Topographic Wetness Index as a Factor of the Toxic Metals’ Accumulation by the Alkaline Sorption Barrier and the Choice of Revegetation Strategy in the Subarctic
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characteristics of Vermiculite–Lizardite Material
2.2. Design of Experiment
2.3. Methods of Analyses
3. Results
3.1. Functioning of Sorption Alkaline Barrier
3.1.1. Wetness Conditions
3.1.2. Total Content of Macronutrients and Heavy Metals
3.1.3. Metal Accumulation in Sorption Alkaline Barrier
3.2. Plant Development on Sorption Alkaline Barrier
3.2.1. The TWI Effect on the Development of Lolium Multiflorum Lam
3.2.2. The Selection of a Plant Assortment for Remediation
Commercial Species
Native Species
4. Discussion
5. Conclusions
- (1)
- The content of macronutrients (Ca, Mg, N-NH4) was stable after 2 years of the field experiment and were not affected by TWI;
- (2)
- HMs were accumulated in the vermiculite–lizardite mineral material, and TWI was the primary factor that determined the values of HMs’ accumulation and mobility in this mineral material, as well as the rate of onset of phenological phases in the second and third vegetation seasons;
- (3)
- TWI is crucial factor of plant development on alkaline mineral material in dry locations; seven species (Festuca rubra, Festuca ovina, Achillea millefolium, Deschampsia cespitosa, Dactylis glomerata, Rumex acetosella, and Silene suecica) from native and commercial seeds can be recommended for the plant cover’ creation in such conditions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
TWI | Topographic wetness index |
VL | Vermiculite–lizardite material |
UAV | Uncrewed aerial vehicle |
References
- Cui, W.; Li, X.; Duan, W.; Xie, M.; Dong, X. Heavy metal stabilization remediation in polluted soils with stabilizing materials: A review. Environ. Geochem. Health 2023, 45, 4127–4163. [Google Scholar] [CrossRef] [PubMed]
- Kumpiene, J.; Lagerkvist, A.; Maurice, C. Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments—A review. Waste Manag. 2008, 28, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Cao, M.H.; Zhu, X.; Liu, H.C.; Wang, L.L.; Chen, J. Effect of inorganic amendments on the stabilization of heavy metals in contaminated soils. Huan Jing Ke Xue 2013, 34, 3722–3726. [Google Scholar]
- Huang, L.M.; Yu, G.W.; Cai, X.; Long, X.X. Immobilization of Pb, Cd, Cu and Zn in a Multi-Metal Contaminated Acidic Soil using Inorganic Amendment Mixtures. Int. J. Environ. Res. 2017, 11, 425–437. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, D.; Xu, Y.; Wang, L.; Liang, X.; Shen, Y. Effects of sepiolite on stabilization remediation of heavy metal-contaminated soil and its ecological evaluation. Front. Environ. Sci. Eng. 2016, 10, 85–92. [Google Scholar] [CrossRef]
- Malandrino, M.; Abollino, O.; Buoso, S.; Giacomino, A.; La Gioia, C.; Mentasti, E. Accumulation of heavy metals from contaminated soil to plants and evaluation of soil remediation by vermiculite. Chemosphere 2011, 82, 169–178. [Google Scholar] [CrossRef]
- Lan, M.M.; Liu, C.; Liu, S.J.; Qiu, R.L.; Tang, Y.T. Phytostabilization of Cd and Pb in highly polluted farmland soils using ramie and amendments. Int. J. Environ. Res. Public Health 2020, 17, 1661. [Google Scholar] [CrossRef] [PubMed]
- Vodyanitskii, Y.N. Artificial permeable redox barriers for purification of soil and ground water: A review of publications. Eurasian Soil Sci. 2014, 47, 1058–1068. [Google Scholar] [CrossRef]
- Kozlov, M.V.; Zvereva, E.L. Industrial barrens: Extreme habitats created by non-ferrous metallurgy. Rev. Environ. Sci. Biotechnol. 2007, 6, 231–259. [Google Scholar] [CrossRef]
- Barcan, V. Leaching of nickel and copper from soil contaminated by metallurgical dust. Environ. Int. 2002, 28, 63–68. [Google Scholar] [CrossRef]
- Kashulina, G.M. Extreme pollution of soils by emissions of the copper–nickel industrial complex in the Kola Peninsula. Eurasian Soil Sci. 2017, 50, 837–849. [Google Scholar] [CrossRef]
- Koptsik, G.N. Problems and prospects concerning the phytoremediation of heavy metal polluted soils: A review. Eurasian Soil Sci. 2014, 47, 923–939. [Google Scholar] [CrossRef]
- Koptsik, G.N.; Koptsik, S.V.; Smirnova, I.E.; Sinichkina, M.A. Remediation of Technogenic Barren Soils in the Kola Subarctic: Current State and Long-Term Dynamics. Eurasian Soil Sci. 2021, 54, 619–630. [Google Scholar] [CrossRef]
- Slukovskaya, M.V.; Vasenev, V.I.; Ivashchenko, K.V.; Dolgikh, A.V.; Novikov, A.I.; Kremenetskaya, I.P.; Ivanova, L.A.; Gubin, S.V. Organic matter accumulation by alkaline-constructed soils in heavily metal-polluted area of Sub-arctic zone. J. Soils Sediments 2021, 21, 2071–2088. [Google Scholar] [CrossRef]
- Kremenetskaya, I.P.; Alekseeva, S.A.; Slukovskaya, M.V.; Mosendz, I.A.; Drogobuzhskaya, S.V.; Ivanova, L.A. Expanded vermiculite-reached product obtained from mining waste: The effect of roasting temperature on the agronomic properties. Physicochem. Probl. Miner. Process. 2020, 56, 102–112. [Google Scholar] [CrossRef]
- Dvornikov, Y.A.; Slukovskaya, M.V.; Yaroslavtsev, A.M.; Meshalkina, J.L.; Sarzhanov, D.A.; Vasenev, V.I. High-resolution mapping of soil pollution by Cu and Ni at a polar industrial barren area using proximal and remote sensing. Land Degrad. Dev. 2022, 33, 1731–1744. [Google Scholar] [CrossRef]
- Kremenetskaya, I.P.; Alekseeva, S.A.; Rukhlenko, E.D.; Lashchuk, V.V.; Bastrygina, S.V.; Ivanova, L.A.; Teresh-chenko, S.V. Materials of the Nature-Conservative Indentation from the Phlogopite Mining Waste. Ecol. Ind. Russ. 2015, 19, 18–23. Available online: https://www.ecology-kalvis.ru/jour/article/view/535 (accessed on 20 March 2025).
- Food and Agriculture Organization of the United Nations. Available online: https://www.fao.org/soils-portal/data-hub/soil-classification/world-reference-base/en/ (accessed on 20 March 2025).
- Slukovskaya, M.V.; Petrova, A.G.; Ivanova, L.A.; Ivanova, T.K.; Mosendz, I.A.; Novikov, A.I.; Kremenetskaya, I.P. Serpentine Overburden Products–Nature-Inspired Materials for Metal Detoxification in Industrially Polluted Soil. Toxics 2023, 11, 957. [Google Scholar] [CrossRef]
- Soils. Determination of Exchangeable Ammonium by CINAO Method. Available online: https://star-pro.ru/gost/26489-85 (accessed on 8 March 2025).
- Raunkiaer, C.C. Types biologiques pour la géographiebotanique. Bull. Acad. R. Sci. 1905, 5, 347–437. [Google Scholar]
- Raunkiaer, C.C. Plant Life Forms; Clarendon Press: Oxford, UK, 1937; p. 104. [Google Scholar]
- Serebryakov, I.G. Ecologiclal Morphology of Plants: Life Forms of Angiosperms and Conifers; Higher School: Moscow, Russia, 1962; p. 378. (In Russian) [Google Scholar]
- Zhmylev, P.Y.; Alekseev, Y.E.; Morozova, O.V. Diversity of Plant Life Forms in Moscow Region; Dubna State University: Dubna, Russia, 2017; p. 325. (In Russian) [Google Scholar]
- Sekretareva, N.A. Vascular plants of the Russian Arctic and adjacent territories; KMK Scientific Press Ltd.: Moscow, Russia, 2004; pp. 1–131. ISBN 978-954-642-069-5. (In Russian) [Google Scholar]
- Beven, K.J.; Kirkby, M.J. A physically based, variable contributing area model of basin hydrology/Un modèle à base physique de zone d’appel variable de l’hydrologie du bassin versant. Hydrol. Sci. Bull. 1979, 24, 43–69. [Google Scholar] [CrossRef]
- Brindley, G.W. The structure and chemistry of hydrous nickel-containing silicate and nickel-aluminium hydroxy minerals. Bull. Mineral. 1980, 103, 161–169. [Google Scholar] [CrossRef]
- Siebecker, M.G.; Chaney, R.L.; Sparks, D.L. Nickel speciation in several serpentine (ultramafic) topsoils via bulk synchrotron-based techniques. Geoderma 2017, 298, 35–45. [Google Scholar] [CrossRef]
- Hu, Z.; Gao, S. Upper crustal abundances of trace elements: A revision and update. Chem. Geol. 2008, 253, 205–221. [Google Scholar] [CrossRef]
- Tarasova, E.; Drogobuzhskaya, S.; Tapia-Pizarro, F.; Morev, D.V.; Brykov, V.A.; Dovletyarova, E.A.; Slukovskaya, M.V.; Navarro-Villarroel, C.; Paltseva, A.A.; Neaman, A. Vermiculite-lizardite industrial wastes promote plant growth in a peat soil affected by a Cu/Ni smelter: A Case Study at the Kola Peninsula, Russia. J. Soil Sci. Plant Nutr. 2020, 20, 1013–1018. [Google Scholar] [CrossRef]
- Raval, N.P.; Shah, P.U.; Shah, N.K. Adsorptive removal of nickel (II) ions from aqueous environment: A review. J Environ. Manag. 2016, 179, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Reddy, B.J.; Frost, R.L.; Dickfos, M.J. Characterisation of Ni silicate-bearing minerals by UV–vis–NIR spectroscopy Effect of Ni substitution in hydrous Ni–Mg silicates. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 2009, 71, 1762–1768. [Google Scholar] [CrossRef]
- Heikkinen, P.M.; Räisänen, M.L. Mineralogical and geochemical alteration of Hiturasulphide mine tailings with emphasis on nickel mobility and retention. J. Geochem. Explor. 2008, 97, 1–20. [Google Scholar] [CrossRef]
- Kremenetskaya, I.; Vasilieva, T.; Semushin, V.; Slukovskaya, M.; Ivanova, I.; Chislov, M.; Zvereva, I.; Marchevskaya, V. Physicochemical transformation of expanded vermiculite after long-term use in hydroponics. Appl. Clay Sci. 2020, 198, 1–7. [Google Scholar] [CrossRef]
- Slukovskaya, M.V.; Kremenetskaya, I.P.; Mosendz, I.A.; Ivanova, T.K.; Drogobuzhskaya, S.V.; Ivanova, L.A.; Novikov, A.I.; Shirokaya, A.A. Thermally activated serpentine materials as soil additives for copper and nickel immobilization in highly polluted peat. Environ. Geochem. Health 2022, 45, 67–83. [Google Scholar] [CrossRef]
- Ivanova, L.A.; Slukovskaya, M.V.; Kremenetskaya, I.P.; Alekseeva, S.A.; Neaman, A.A. Ornamental plant cultivation using vermiculite-lizardite mining waste in the industrial zone of the Subarctic. In Proceedings of the Green Technologies and Infrastructure to Enhance Urban Ecosystem Services, Moscow, Russia, 23–26 May 2018; pp. 199–204. [Google Scholar] [CrossRef]
- Nagy, L. Biological flora of the British Isles: Silene suecica. J. Ecol. 2013, 101, 532–544. [Google Scholar] [CrossRef]
- Ramenskaya, M.L. Analysis of the Flora of the Murmansk Region and Karelia; Nauka Publishing House: Leningrad, Russia, 1983; p. 215. (In Russian) [Google Scholar]
- Willey, R.W. Intercropping—Its importance and research needs. I. Competition and yield advantages. Agronomy and Research Approaches. Field Crop Abstract 1979, 32, 1–10. [Google Scholar]
- Gebru, H. A review on the comparative advantages of intercropping to mono-cropping system. J. Biol. Agric. Healthc. 2015, 5, 1–13. [Google Scholar]
- Semahegn, Z. Intercropping of cereal with legume Crops. Int. J. Res. Agron. 2022, 5, 26–31. [Google Scholar] [CrossRef]
- Simmons, M.; Bertelsen, M.; Windhager, S.; Zafian, H. The performance of native and non-native turfgrass mono-cultures and native turfgrass polycultures: An ecological approach to sustainable lawns. Ecol. Eng. 2011, 37, 1095–1103. [Google Scholar] [CrossRef]
Label | Metal Fraction | Conditions |
---|---|---|
C1 | Mobile | Extraction by 0.01N HCl |
C2 | Sum of mobile and potentially mobile fractions | Extraction by 0.1N HCl |
C2-C1 | Potentially mobile fraction | – |
C3 | Total content | X-ray fluorescence analyzer |
C0 | Total content in the initial VL material | |
C3-C0 | Total metal accumulation | – |
Settings | Value |
---|---|
Solvent rinse, s | 10 |
Sample rinse, s | 60 |
Exposure time, s | 30 |
Number of repeated measurements | 3 |
Radio frequency power, kW | 1.2 |
Carrier gas, L/min | 0.7 |
Auxiliary gas, L/min | 0.6 |
Plasma gas, L/min | 10 |
View direction | Axial |
Quantitation method | Calibration-curve |
Material | Element | Concentration of Initial Solution, mg·L−1 | |||||||
---|---|---|---|---|---|---|---|---|---|
10 | 100 | ||||||||
pH | C * | G | E | pH | C | G | E | ||
VK | Cu | 8.1 | 0.12 | 3.1 | 98.8 | 4.5 | 14.2 | 27.02 | 85.8 |
Ni | 7.7 | 0.34 | 3.3 | 96.6 | 7.9 | 21.3 | 26.8 | 78.7 | |
LK | Cu | 8.3 | 0.07 | 3.1 | 99.3 | 8.1 | 0.07 | 31.4 | 99.9 |
Ni | 8.1 | 0.02 | 3.4 | 99.8 | 8.0 | 2.02 | 33.4 | 97.9 | |
VL | Cu | 7.6 | 0.05 | 3.1 | 99.5 | 6.5 | 1.95 | 30.8 | 98.1 |
Ni | 7.5 | 0.11 | 3.3 | 98.9 | 7.4 | 22.9 | 26.2 | 77.1 |
Metal | K1 = C1/(C2 − C1) | K2 = C2/(C3 − C0) | ||||
---|---|---|---|---|---|---|
Max | Min | Average | Max | Min | Average | |
Cu | 1.30 | 0.25 | 0.56 | 0.71 | 0.15 | 0.30 |
Ni | 0.34 | 0.17 | 0.25 | 0.93 | 0.06 | 0.39 |
Plot | Plant Species | Life Form | Characteristics | ||
---|---|---|---|---|---|
2022 | 2023 | 2024 | |||
Commercial Plant Species | |||||
Gramineae (Poaceae) | |||||
1-1 | Agrostis gigantea Roth. | ME, LR |
|
| Did not sprout. Colonization by Poa nemoralis L. germination |
2-2 | Lolium multiflorum Lam. | ME, B |
|
| Did not sprout. Colonization by A. capillaris, germination |
2-3 | Bromopsis inermis Leyss. | ME, LR |
|
|
|
2-4 | Phleum pratense L. | ME, LTSR |
|
|
|
2-7 | Festuca ovina L. | xME, DT |
|
|
|
2-5 | Festuca rubra L. | ME, LTSR |
|
|
|
2-8 | Festuca trichophylla (Ducros ex Gaudin) K. Richt. | ME, LTSR |
|
|
|
3-9 | Dactylis glomerata L. | ME, DT |
|
| Did not sprout. Colonization by A. gigantea, germination |
Fabaceae | |||||
1-2 | Trifolium repens L. | ME, C |
|
|
|
2-1 | Melilotus albus Medik. | ME, B |
| Did not sprout. Colonization by P. major (flowering) and A. millefolium (vegetation) | P. major flowering and A. millefolium vegetation |
2-6 | Trifolium pratense L. | ME, T |
| Did not sprout. Colonization by F. rubra, vegetation | F. rubra vegetation |
Native Plant Species | |||||
Asteraceae | |||||
1-3 | Erigeron sp. | ME |
| Germination L. multiflorum and F. rubra, vegetation | F. rubra, germination |
3-1 | Tanacetum vulgare L. | ME, LR | Single species in the interplot spaces. Colonizationby Rumex acetosella L., P. major, and D. caespitose, vegetation | R. acetosella germination and D. caespitose flowering | R. acetosella germination and D. caespitose flowering |
4-3 | Taraxacum croceum Dahlst. | hyME, T | The transplant was carried out after flowering had completed |
|
|
4-6 | Achillea millefolium L. | ME, LR |
|
|
|
Caryophyllaceae | |||||
3-2 | Cerastium fontanum Baumg. | ME, T |
|
|
|
Fabaceae | |||||
4-4 | Trifolium repens L. | ME, C |
| Vegetation. Colonization by A. millefolium and Gramineae sp. |
|
Plantaginaceae | |||||
3-6 | Plantago major L. | ME, B |
|
|
|
Gramineae (Poaceae) | |||||
3-7 | Festuca ovina L. | xME, DT |
|
|
|
4-1 | Agrostis capillaris L. | hyME, LTSR |
|
|
|
4-2 | Poaceae sp. (undefined) |
|
|
| |
4-5 | Deschampsia cespitosa (L.) P. Beauv. (flower bed) | meHY, DT |
|
|
|
Onagraceae | |||||
4-7 | Epilobium angustifolium L. | ME, R | Did not sprout. Colonization by A. millefolium | A. millefolium, vegetation | A. millefolium, vegetation |
Orobanchaceae | |||||
3-5 | Rhinianthus sp. | ME, A | Did not sprout. Colonization by P. major | P. major flowering, C. scandicum vegetation | P. major flowering, C. fontanum vegetation |
Grass Plant Mixture | |||||
3-3 | Carex sp./Silene suecica (Lodd.) Greuter & Burdet (flower bed) | -/ME, T | Single Carex sp. | Single Cerastium sp. and Cirsium arvense (L.) Scop. vegetation |
|
3-4 | S. suecica/Tussilago farfara L./P. major (flower bed) | /ME, LR | Single specimens. S. suecica sprouted from seeds, vegetation. P. major, T. farfara were transplanted in clumps, flowering | T. farfara, A. millefolium, S. suecica, P. major vegetation | P. nemoralis, germination |
3-8 | Sanguisorba officinalis L./Calluna vulgaris (L.) Hull (flower bed) | ME, T/xME, HP | Did not sprout. Colonization by P.major | P. major flowering, S. suecica vegetation, F. ovina - germination | S. suecica germination |
4-8 | Centaurea sp./Thlaspi arvense L. (transplanted) | -/ME, A | Centaurea sp. Did not sprout, T. arvense vegetation. Colonization by A. millefolium | Centaurea sp., A. millefolium, T. arvense vegetation |
|
4-9 | T. farfara/Equisetum hyemale L. (transplanted) | ME, LR/xME, LR | Did not sprout. Colonization by A. millefolium and T. repens | A. millefolium vegetation | A. millefolium vegetation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Slukovskaya, M.; Dvornikov, Y.; Ivanova, T.; Kopeina, E.; Petrova, A.; Shirokaya, A.; Novikov, A.; Ivanova, L.; Kremenetskaya, I. Topographic Wetness Index as a Factor of the Toxic Metals’ Accumulation by the Alkaline Sorption Barrier and the Choice of Revegetation Strategy in the Subarctic. Soil Syst. 2025, 9, 52. https://doi.org/10.3390/soilsystems9020052
Slukovskaya M, Dvornikov Y, Ivanova T, Kopeina E, Petrova A, Shirokaya A, Novikov A, Ivanova L, Kremenetskaya I. Topographic Wetness Index as a Factor of the Toxic Metals’ Accumulation by the Alkaline Sorption Barrier and the Choice of Revegetation Strategy in the Subarctic. Soil Systems. 2025; 9(2):52. https://doi.org/10.3390/soilsystems9020052
Chicago/Turabian StyleSlukovskaya, Marina, Yury Dvornikov, Tatiana Ivanova, Ekaterina Kopeina, Anna Petrova, Anna Shirokaya, Andrey Novikov, Liubov’ Ivanova, and Irina Kremenetskaya. 2025. "Topographic Wetness Index as a Factor of the Toxic Metals’ Accumulation by the Alkaline Sorption Barrier and the Choice of Revegetation Strategy in the Subarctic" Soil Systems 9, no. 2: 52. https://doi.org/10.3390/soilsystems9020052
APA StyleSlukovskaya, M., Dvornikov, Y., Ivanova, T., Kopeina, E., Petrova, A., Shirokaya, A., Novikov, A., Ivanova, L., & Kremenetskaya, I. (2025). Topographic Wetness Index as a Factor of the Toxic Metals’ Accumulation by the Alkaline Sorption Barrier and the Choice of Revegetation Strategy in the Subarctic. Soil Systems, 9(2), 52. https://doi.org/10.3390/soilsystems9020052