]
- Yang, J.; Liang, X.; Jiang, N.; Huang, Z.; Mou, F.; Zu, Y.; Li, Y. Adsorption Characteristics of Modified Eucalyptus Sawdust for Cadmium and Arsenic and Its Potential for Soil Remediation. Bull. Environ. Contam. Toxicol. 2022, 108, 1056–1063. [Google Scholar] [CrossRef] [PubMed]
- Gadore, V.; Ahmaruzzaman, M. Tailored Fly Ash Materials: A Recent Progress of Their Properties and Applications for Remediation of Organic and Inorganic Contaminants from Water. J. Water Process Eng. 2021, 41, 101910. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, F.-S.; Xiu, F.-R. Arsenic (V) Removal from Aqueous System Using Adsorbent Developed from a High Iron-Containing Fly Ash. Sci. Total Environ. 2009, 407, 5780–5786. [Google Scholar] [CrossRef]
- Shadbahr, J.; Husain, T. Affordable and Efficient Adsorbent for Arsenic Removal from Rural Water Supply Systems in Newfoundland. Sci. Total Environ. 2019, 660, 158–168. [Google Scholar] [CrossRef] [PubMed]
- Mushtaq, F.; Zahid, M.; Bhatti, I.A.; Nasir, S.; Hussain, T. Possible Applications of Coal Fly Ash in Wastewater Treatment. J. Environ. Manag. 2019, 240, 27–46. [Google Scholar] [CrossRef] [PubMed]
- Dwivedi, A.; Jain, M.K. Fly Ash–Waste Management and Overview: A Review. Recent Res. Sci. Technol. 2014, 6, 30–35. [Google Scholar]
- Tiwari, M.K.; Bajpai, S.; Dewangan, U.K. Fly Ash Utilization: A Brief Review in Indian Context. Int. Res. J. Eng. Technol. 2016, 3, 949–956. [Google Scholar]
- Ayanda, O.S.; Fatoki, O.S.; Adekola, F.A.; Ximba, B.J. Characterization of Fly Ash Generated from Matla Power Station in Mpumalanga, South Africa. E-J. Chem. 2012, 9, 1788–1795. [Google Scholar] [CrossRef]
- Bridgeman, T.G.; Darvell, L.I.; Jones, J.M.; Williams, P.T.; Fahmi, R.; Bridgwater, A.V.; Barraclough, T.; Shield, I.; Yates, N.; Thain, S.C. Influence of Particle Size on the Analytical and Chemical Properties of Two Energy Crops. Fuel 2007, 86, 60–72. [Google Scholar] [CrossRef]
- Masiá, A.A.T.; Buhre, B.J.P.; Gupta, R.P.; Wall, T.F. Use of TMA to Predict Deposition Behaviour of Biomass Fuels. Fuel 2007, 86, 2446–2456. [Google Scholar] [CrossRef]
- Wiselogel, A.E.; Agblevor, F.A.; Johnson, D.K.; Deutch, S.; Fennell, J.A.; Sanderson, M.A. Compositional Changes during Storage of Large Round Switchgrass Bales. Bioresour. Technol. 1996, 56, 103–109. [Google Scholar] [CrossRef]
- Ahmaruzzaman, M. A Review on the Utilization of Fly Ash. Prog. Energy Combust. Sci. 2010, 36, 327–363. [Google Scholar] [CrossRef]
- Kizinievic, O.; Kizinievic, V. Utilisation of Wood Ash from Biomass for the Production of Ceramic Products. Constr. Build. Mater. 2016, 127, 264–273. [Google Scholar] [CrossRef]
- Wang, L.; Chen, L.; Tsang, D.C.W.; Guo, B.; Yang, J.; Shen, Z.; Hou, D.; Ok, Y.S.; Poon, C.S. Biochar as Green Additives in Cement-Based Composites with Carbon Dioxide Curing. J. Clean. Prod. 2020, 258, 120678. [Google Scholar] [CrossRef]
- Popławski, J.; Lelusz, M. Utility Assessment of Biomass Fly-Ash for Production of Concrete Products. Tech. Trans. 2017, 114, 129–142. [Google Scholar]
- Singh, T.S.; Pant, K.K. Equilibrium, Kinetics and Thermodynamic Studies for Adsorption of As (III) on Activated Alumina. Sep. Purif. Technol. 2004, 36, 139–147. [Google Scholar] [CrossRef]
- Ouvrard, S.; Simonnot, M.-O.; Sardin, M. Reactive Behavior of Natural Manganese Oxides toward the Adsorption of Phosphate and Arsenate. Ind. Eng. Chem. Res. 2002, 41, 2785–2791. [Google Scholar] [CrossRef]
- Suzuki, T.M.; Bomani, J.O.; Matsunaga, H.; Yokoyama, T. Preparation of Porous Resin Loaded with Crystalline Hydrous Zirconium Oxide and Its Application to the Removal of Arsenic. React. Funct. Polym. 2000, 43, 165–172. [Google Scholar] [CrossRef]
- Vaughan Jr, R.L.; Reed, B.E. Modeling As (V) Removal by a Iron Oxide Impregnated Activated Carbon Using the Surface Complexation Approach. Water Res. 2005, 39, 1005–1014. [Google Scholar] [CrossRef]
- Balaji, T.; Matsunaga, H. Adsorption Characteristics of As (III) and As (V) with Titanium Dioxide Loaded Amberlite XAD-7 Resin. Anal. Sci. 2002, 18, 1345–1349. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Abid, M.; Niazi, N.K.; Bibi, I.; Farooqi, A.; Ok, Y.S.; Kunhikrishnan, A.; Ali, F.; Ali, S.; Igalavithana, A.D.; Arshad, M. Arsenic (V) Biosorption by Charred Orange Peel in Aqueous Environments. Int. J. Phytoremed. 2016, 18, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Othman, N.; Abd-Kadir, A.; Zayadi, N. Waste Fish Scale as Cost Effective Adsorbent in Removing Zinc and Ferum Ion in Wastewater. J. Eng. Appl. Sci. 2016, 11, 1584–1592. [Google Scholar]
- Onwordi, C.T.; Uche, C.C.; Ameh, A.E.; Petrik, L.F. Comparative Study of the Adsorption Capacity of Lead (II) Ions onto Bean Husk and Fish Scale from Aqueous Solution. J. Water Reuse Desalin. 2019, 9, 249–262. [Google Scholar] [CrossRef] [Green Version]
- Stevens, M.G.F.; Batlokwa, B.S. Environmentally Friendly and Cheap Removal of Lead (II) and Zinc (II) from Wastewater with Fish Scales Waste Remains. Int. J. Chem. 2017, 9. [Google Scholar] [CrossRef] [Green Version]
- Teixeira, E.R.; Camões, A.; Branco, F.G.; Aguiar, J.B.; Fangueiro, R. Recycling of Biomass and Coal Fly Ash as Cement Replacement Material and Its Effect on Hydration and Carbonation of Concrete. Waste Manag. 2019, 94, 39–48. [Google Scholar] [CrossRef] [PubMed]
- Liang, G.; Li, Y.; Yang, C.; Zi, C.; Zhang, Y.; Hu, X.; Zhao, W. Production of Biosilica Nanoparticles from Biomass Power Plant Fly Ash. Waste Manag. 2020, 105, 8–17. [Google Scholar] [CrossRef]
- Sarkkinen, M.; Kujala, K.; Kemppainen, K.; Gehör, S. Effect of Biomass Fly Ashes as Road Stabilisation Binder. Road Mater. Pavement Des. 2018, 19, 239–251. [Google Scholar] [CrossRef]
- de Gennaro, B.; Aprea, P.; Liguori, B.; Galzerano, B.; Peluso, A.; Caputo, D. Zeolite-Rich Composite Materials for Environmental Remediation: Arsenic Removal from Water. Appl. Sci. 2020, 10, 6938. [Google Scholar] [CrossRef]
- Pizarro, C.; Escudey, M.; Caroca, E.; Pavez, C.; Zúñiga, G.E. Evaluation of Zeolite, Nanomagnetite, and Nanomagnetite-Zeolite Composite Materials as Arsenic (V) Adsorbents in Hydroponic Tomato Cultures. Sci. Total Environ. 2021, 751, 141623. [Google Scholar] [CrossRef]
- Zhao, P.; Jian, M.; Xu, R.; Zhang, Q.; Xiang, C.; Liu, R.; Zhang, X.; Liu, H. Removal of Arsenic (III) from Water by 2D Zeolitic Imidazolate Framework-67 Nanosheets. Environ. Sci. Nano 2020, 7, 3616–3626. [Google Scholar] [CrossRef]
- Malwal, D.; Gopinath, P. Silica Stabilized Magnetic-Chitosan Beads for Removal of Arsenic from Water. Colloid Interface Sci. Commun. 2017, 19, 14–19. [Google Scholar] [CrossRef]
- Yang, Z.; Yan, G.; Song, Z.; Zhang, J.; Wang, C.; Yu, Z.; Bai, Z.; Zhuang, G.; Liang, F. Study on Adsorption of as (Iii) by a New Bio-Material from Chitin Pyrolysis. Water 2021, 13, 2944. [Google Scholar] [CrossRef]
- Tabassum, R.A.; Shahid, M.; Niazi, N.K.; Dumat, C.; Zhang, Y.; Imran, M.; Bakhat, H.F.; Hussain, I.; Khalid, S. Arsenic Removal from Aqueous Solutions and Groundwater Using Agricultural Biowastes-Derived Biosorbents and Biochar: A Column-Scale Investigation. Int. J. Phytoremed. 2019, 21, 509–518. [Google Scholar] [CrossRef]
- Verma, L.; Siddique, M.A.; Singh, J.; Bharagava, R.N. As (III) and As (V) Removal by Using Iron Impregnated Biosorbents Derived from Waste Biomass of Citrus Limmeta (Peel and Pulp) from the Aqueous Solution and Ground Water. J. Environ. Manag. 2019, 250, 109452. [Google Scholar] [CrossRef]
- Usman, M.; Katsoyiannis, I.; Rodrigues, J.H.; Ernst, M. Arsenate Removal from Drinking Water Using By-Products from Conventional Iron Oxyhydroxides Production as Adsorbents Coupled with Submerged Microfiltration Unit. Environ. Sci. Pollut. Res. 2021, 28, 59063–59075. [Google Scholar] [CrossRef] [Green Version]
- Litter, M.I.; Ingallinella, A.M.; Olmos, V.; Savio, M.; Difeo, G.; Botto, L.; Torres, E.M.F.; Taylor, S.; Frangie, S.; Herkovits, J. Arsenic in Argentina: Technologies for Arsenic Removal from Groundwater Sources, Investment Costs and Waste Management Practices. Sci. Total Environ. 2019, 690, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, H.T.H.; Nguyen, B.Q.; Duong, T.T.; Bui, A.T.K.; Nguyen, H.T.A.; Cao, H.T.; Mai, N.T.; Nguyen, K.M.; Pham, T.T.; Kim, K.-W. Pilot-Scale Removal of Arsenic and Heavy Metals from Mining Wastewater Using Adsorption Combined with Constructed Wetland. Minerals 2019, 9, 379. [Google Scholar] [CrossRef] [Green Version]
- Driehaus, W. Arsenic Removal-Experience with the GEH® Process in Germany. Water Sci. Technol. Water Supply 2002, 2, 275–280. [Google Scholar] [CrossRef]
- Casentini, B.; Falcione, F.T.; Amalfitano, S.; Fazi, S.; Rossetti, S. Arsenic Removal by Discontinuous ZVI Two Steps System for Drinking Water Production at Household Scale. Water Res. 2016, 106, 135–145. [Google Scholar] [CrossRef] [PubMed]
- Sorlini, S.; Gialdini, F.; Collivignarelli, M.C. Survey on Full-Scale Drinking Water Treatment Plants for Arsenic Removal in Italy. Water Pract. Technol. 2014, 9, 42–51. [Google Scholar] [CrossRef]
- Trois, C.; Cibati, A. South African Sands as a Low Cost Alternative Solution for Arsenic Removal from Industrial Effluents in Permeable Reactive Barriers: Column Tests. Chem. Eng. J. 2015, 259, 981–989. [Google Scholar] [CrossRef]
- Möller, T.; Sylvester, P.; Shepard, D.; Morassi, E. Arsenic in Groundwater in New England—Point-of-Entry and Point-of-Use Treatment of Private Wells. Desalination 2009, 243, 293–304. [Google Scholar] [CrossRef]
- Slotnick, M.J.; Meliker, J.R.; Nriagu, J.O. Effects of Time and Point-of-Use Devices on Arsenic Levels in Southeastern Michigan Drinking Water, USA. Sci. Total Environ. 2006, 369, 42–50. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sorlini, S.; Crotti, B.M.; Collivignarelli, M.C.; Tjell, J.C.; Abbà, A. Enhancing Arsenic Removal from Groundwater at Household Level with Naturally Occurring Iron. Rev. Ambient. Água 2016, 11, 486–498. [Google Scholar] [CrossRef] [Green Version]
- Glade, S.; Bandaru, S.R.S.; Nahata, M.; Majmudar, J.; Gadgil, A. Adapting a Drinking Water Treatment Technology for Arsenic Removal to the Context of a Small, Low-Income California Community. Water Res. 2021, 204, 117595. [Google Scholar] [CrossRef] [PubMed]
- Feistel, U.; Otter, P.; Kunz, S.; Grischek, T.; Feller, J. Field Tests of a Small Pilot Plant for the Removal of Arsenic in Groundwater Using Coagulation and Filtering. J. Water Process Eng. 2016, 14, 77–85. [Google Scholar] [CrossRef]
- Bandaru, S.R.S.; van Genuchten, C.M.; Kumar, A.; Glade, S.; Hernandez, D.; Nahata, M.; Gadgil, A. Rapid and Efficient Arsenic Removal by Iron Electrocoagulation Enabled with in Situ Generation of Hydrogen Peroxide. Environ. Sci. Technol. 2020, 54, 6094–6103. [Google Scholar] [CrossRef] [PubMed]
- Otter, P.; Malakar, P.; Jana, B.B.; Grischek, T.; Benz, F.; Goldmaier, A.; Feistel, U.; Jana, J.; Lahiri, S.; Alvarez, J.A. Arsenic Removal from Groundwater by Solar Driven Inline-Electrolytic Induced Co-Precipitation and Filtration—A Long Term Field Test Conducted in West Bengal. Int. J. Environ. Res. Public Health 2017, 14, 1167. [Google Scholar] [CrossRef] [Green Version]
- Duarte, A.A.L.S.; Cardoso, S.J.A.; Alçada, A.J. Emerging and Innovative Techniques for Arsenic Removal Applied to a Small Water Supply System. Sustainability 2009, 1, 1288–1304. [Google Scholar] [CrossRef] [Green Version]
- Kamde, K.; Dahake, R.; Pandey, R.A.; Bansiwal, A. Integrated Bio-Oxidation and Adsorptive Filtration Reactor for Removal of Arsenic from Wastewater. Environ. Technol. 2019, 40, 1337–1348. [Google Scholar] [CrossRef]
Name | Chemical Formula |
---|---|
Arsenous acid (arsenite) | |
Arsenic acid (arsenate) | |
Monomethylarsenic acid | |
Dimethylarsinic acid | |
Trimethylarsine oxide | |
Trimethylarsoniopropionate | |
Arsenobetaine | |
Arsenocholine | |
Dimethylarsinyolacetic acid | |
Phenylarsine oxide | |
Phenylarsonic acid |
Resin Material | As Concentration (mg L−1) | Regeneration | Removal Efficiency (RE; %) and Adsorption Capacity (AC; mg g−1 Resin) | Process Conditions | Ref. |
---|---|---|---|---|---|
Hybridized ion-exchange fibers containing dispersed hydrated ferric oxide (HFO) nanoparticles | 0.1 | 2% NaOH + 2% NaCl In <40 bed volumes, As recovery >98% | AC: 5 | pH: 4–8.5 Competing ions: Na+ = 100 ppm SO42− = 5 ppm HCO3− = 100 ppm | [58] |
Polymer–clay nanocomposite ion-exchange resin based on N-methyl-D-glucamine ligand groups | 60 | AC: 55 (Max retention at pH 3.5–6.0, 25 °C, 24 h) | 30 mg nanocomposite resin+ 5 mL As solution pH: 2–12 | [59] | |
N-methyl-D-glucamine functionalized resins revealing gel (1JW) Expanded gel (2JW) Epidermal-like structure (2PTN | 0.176 | RE: 35.8 RE: 28.8 RE: 22.4 | Flow rate: 5 mL min−1 Resin concentration: 1JW, 2 PTN: 4 g L−1, 2 JW: 2 g L−1 | [60] | |
Ion-exchange fiber with amino groups (RPFA-I) | 5 | 0.1 M NaOH + 200 mg fiber +100 mL As solution | RE: As(III): 70 RE: As(V): 93 | pH: 4–12 T:25 °C | [61] |
Amine-doped acrylic ion-exchange fiber | 10 | 0.1 N HCl, 0.1 N NaOH, and ultra-pure water sequentially | RE: 83 AC: 205 | pH: 3.04 T: 25 °C | [62] |
Amberlite IR-400 (polystyrene DVB strong base anionic exchange resin | 5–15 | RE: 91–99.28 | pH: 3–10 Resin dose: 100–800 mg L−1 Voltage: 5–20 V | [63] |
Coagulant/Flocculant | Initial Concentration (μg L−1) | pH | Coagulant Dose (mg L−1)/Intensity (A) | Removal Efficiency (%) | Ref. |
---|---|---|---|---|---|
Ferric chloride | As(V) = 50–60 | 7, 8 | 0.84–3.00 | >80 | [93] |
Aluminum sulfate | As(V) = 10 As(V) = 500 | 66, 42 | 91 | [94] | |
Ferric ions and coarse calcite | As(V) = 5000 | 5–11 | 100 | >99 | [95] |
Titanium xerogel coagulant | As(III) = 1000 | 5–10 | 10 | >90 | [95] |
Electrocoagulation (Al and Fe anode) | As(V) = 100 | 8.4 | 0.2 A | 99% | [84] |
Oxidant | Standard Potential (V, 25 °C) | Sample (µg L−1) | Oxidation Yield (%) after (Time) | Ref. |
---|---|---|---|---|
Air | N/A | GW: 46–62 | 54 (5 days) | [104] |
Pure oxygen | 1.23 | GW: 46–62 | 57 (5 days) | [104,105] |
Ozone | 2.07 | GW: 46–62 | >96 (10 min) | [104,105] |
Hypochlorite | 1.7 | DW: 50 | >80 (5 min) | [105,106] |
Chlorine dioxide | 1.27 | DW: 50 | >50 (2 days) | [105,106] |
Potassium permanganate | 1.23 | DW: 50 300 | >90 (5 min) >90 (5 min) | [105,106] |
Hydrogen peroxide | 1.78 |
Oxidant | As (III) Initial Concentration (mg L−1) | Process Conditions | Results | Ref. |
---|---|---|---|---|
Hydrogen peroxide and UVC radiation | 0.2 | T:20 °C IC (H2O2): 0–30 mg L−1 pH: 5.6–6.7 | OY = 10% (30 min) As (III) oxidation t1/2 = 3.5 s | [121] |
TiO2-impregnated chitosan bead (TICB)/UV light | 100, 1000 and 10,000 | T = 25 °C TICB: 17.5 mg chitosan + 7.5 mg TiO2 in 40 mL solution | 2198 mg As(III)/g TICB and 2050 mg As(V)/g TICB | [122] |
MoOx/TiO2 (+UVA) | 5 | pH: 7.2 | OY = 100% (120 min) | [118] |
ZnO-Au nanocomposite | 2 | ZnO: 20 mg in 40 mL solution | ZnO: OY = 9.1%(2 h) ZnO–Au (0.5%): OY = 17% (2 h) ZnO–Au (1%): OY = 45% (2 h) ZnO–Au (2%): OY = 23% (2 h) | [123] |
Few and multi-layer Ti3C2Tx nanosheets | 0.7 | pH: 7 under UVA | Multi-layerTi3C2Tx: 20% (90 min) Few-layer Ti3C2Tx:, 44% (45 min) | [119] |
Dissolved Fe(III) in the presence of UV | 10 | Fe(II): 180 mg L−1 pH: 7 | Complete oxidation process time: 1–6 h | [124] |
Langmuir | Freundlich | Ref. | |||||
---|---|---|---|---|---|---|---|
Adsorbent | qmax (g g−1) | b (L mg−1) | R2 | kf (mg g−1) | n | R2 | |
Zeolite (H-MFI-24) | 0.0358 | 0.009 | 0.9566 | 3.52 | 1.11 | 0.9962 | [154] |
Zeolite (H-MFI-90) | 0.0348 | 0.0109 | 0.9642 | 4.21 | 1.12 | 0.9993 | [154] |
Chitosan magnetic graphene oxide nanocomposite | 0.0023 | 0.021 | 0.9605 | 86.640 | 0.514 | 0.9776 | [155] |
Watermelon rind | 0.0031 | 1.39 | 0.96 | 1.99 | 0.40 | 0.88 | [156] |
Hydroxyl-eggshell | 0.529 | 0.005 | 0.81 | 104.11 | 5.05 | 0.92 | [157] |
Maghemite nano-adsorbents | 0.0072 | 17.5 | 0.98 | 13.8 | 1.95 | 0.93 | [158] |
Starch functionalized maghemite | 0.0086 | 9.1 | 0.98 | 16.5 | 1.60 | 0.98 | [158] |
Contaminant | Adsorbent | Number of Cycles | Removal Capacity (RC) or Removal Efficiency (RE) Change | Ref. |
---|---|---|---|---|
As (III) As(V) | Fe–Mn binary oxide impregnated chitosan bead | 5 | RC: −14% RC: −17% | [198] |
As(V) | Metal-organic framework MOF-808 | 5 | RE: 17% | [199] |
As (III) As(V) | Magnetite/non-oxidative graphene composites | 5 | RC: −14%, RE: −22% RC: −6%, RE: −0.26 | [200] |
As (III) | Chitosan magnetic graphene oxide nanocomposite | 5 | RE: −13% | [155] |
As(V) | MIL-101(Fe) | 3 | RE: −40% | [201] |
Method | Conditions and Factors | Models | Max Adsorption Capacity/Removal Efficiency (%) | Ref. |
---|---|---|---|---|
CCD | Adsorbate: As(V) and As(III) Adsorbent: iron-impregnated sugarcane carbon (Fe–SCC) Factors: A, C, and F | AC: 147.7 μg g−1 | [204] | |
Adsorbate: As(V) Adsorbent: mill scale-derived magnetite particles Factors: A, B, D, P | AC: 8.13 mg g−1 | [205] | ||
Adsorbate: As(V) Adsorbent: iron oxide immobilized graphene oxide gadolinium nanocomposite Factors: A, B, C, and D | RE: 94.8% | [206] | ||
Box–Behnken | Adsorbate: As(V) Adsorbent: metal oxide-precipitated clinoptilolite Factors: A, B, and T | AC: 6.1 mg g−1 | [207] | |
Adsorbate: As(III) and As(V) Adsorbent: CeO2/Fe2O3/graphene nanocomposite Factors: A, B, and C | As(III): 98.53% As(V): 97.26% | [208] |
Adsorbent | Adsorbate | Optimum pH | Optimum Temperature (K) | Contact or Equilibrium Time (min) | Optimum As Initial Concentration (mg L−1) | Optimum Adsorbent Dose (g L−1) | Removal Efficiency (%) (Max) | Adsorption Capacity (mg g−1) | Ref. |
---|---|---|---|---|---|---|---|---|---|
Magnetic graphene oxide | Pb (II) Cr (III) Cu (II) Zn (II) Ni (II) |
3–9 (Pb (II): 5 Cr (III): 6 Cu+2:7 Ni (II):8) | 298 |
10–65 (Pb (II), Cu (II), Ni (II): 25 Cr (III), Zn (II):35) | 60 | 0.002–0.016 |
Pb (II): 99.97 Cr (III): 97.78 Cu (II): 96.65 Zn (II): 91.88 Ni (II): 95.28 |
Pb (II): 200 Cr (III):24 Cu (II):62 Zn (II):63 Ni (II):51 | [209] |
Carboxyl modified lignocellulose-biomass jute fiber | Pb (II) Cd (II) Cu(II) | 2–6 (6) | 298 | 0–180 (20) | 200 | 1.0 | 157.21, 88.98, 43.98 | [210] | |
Magnetic carboxymethyl chitosan nanoparticles | Pb(II), Cu(II) Zn (II) | 5.2 | 298 | 2–60 (60) | 100 | 1.0 | Pb (II): 243, Cu (II): 232, Zn (II): 131 | [211] | |
Esterified hydroxyapatite | Pb(II) | 3–7 (3) | 298 | 10–720 (60) | 30−300 (100) | 0.1 | Pb (II): 99% < 60 ppm Pb (II): 99.99% =63 ppb) | 2397 | [212] |
Peanut hull | Cu(II) | 1.5–4 (4) | 298 to 338 (298) | 5–180 (60) | 150- 500 (150) | 0.1–1 (1) | >80% | 14 | [213] |
Microcrystalline cellulose-based nanogel | Cd (II) | 6 | 300 | 10–90 (30) | 20 | 0.05–1 (0.5) | 97% | 595 | [214] |
Magnetic Zr-MOF | Pb (II) Cr(VI) |
Pb (II) 1–7 (4) Cr(VI) 1–10 (3) | 298 |
10–250 (Pb (II): 60 and Cr(VI): 30) |
Pb (II): 10–500 (500) Cr(VI):10–1000 (1000) | 1 |
Pb (II): 273 Cr(VI): 429 | [215] |
Removal Agent | Flowrate (m3 d−1) /Volume | Initial Concentration (μg L−1) | Removal (%)/Final Concentration (μg L−1) | Other Available Data | Ref. | |
---|---|---|---|---|---|---|
Adsorption | ZVI adsorption–aeration | 0.14–1.4 | 130 | 90–95 |
Operation life: 30 days Initial ZVI loading = 500 g | [288] |
Laterite | 5 | 220–300 | 86.0 | Mn: 96.9%, Cd: 79.6%, Zn: 52.9%, and Pb: 38.7%. | [289] | |
GFH-based adsorbent | 96–3840 | 12–28 | >80 |
Hydraulic EBCT: 3–10 min pH = 7–8 | [290] | |
ZVI two-steps system | 1.44 | 100–130 | 77–96 |
Adsorption capacity: 20.5 mgAs/gFe Neutral pH | [291] | |
TiO2-based adsorption | 52 | 32 | 91 | Initial fluorides: 2.8 mg L−1 | [292] | |
Mixes of Berea red sand and ZVIs | 0.006–0.290 | 13,000–17,000 | 100 |
Porosity: 38–60% Void ratio (e): 0.6–1.5 Specific gravity: 4.3–7 g cm−3 | [293] | |
Ion Exchange | Arsenex II (SBA type II) | 2943 | 16.7 | <10 μg L−1 |
Empty-bed contact time: (2.6 min) Regeneration frequency: 1.7 day | [48] |
A300E (SBA type II) | 1362 | 49.7 | <10 μg L−1 |
Empty-bed contact time: (4.8 min) Regeneration frequency: 1.7 day | [48] | |
npXtra system (Arsenex) | 1.47 | 15–68 | 0 μg L−1 | pH = 6.8 | [294] | |
npXtra system (Arsenex) | 0.71 | 27–47 | 4.5 μg L−1 | pH = 7.8 | [294] | |
npXtra system (Arsenex) | 1.18 | 173 | 6 μg L−1 | pH = 7.1 | [294] | |
Membrane | POE RO | 4.5 | 18.1 | >99 | Sediment filter pore size: 5 μm | [48] |
POU RO | 0.13 | 57.8 | >99 | Sediment filter pore size: 20 μm | [48] | |
POU RO | variable | 14.34 | 85.5 | 261 samples (100 mL) | [295] | |
Softener + RO | variable | 9.76 | 19 | 261 samples (100 mL) | [295] | |
Coagulation |
Naturally occurring Fe + oxidizing agent (KMnO4) |
Jar test (1L) simulating groundwater of the Bengal Delta |
1000 500 |
50 μg L−1: ( Fe/As < 13) 10 μg L−1: (Fe/As > 13) | pH = 6.0–7.5 | [296] |
Iron electrocoagulation (FeEC) | reactor volume:100 L | 153.2 | <10 μg L−1 |
Current: 5.8 A Charge dose: 100 C/L Alum: 7.5 mg L−1 | [297] | |
SuMeWa|SYSTEM + chlorine as oxidant | 1.44 | 300 | 96 | pH= 5.56–7.05 | [298] | |
Iron electrocoagulation (FeEC) | 1.87 | 118 |
30 μg L−1 (<5 min) 20 μg L−1 (>5 min) |
Retention time: 19 s Charge dose: 233 C L−1 Alum: 5 mg L−1 | [299] | |
Oxidation | Solar-driven inline-electrolytic oxidation followed by co-precipitation and filtration | 1.2–1.44 |
187 202 195 165 |
80 88 76 94 |
In situ chlorine production using water chloride, Fe > 99%, MN: 96%, PO4: 72%, NH4: 84% | [300] |
Oxidation with sodium hypochlorite (0.33 mg L−1) followed by filtration | 840 | 12 | 95 | Laboratory scale result: removing As from 18 to 2 μg L−1 | [301] | |
Bio-oxidation (immobilized acid othiobacillus ferrooxidans bacteria) followed by adsorptive filtration (granulated activated carbon) | 0.004 | 1000 to 30,000 | >50 (after oxidation) | Final concentration: 0.2 mg L−1 (after adsorptive filtration) | [302] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Neisan, R.S.; Saady, N.M.C.; Bazan, C.; Zendehboudi, S.; Al-nayili, A.; Abbassi, B.; Chatterjee, P. Arsenic Removal by Adsorbents from Water for Small Communities’ Decentralized Systems: Performance, Characterization, and Effective Parameters. Clean Technol. 2023, 5, 352-402. https://doi.org/10.3390/cleantechnol5010019
Neisan RS, Saady NMC, Bazan C, Zendehboudi S, Al-nayili A, Abbassi B, Chatterjee P. Arsenic Removal by Adsorbents from Water for Small Communities’ Decentralized Systems: Performance, Characterization, and Effective Parameters. Clean Technologies. 2023; 5(1):352-402. https://doi.org/10.3390/cleantechnol5010019
Chicago/Turabian StyleNeisan, Roya Sadat, Noori M. Cata Saady, Carlos Bazan, Sohrab Zendehboudi, Abbas Al-nayili, Bassim Abbassi, and Pritha Chatterjee. 2023. "Arsenic Removal by Adsorbents from Water for Small Communities’ Decentralized Systems: Performance, Characterization, and Effective Parameters" Clean Technologies 5, no. 1: 352-402. https://doi.org/10.3390/cleantechnol5010019