Advancing Sustainable Practices: Integrated Pedological Characterization and Suitability Assessment for Enhanced Irish Potato Production in Tsangano and Angónia Districts of Tete Province, Mozambique
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Areas
2.2. Field Work
2.3. Laboratory Soil Analysis
2.4. Data Interpretation and Soil Classification
2.5. Soil Suitability Assessment
3. Results
3.1. Soil Morphological Characteristics of the Studied Pedons
3.2. Soil Physical and Chemical Characteristics of the Studied Pedons
3.2.1. Soil Texture, Silt:Clay Ratio
3.2.2. Soil Bulk Density, Porosity, Penetration Resistance, and Available Water Capacity (AWC)
3.2.3. Soil pH and Electrical Conductivity (EC)
3.2.4. Soil Organic Carbon (SOC), Total Nitrogen (TN), and Available Phosphorus
3.2.5. Exchangeable Bases, Cation Exchange Capacity, and Nutrient Balance
Exchangeable Bases | CECsoil | CECclay | TEB | Nutrient Balance (Nutrient Ratios) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Ca | Mg | Na | K | PBS | ESP | Ca/Mg | Ca/TEB | Mg/K | % (K/TEB) | ||||||
Pedons | Horizon | Depth (cm) | cmol(+) kg−1 | ||||||||||||
TSA-P01 | Ap | 0–8 | 0.65 | 0.98 | 0.06 | 0.4 | 23.0 | 53.96 | 2.09 | 19.3 | 0.55 | 0.66 UF | 0.31 UF | 2.4 F | 3.69 F |
Bt1 | 8–45 | 0.83 | 1.03 | 0.05 | 0.25 | 23.5 | 47.00 | 2.16 | 20.0 | 0.46 | 0.81 UF | 0.38 F | 4.2 UF | 2.31 F | |
Bt2 | 45–112 | 0.97 | 1.17 | 0.04 | 0.12 | 28.0 | 44.71 | 2.14 | 19.7 | 0.37 | 0.83 UF | 0.45 F | 10.0 UF | 1.10 UF | |
Bt3 | 112–155+ | 1.19 | 1.66 | 0.04 | 0.15 | 16.0 | 24.44 | 3.04 | 30.0 | 0.39 | 0.72 UF | 0.39 F | 11.2 UF | 1.48 UF | |
TSA-P02 | Ap | 0–21 | 7.84 | 2.51 | 0.13 | 1.19 | 32.5 | 64.13 | 11.67 | 103.0 | 1.15 | 3.12 F | 0.67 UF | 2.1 F | 10.50 F |
BA1 | 21–41 | 4.63 | 1.78 | 0.14 | 0.47 | 22.0 | 39.41 | 7.02 | 64.9 | 1.30 | 2.60 UF | 0.66 UF | 3.7 F | 4.35 F | |
BA2k | 41–75/91 | 9.17 | 2.55 | 0.08 | 0.75 | 23.5 | 35.05 | 12.54 | 117.0 | 0.75 | 3.60 UF | 0.73 UF | 3.4 F | 7.00 F | |
BCgk | 75/91–155/165 | 13.18 | 3.08 | 0.07 | 0.22 | 22.5 | 31.22 | 16.54 | 153.7 | 0.65 | 4.28 F | 0.80 UF | 13.6 UF | 2.04 F | |
CRgk | 155/165–200 | 1.5 | 0.64 | 0.08 | 0.13 | 11.4 | 135.38 | 2.33 | 23.2 | 0.80 | 2.34 UF | 0.64 UF | 4.6 UF | 1.29 UF | |
ANGO-P01 | Ap | 0–25/30 | 2.2 | 2.44 | 0.06 | 0.53 | 18.0 | 34.30 | 5.23 | 51.8 | 0.59 | 0.90 UF | 0.42 F | 4.6 UF | 5.25 F |
Bt1 | 25/30–70 | 1.53 | 1.91 | 0.05 | 0.22 | 25.5 | 35.68 | 3.71 | 34.6 | 0.47 | 0.80 UF | 0.41 F | 8.5 UF | 2.05 F | |
Bt2 | 70–120 | 1.51 | 2.26 | 0.05 | 0.28 | 17.5 | 19.92 | 4.1 | 39.2 | 0.48 | 0.67 UF | 0.37 F | 8.0 UF | 2.68 F | |
Bt3 | 120–181 | 1.79 | 2.66 | 0.06 | 0.22 | 24.5 | 30.64 | 4.73 | 44.3 | 0.56 | 0.67 UF | 0.38 F | 11.7 UF | 2.06 F | |
ANGO-P02 | Ap | 0–29 | 2.37 | 1.92 | 0.04 | 0.12 | 18.0 | 23.50 | 4.45 | 42.8 | 0.38 | 1.23 UF | 0.53 UF | 15.0 UF | 1.15 UF |
BA | 29–50 | 2.39 | 0.2 | 0.04 | 0.11 | 18.5 | 25.06 | 3.1 | 30.7 | 0.40 | 11.95 UF | 0.77 UF | 1.8 F | 1.09 UF | |
Bt | 50–86/118 | 3.66 | 2.46 | 0.05 | 0.09 | 25.5 | 35.43 | 6.26 | 59.6 | 0.48 | 1.49 UF | 0.58 UF | 24.7 UF | 0.86 UF | |
CR | 86/118–181 | 4.01 | 3.08 | 0.05 | 0.08 | 8.8 | 41.83 | 7.22 | 66.9 | 0.46 | 1.30 UF | 0.56 UF | 38.0 UF | 0.74 UF |
3.2.6. Micronutrient Contents of the Studied Pedons
3.2.7. Total Elemental Composition and Weathering Indices of the Studied Pedons
3.2.8. Concentrations of Barium (Ba), Zirconium (Zr), Strontium (Sr), and Lead (Pb) in the Studied Pedons
3.2.9. Classification of the Studied Pedons
3.2.10. Suitability Assessment Based on Ecological Requirements of Irish Potato and Field Conditions of the Studied Pedons
4. Discussion
4.1. Soil Morphological Characteristics
4.2. Soil Physical and Chemical Characteristics
4.3. Total Elemental Composition and Weathering Indices of the Studied Pedons
4.4. Concentrations of Barium (Ba), Zirconium (Zr), Strontium (Sr), and Lead (Pb) in the Studied Pedons
4.5. Classification of the Studied Pedons
4.6. Suitability Assessment for Irish Potato Cultivation
5. Conclusions and Recommendations
5.1. Conclusions
5.2. Recommendations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Demo, P.; Dominguez, S.; Cumbi, S.; Walker, T. The Potato Sub-Sector and Strategies for Sustainable Seed Production in Mozambique Report of a TWO-week Potato Sub-Sector Study Conducted from 21 November to 4 December of 2005, Maputo, Moçambique. Maputo, March 2006. Available online: https://www.yumpu.com/en/document/view/37547166/the-potato-sub-sector-and-strategies-for-sustainable-seed-production- (accessed on 14 January 2025).
- Amede, T.; Desta, L.T.; Harris, D.; Kizito, F.; Cai, X. The Chinyanja Triangle in the Zambezi River Basin, Southern Africa: Status of, and Prospects for, Agriculture, Natural Resources Management and Rural Development; International Water Management Institute (IWMI): Colombo, Sri Lanka, 2014. [Google Scholar] [CrossRef]
- Ántónio, J.; Favero, L.A.; Cabral, R.M. Análise Da Cadeia Produtiva Da Batata Reno Da Região Do Vale Zambeze (Moçambique): Governança E Coordenação. Contextus—Revista Contemporânea de Economia e Gestão 2008, 9, 97–115. [Google Scholar] [CrossRef]
- Schelling, N. Horticulture and Potato Market Study in Mozambique. Pretoria, 2015. Available online: http://agriprofocus.com/upload/HorticultureandPotatoMarketStudyinMozambique1417448632.pdf (accessed on 1 May 2022).
- Harahagazwe, D.; Condori, B.; Barreda, C.; Bararyenya, A.; Byarugaba, A.A.; Kude, D.A.; Lung’aho, C.; Martinho, C.; Mbiri, D.; Nasona, B.; et al. How big is the potato (Solanum tuberosum L.) yield gap in Sub-Saharan Africa and why? A participatory approach. Open Agric. 2018, 3, 180–189. [Google Scholar] [CrossRef]
- Karlen, D.L.; Andrews, S.S.; Doran, J.W. Soil quality: Current concepts and applications. Adv. Agron. 2001, 74, 1–40. [Google Scholar]
- Estrada-Herrera, I.R.; Hidalgo-Moreno, C.; Guzmán-Plazola, R.; Almaraz Suárez, J.J.; Navarro-Garza, H.; Etchevers-Barra, J.D. Soil quality indicators to evaluate soil fertility. Agrociencia 2017, 51, 813–831. [Google Scholar]
- Hatfield, J.L. Soil degradation, land use, and sustainability. In Convergence of Food Security, Energy Security and Sustainable Agriculture; Springer: Berlin/Heidelberg, Germany, 2014; pp. 61–74. [Google Scholar] [CrossRef]
- Vlek, P.L.G. The incipient threat of land degradation. J. Indian Soc. Soil Sci. 2008, 56, 1–13. [Google Scholar]
- Zhang, J. Soil Environmental Deterioration and Ecological Rehabilitation. Study Ecol. Eng. Hum. Settl. 2020, 41–82. [Google Scholar] [CrossRef]
- Osman, K.T.; Osman, K.T. Soil resources and soil degradation. In Soils: Principles, properties and management; Springer: Dordrecht, The Netherlands, 2013; pp. 175–213. [Google Scholar] [CrossRef]
- Veum, K.S.; Goyne, K.W.; Kremer, R.J.; Miles, R.J.; Sudduth, K.A. Biological indicators of soil quality and soil organic matter characteristics in an agricultural management continuum. Biogeochemistry 2014, 117, 81–99. [Google Scholar] [CrossRef]
- Li, J.; Nie, M.; Powell, J.R.; Bissett, A.; Pendall, E. Soil physico-chemical properties are critical for predicting carbon storage and nutrient availability across Australia. Environ. Res. Lett. 2020, 15, 094088. [Google Scholar] [CrossRef]
- Manikandan, K.; Kannan, P.; Sankar, M.; Vishnu, G. Concepts on land evaluation. Earth Sci. India 2013, VI, 20–26. [Google Scholar]
- Rossiter, D.G. Land evaluation: Towards a revised framework. Geoderma 2009, 148, 428–429. [Google Scholar] [CrossRef]
- Landon, J.R. Booker Tropical Soil Manual: A Handbook for Soil Survey and Agricultural Land Evaluation in the Tropics and Subtropics; Paperback, J.R., Ed.; John Wiley & Sons: New York, NY, USA, 2013; p. 531. [Google Scholar]
- FAO. A Framework for Land Evaluation, Soil Bulletin; FAO Rome: Rome, Italy, 1976; Volume 32. [Google Scholar]
- Sys, C.; Van Ranst, E.; Debaveye, J. Land Evaluation. Part I: Principles in Land Evaluation and Crop Production Calculations; Agricultural Publication No 7: Brussels, Belgium, 1991; p. 280. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 13th ed.; United States Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2022; p. 410. [Google Scholar]
- IUSSWorking Group. World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 106th ed.; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2015; Volume 106, p. 203. [Google Scholar]
- Ministério Da Indústria E Comércio Direcção Nacional Do Comércio Interno. DNCI Plano Operacional Da Comercialização Agrícola, Tete; Direcção Nacional Do Comércio Interno (DNCI): Maputo, Mozambique, 2018. Available online: https://www.mic.gov.mz/por/content/download/6731/47986/version/1/file/POCA++Tete+2018.pdf (accessed on 3 August 2024).
- MITADER. Avaliação Ambiental Estratégica, Plano Multissectorial, Plano Especial de Ordenamento Territorial do Vale do Zambeze e Modelo Digital de Suporte a Decisões; Perfil Ambiental Distrital de Tsangano: Maputo, Mozambique, 2015. [Google Scholar]
- Mitader. Perfil Ambiental Distrital de Angónia Plano Multissectorial, Plano Especial de Ordenamento Territorial do Vale do Zambeze e Modelo Digital de Suporte a Decisões Ministério da Economia E Finanças. Agência de Desenvolvimento do Vale do Zambe, 2005th ed.; Mitader, Ed.; MEF: Maputo, Mozambique, 2015; p. 97. Available online: https://biblioteca.biofund.org.mz/biblioteca_virtual/avaliacao-ambiental-estrategica-plano-multissectorial-plano-especial-de-ordenamento-territorial-do-vale-do-zambeze-e-modelo-digital-de-suporte-a-decisoes-perfil-ambiental-distrital-de-angonia/ (accessed on 5 August 2024).
- JICA. The Study on the Integrated Development Master Plan of the Angonia Region in the Republic of Mozambique. Final Report. Master Plan Report. 2001. Available online: https://openjicareport.jica.go.jp/pdf/11668704.pdf (accessed on 19 June 2022).
- Nkoka, F.; Veldwisch, G.J.A.; Bolding, J.A. Organisational modalities of farmer-led irrigation development in Tsangano District, Mozambique. Water Altern. 2014, 7, 414–433. [Google Scholar]
- Maereka, E.K.; Makate, C.; Chataika, B.Y.; Mango, N.; Zulu, R.M.; Munthali, G.; Amane, M.I.; Chirwa, R.M. Estimation and Characterization of Bean Seed Demand in Angonia District of Mozambique. 2015. Available online: https://cgspace.cgiar.org/server/api/core/bitstreams/1295ee00-901f-4eeb-8c46-2921997fcaff/content (accessed on 16 September 2024).
- Voortman, R.L.; Spiers, F.B. Landscape Ecological Survey and Land Evaluation, For Rural Development Planning, Angonia District, Tete Province. Climate, Agro-Climatic Zones and Agro-Climatic Suitability; Instituto Nacional de Investigacao Agronomica: Maputo, The Republic of Mozambique, 1986; Volume 5. [Google Scholar]
- Amerling, R.; Winchester, J.F.; Ronco, C. Guidelines for Soil Description; Food and Agriculture Organization of the United Nations (FAO): Rome, Italy, 2006; pp. 36–38. [Google Scholar]
- Kipfer, B.A. Munsell Soil Color Chart. In Encyclopedic Dictionary of Archaeology; Macbeth: Windsor, Australia, 1994; p. 29. [Google Scholar]
- Klute, A. Methods of soil analysis. In Part 1: Physical and Mineralogical Methods; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1986; p. 1358. [Google Scholar]
- Cho, S.E. Effects of spatial variability of soil properties on slope stability. Eng. Geol. 2007, 92, 97–109. [Google Scholar] [CrossRef]
- Hazelton, P.; Murphy, B. Interpreting Soil Test Results: What do the Numbers Mean? 3rd ed.; CSIRO Publishing: Clayton South, Autralia, 2016; p. 201. [Google Scholar]
- Moraes, M.T.D.; Debiasi, H.; Carlesso, R.; Franchini, J.C.; Silva, V.R.D. Critical limits of soil penetration resistance in a rhodic Eutrudox. Rev. Bras. Ciência Do Solo 2014, 38, 288–298. [Google Scholar] [CrossRef]
- Okalebo, J.R.; Gathua, W.K.; Woomer, L.P. Laboratory Methods of Soil and Plant Analysis: A Working Manual, 2nd ed.; Sacred Africa: Nairobi, Kenya, 2002; p. 131. [Google Scholar]
- Estefan, G.; Sommer, R.; Ryan, J. Methods of Soil, Plant, and Water Analysis: A manual for the West Asia and North Africa Region, 3rd ed.; International Centre for Agricultural Research in the Dry Areas (ICARDA), Beirut: References—Scientific Research Publishing: Colombo, Sri Lanka, 2013; pp. 1–243. [Google Scholar]
- ASTM D 2974-8; Standard Test Methods for Moisture, Ash, and Organic Matter of Peat and Other Organic Soils. American Society for Testing and Materials: Philadelphia, PA, USA, 1987; p. 3.
- Rayment, G.E.; Lyons, D.J. Soil Chemical Methods; CSIRO Publishing: Collingwood, Australia, 2011; Volume 3. [Google Scholar]
- Parkinson, J.A.; Allen, S.E. A wet oxidation procedure suitable for the determination of nitrogen and mineral nutrients in biological material. Commun Soil Sci Plant Anal. 1975, 6, 1–11. [Google Scholar] [CrossRef]
- Mehlich, A. Mehlich 3 soil test extractant: A modification of Mehlich 2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Baize, D. Soil Science Analyses: A Guide to Current Use; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 1993; p. 187. [Google Scholar]
- Tiecher, T.; Gatiboni, L.; Rheinheimer dos Santos, D.; Alberto Bissani, C.; Posselt Martins, A.; Gianello, C.; Dick, D.P.; Bortoluzzi, E.C.; Escosteguy, P.A.V.; da Silva, L.S.; et al. Base saturation is an inadequate term for Soil Science. Bras. J. Soil Sci. 2022, 46, e0220125. [Google Scholar] [CrossRef]
- Nile, C.B. (Ed.) The Nature and Properties of Soils; Macmillan Publishing Company: New York, NY, USA, 1984; p. 780. [Google Scholar]
- Kalala, A.M.; Msanya, B.M.; Amuri, N.A.; Semoka, J.M. Pedological characterization of some typical alluvial soils of Kilombero District, Tanzania. Am. J. Agric. For. 2017, 5, 1–11. [Google Scholar]
- Sys, C.; Van Ranst, E.; Debaveye, J. Land Evaluation. Part 2: Methods in Land Evaluation; Agricultural Publications: Brussels, Belgium, 1991. [Google Scholar]
- Iliquín Trigoso, D.; Salas López, R.; Rojas Briceño, N.B.; Silva López, J.O.; Gómez Fernández, D.; Oliva, M.; Huatangari, L.Q.; Murga, R.E.T.; Castillo, E.B.; Gurbillón, M.Á.B. Land suitability analysis for potato crop in the Jucusbamba and Tincas Microwatersheds (Amazonas, NW Peru): AHP and RS–GIS approach. Agronomy 2020, 10, 1898. [Google Scholar] [CrossRef]
- Mugo, J.N.; Karanja, N.N.; Gachene, C.K.; Dittert, K.; Nyawade, S.O.; Schulte-Geldermann, E. Assessment of soil fertility and potato crop nutrient status in central and eastern highlands of Kenya. Sci. Rep. 2020, 10, 7779. [Google Scholar] [CrossRef]
- Asfaw, M.; Asfaw, D. Agricultural Land Suitability Analysis for Potato Crop by Using Gis and Remote Sensing Technology, in the Case of Amhara Region, Ethiopia. J. Resour. Dev. Manag. 2017, 33, 30–40. Available online: https://www.iiste.org (accessed on 5 October 2024).
- Enang, R.K.; Yerima, B.P.K.; Kome, G.K. Soil physico-chemical properties and land suitability evaluation for maize (Zea mays), beans (Phaseolus vulgaris) and Irish potatoes (Solanum tuberosum) in tephra soils of the western slopes of mount Kupe (Cameroon). Afr. J. Agric. Res. 2016, 11, 4571–4583. [Google Scholar]
- Martinho, C.A.; Lung, C.; Roda, F.A.; Pereira, R.; Mofate, O.A.; Naconha, A.E. Manual de Maneio da Cultura de Batata Reno. 2017, 1–26. Available online: https://pt.scribd.com/document/454072314/Manual-da-Batata-reno-versao-2018 (accessed on 30 July 2024).
- Peverill, K.I.; Sparrow, L.A.; Reuter, K.I. (Eds.) Soil Analysis: An Interpretation Manual; SCIRO Publishing: Collingwood, ON, Canada, 1999; p. 369. [Google Scholar]
- Buol, S.W.; Southard, R.J.; Graham, R.C.; McDaniel, P.A. Soil Genesis and Classification., 6th ed.; Madison Wis Buol, S.W., Hole, F.D., McCracken, R.J., Eds.; John Wiley & Sons: West Sussex, UK, 2011; p. 543. [Google Scholar]
- Wang, L.; He, Z.; Zhao, W.; Wang, C.; Ma, D. Fine soil texture is conducive to crop productivity and nitrogen retention in irrigated cropland in a desert-oasis ecotone, Northwest China. Agronomy 2022, 12, 1509. [Google Scholar] [CrossRef]
- Jones Jr, B. Laboratory Guide For Conducting Soil Tests Plant Analysis; CRC Press: New York, NY, USA, 2001; p. 382. [Google Scholar]
- Lardy, J.M.; DeSutter, T.M.; Daigh, A.L.M.; Meehan, M.A.; Staricka, J.A. Effects of soil bulk density and water content on penetration resistance. Agric. Environ. Lett. 2022, 7, e20096. [Google Scholar] [CrossRef]
- Msanya, B.M.; Kimaro, D.N.; Kimbi, G.G.; Kileo, E.P.; Mbogoni, J.J.D.J. Soils and Land Resources OF Morogoro Rural and Urban Districts. In Land Resources Inventory and Suitability Assessment for the Major Land Use Types In Morogoro Urban District, Tanzania; Sokoine University of Agriculture: Tanzania, Morogoro, 2001; Volume 4, ISBN 9987 605 29 X. [Google Scholar]
- Kononova, M.M. Soil Organic Matter: Its Nature, Its Role in Soil Formation and in Soil Fertility; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Lehmann, J.; Kleber, M. The contentious nature of soil organic matter. Nature 2015, 528, 60–68. [Google Scholar] [CrossRef]
- Heckman, J.R. Soil Fertility Test Interpretation Phosphorus, Potassium, Magnesium, and Calcium. 2004. Available online: https://s3.amazonaws.com/assets.cce.cornell.edu/attachments/10623/Rutgers_fs719_soil_fertility.pdf?1441295901 (accessed on 3 August 2024).
- Mumbach, G.L.; Oliveira, D.A.D.; Warmling, M.I.; Gatiboni, L.C. Phosphorus extraction by Mehlich 1, Mehlich 3 and Anion Exchange Resin in soils with different clay contents. Rev. Ceres. 2018, 65, 546–554. [Google Scholar] [CrossRef]
- Savoy, H. Interpreting Mehlich 1 and 3 Soil Test Extractant Results for P and K in Tennessee. University of Tennessee, Institute of Agriculture, W229 08/09 10-0043. 2009. Available online: https://trace.tennessee.edu/utk_agexcrop/63/ (accessed on 20 August 2024).
- da Silva, R.J.A.B.; da Silva, Y.J.A.B.; van Straaten, P.; do Nascimento, C.W.A.; Biondi, C.M.; da Silva, Y.J.A.B.; de Araújo Filho, J.C. Influence of parent material on soil chemical characteristics in a semi-arid tropical region of Northeast Brazil. Environ. Monit. Assess. 2022, 194, 331. [Google Scholar] [CrossRef] [PubMed]
- Maria, R.M.; Yost, R. A survey of soil fertility status of four agroecological zones of Mozambique. Soil Sci. 2006, 171, 902–914. Available online: https://journals.lww.com/soilsci/Fulltext/2006/11000/A_SURVEY_OF_SOIL_FERTILITY_STATUS_OF_FOUR.8.aspx (accessed on 20 July 2022). [CrossRef]
- Havlin, J.L. Soil: Fertility and nutrient management. In Landscape and Land Capacity; CRC Press: Boca Raton, FL, USA, 2020; pp. 251–265. [Google Scholar]
- Soil and Plant Analysis Council. Soil Analysis Handbook of Reference Methods; CRC Press: Boca Raton, FL, USA, 1992; p. 265. [Google Scholar]
- Andreasen, R.; Thomsen, E. Strontium is released rapidly from agricultural lime–implications for provenance and migration studies. Front. Ecol. Evol. 2021, 8, 588422. [Google Scholar] [CrossRef]
- Gregorauskienė, V.; Kadunas, V. Vertical distribution patterns of trace and major elements within soil profile in Lithuania. Geol. Q. 2006, 50, 229–237. [Google Scholar]
- Shahid, M.; Ferrand, E.; Schreck, E.; Dumat, C. Behavior and impact of zirconium in the soil–plant system: Plant uptake and phytotoxicity. Rev. Environ. Contam. Toxicol. 2012, 221, 107–127. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants; CRC Press: Boca Raton, FL, USA, 2000. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; Soil Conservation Service, United States Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2014; Volume 12, p. 360. [Google Scholar]
- Voortman, R.L.; Spires, B. FAO Landscape Ecological Survey And Land Evaluation, For Rural Development Planning, Angonia District, Tete Province. In Land Evaluation, Land Suitability and Recommended Land Use; Instituto de Investigacao Agraria de: Maputo, Mocambique, 1986; Volume 6. [Google Scholar]
- Dinssa, B.; Elias, E. Characterization and classification of soils of bako tibe district, west shewa, Ethiopia. Heliyon 2021, 7, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Mohamed, S.H.; Msanya, B.M.; Tindwa, H.J.; Semu, E. Pedological characterization and classification of selected soils of morogoro and mbeya regions of Tanzania. Int. J. Nat. Resour. Ecol. Manag. 2021, 6, 79–92. [Google Scholar] [CrossRef]
- Uwingabire, S.; Msanya, B.M.; Mtakwa, P.W.; Uwitonze, P.; Sirikare, S. Pedological Characterization of soils developed on gneissic granites in the Congo Nile Watershed Divide and Central Plateau zones, Rwanda. Int. J. Curr. Res. 2016, 8, 39489–39501. Available online: http://www.journalcra.com (accessed on 10 December 2024).
- Blanco-Canqui, H.; Stone, L.R.; Schlegel, A.J.; Lyon, D.J.; Vigil, M.F.; Mikha, M.M.; Stahlman, P.W.; Rice, C.W. No-till induced increase in organic carbon reduces maximum bulk density of soils. Soil Sci. Soc. Am. J. 2009, 73, 1871–1879. [Google Scholar] [CrossRef]
- Chichongue, O.; van Tol, J.; Ceronio, G.; Du Preez, C. Effects of tillage systems and cropping patterns on soil physical properties in Mozambique. Agriculture 2020, 10, 448. [Google Scholar] [CrossRef]
- Takele, L.; Chimdi, A.; Abebaw, A. Dynamics of soil fertility as influenced by different land use systems and soil depth in West Showa Zone, Gindeberet District, Ethiopia. Agriculture. Agric. For. Fish. 2014, 3, 489–494. [Google Scholar]
- Hailu, A.H.; Kibret, K.; Gebrekidan, H. Characterization and classification of soils of kabe subwatershed in south wollo zone, northeastern Ethiopia. Afr. J. Soil Sci. 2015, 3, 134–146. [Google Scholar]
- Pereira, M.J.S.L.; Esteves da Silva, J. Environmental Stressors of Mozambique Soil Quality. Environments 2024, 11, 125. [Google Scholar] [CrossRef]
- Dessalegn, D.; Beyene, S.; Ram, N.; Walley, F.; Gala, T.S. Effects of topography and land use on soil characteristics along the toposequence of Ele watershed in southern Ethiopia. Catena 2014, 115, 47–54. [Google Scholar] [CrossRef]
- Alemayehu, Y.; Gebrekidan, H.; Beyene, S. Pedological characteristics and classification of soils along landscapes at Abobo, southwestern lowlands of Ethiopia. J. Soil Sci. Environ. Manag. 2014, 5, 72–82. [Google Scholar]
- Gebrehanna, B.; Beyene, S.; Abera, G. Impact of Topography on Soil Properties in Delboatwaro Subwatershed, Southern Ethiopia. Asian J. Soil Sci. Plant Nutr. 2022, 8, 34–50. [Google Scholar] [CrossRef]
- Condron, L.M.; Sinaj, S.; McDowell, R.W.; Dudler-Guela, J.; Scott, J.T.; Metherell, A.K. Influence of long-term irrigation on the distribution and availability of soil phosphorus under permanent pasture. Soil Res. 2006, 44, 127–133. [Google Scholar] [CrossRef]
- Ortiz, C.; Pierotti, S.; Molina, M.G.; Bosch-Serra, À.D. Soil Fertility and Phosphorus Leaching in Irrigated Calcareous Soils of the Mediterranean Region. Environ. Monit. Assess. 2023, 195, 1376. [Google Scholar] [CrossRef]
- Solly, E.F.; Weber, V.; Zimmermann, S.; Walthert, L.; Hagedorn, F.; Schmidt, M.W.I. A critical evaluation of the relationship between the effective cation exchange capacity and soil organic carbon content in Swiss forest soils. Front. For. Glob. Chang. 2020, 3, 98. [Google Scholar] [CrossRef]
- Kumaragamage, D.; Warren, J.; Spiers, G. Soil Chemistry. In Digging into Canadian Soils; Canadian Society of Soil Science: Pinawa, MB, Canada, 2021. [Google Scholar]
- Tomašic, M.; Zgorelec, Ž.; Jurišic, A.; Kisic, I. Cation exchange capacity of dominant soil types in the Republic of Croatia. J. Cent. Eur. Agric. 2013, 14, 84–98. [Google Scholar] [CrossRef]
- Lu, X.; Mao, Q.; Gilliam, F.S.; Luo, Y.; Mo, J. Nitrogen deposition contributes to soil acidification in tropical ecosystems. Glob. Change Biol. 2014, 20, 3790–3801. Available online: https://onlinelibrary.wiley.com/doi/full/10.1111/gcb.12665 (accessed on 13 March 2025). [CrossRef] [PubMed]
- Niu, G.; Wang, R.; Hasi, M.; Wang, Y.; Geng, Q.; Wang, C.; Jiang, Y.; Huang, J. Availability of soil base cations and micronutrients along soil profile after 13-year nitrogen and water addition in a semi-arid grassland. Biogeochemistry 2021, 152, 223–236. Available online: https://link.springer.com/article/10.1007/s10533-020-00749-5 (accessed on 13 March 2025). [CrossRef]
- Hodges, S.C. Soil Fertility Basics; Soil Science Extension North Carolina State University, Academic Press: Cambridge, MA, USA, 2007; p. 75. Available online: https://www.online-pdh.com/file.php/562/FER_SG.pdf (accessed on 6 December 2024).
- Dhaliwal, S.S.; Sharma, V.; Kaur, J.; Shukla, A.K.; Hossain, A.; Abdel-Hafez, S.H.; Gaber, A.; Sayed, S.; Singh, V.K. The Pedospheric Variation of DTPA-Extractable Zn, Fe, Mn, Cu and Other Physicochemical Characteristics in Major Soil Orders in Existing Land Use Systems of Punjab, India. Sustainability 2021, 14, 29. Available online: https://www.mdpi.com/2071-1050/14/1/29/htm (accessed on 8 December 2024). [CrossRef]
- Liang, B.; Han, G.; Zhao, Y. Zinc isotopic signature in tropical soils: A review. Sci. Total Environ. 2022, 820, 153303. [Google Scholar] [CrossRef]
- Walna, B.; Spychalski, W.; Ibragimow, A. Fractionation of iron and manganese in the horizons of a nutrient-poor forest soil profile using the sequential extraction method. Pol. J. Environ. Stud. 2010, 19, 1029–1037. [Google Scholar]
- Uwitonze, P.; Msanya, B.M.; Mtakwa, P.W.; Uwingabire, S.; Sirikare, S. Pedological Characterization of Soils Developed from Volcanic Parent Materials of Northern Province of Rwanda. Agric. For. Fish. 2016, 5, 225–236. [Google Scholar] [CrossRef]
- Abdoulaye, O.D.M.; Yao, B.K.; Ahmed, A.M.; Adouby, K.; Abro, D.M.K.; Drogui, P. Mineralogical and morphological characterization of a clay from Niger. J. Mater. Environ. Sci. 2019, 10, 582–589. [Google Scholar]
- Nguetnkam, J.P.; Kamga, R.; Villiéras, F.; Ekodeck, G.E.; Yvon, J. Altération différentielle du granite en zone tropicale. Exemple de deux séquences étudiées au Cameroun (Afrique Centrale). Comptes Rendus Géosci. 2008, 340, 451–461. [Google Scholar] [CrossRef]
- Miranda-Trevino, J.C.; Coles, C.A. Kaolinite properties, structure and influence of metal retention on pH. Appl. Clay Sci. 2003, 23, 133–139. [Google Scholar] [CrossRef]
- Msanya, B.; Munishi, J.; Amuri, N.; Semu, E.; Mhoro, L.; Malley, Z. Morphology, Genesis, Physico-chemical Properties, Classi-fication and Potential of Soils Derived from Volcanic Parent Materials in Selected Districts of Mbeya Region, Tanzania. Int. J. Plant Soil Sci. 2016, 10, 1–19. [Google Scholar] [CrossRef]
- Khawmee, K.; Suddhiprakarn, A.; Kheoruenromne, I.; Singh, B. Surface charge properties of kaolinite from Thai soils. Geoderma 2013, 192, 120–131. [Google Scholar] [CrossRef]
- Abaga, N.O.Z.; Nfoumou, V.; M’voubou, M. Influence of the parent rock nature on the mineralogical and geochemical composition of ferralsols used for sedentary agriculture in the Paleoproterozoic Franceville sub-basin (Gabon). Int. J. Biol. Chem. Sci. 2023, 17, 1778–1789. [Google Scholar] [CrossRef]
- Ofem, K.I.; John, K.; Ediene, V.F.; Kefas, P.K.; Ede, A.M.; Ezeaku, V.I.; Pawlett, M. Pedological data for the study of soils developed over a limestone bed in a humid tropical environment. Environ. Monit. Assess. 2023, 195, 628. [Google Scholar] [CrossRef]
- Anda, M.; Chittleborough, D.J.; Fitzpatrick, R.W. Assessing parent material uniformity of a red and black soil complex in the landscapes. Catena 2009, 78, 142–153. [Google Scholar] [CrossRef]
- Kabała, C.; Szerszeń, L. Profile distributions of lead, zinc, and copper in Dystric Cambisols developed from granite and gneiss of the Sudetes Mountains, Poland. Water Air Soil Pollut. 2002, 138, 307–317. [Google Scholar] [CrossRef]
- Teutsch, N.; Erel, Y.; Halicz, L.; Banin, A. Distribution of natural and anthropogenic lead in Mediterranean soils. Geochim. Cosmochim. Acta 2001, 65, 2853–2864. [Google Scholar] [CrossRef]
- Nieder, R.; Benbi, D.K.; Reichl, F.X.; Nieder, R.; Benbi, D.K.; Reichl, F.X. Role of potentially toxic elements in soils. Soil Compon. Hum. Health 2018, 3, 375–450. [Google Scholar]
- Zhang, J.; Wu, Y.; Xu, Y. Factors Affecting the Levels of Pb and Cd Heavy Metals in Contaminated Farmland Soils. In International Conference on Biological Engineering and Pharmacy; Atlantis Press: Dordrecht, The Netherlands, 2016. [Google Scholar] [CrossRef]
District | Tsangano | Angónia | ||
---|---|---|---|---|
Village | Ligowe | Ntengo-Wambalame | Rinze | Ulónguè |
Location | Mr. M. Carneiro’s Farm | SDAE farm | Mr. Jonas’ farm | CITTA farm |
Attributes | Description | |||
Pedon symbol | TSA-P01 | TSA-P02 | ANGO-P01 | ANGO-P02 |
Agro-Ecological Zone 10 | high rainfall zone | high rainfall zone | high rainfall zone | high rainfall zone |
Coordinates | 14°52′47″ S/34°21′30″ E | 14°50′ 25″ S/34°32′16″ E | 14°36′17″ S/34°18′0″ E | 14°45′17″ S/34°22′30″ E |
Altitudes (m.a.s.l.) | 1427 | 1340 | 1260 | 1200 |
Landform | hilly | plain | hilly | hilly |
Geology/Lithology | Precambrian Meso- and Neoproterozoic geological eons dominated by quartz–feldspathic gneiss and amphibolic gneiss | Precambrian Meso- and Neoproterozoic geological eons dominated by quartz–feldspathic gneiss and amphibolic gneiss | Precambrian Meso- and Neoproterozoic geological eons dominated by basic rocks, migmatitic gneisses, and granulites | Precambrian Meso- and Neoproterozoic geological eons dominated by basic rocks, migmatitic gneisses, and granulites |
Slope gradient (%) | 16 | 2–5 | 16 | 12 |
Land use/vegetation | Agriculture but currently under grazing and fallow for 4 years | Agriculture and area under maize, conservation strategy (matuto) | Agriculture for maize, soybean, potatoes, and vegetables | Agriculture and area under fallow for 4 years |
Natural vegetation | Various grasses | Eucalyptus, mangoes, sisal boundary, legume shrubs, vinegar grass, Mexican sunflower (Tithonia diversifolia) | Mangoes, legumes, shrubs | Various grasses |
Natural drainage | well to excessively well-drained | well to moderately well-drained | well-drained | well-drained |
Flooding | None | None | None | None |
Erosion | water, slight sheet (interill) | water, slight sheet (interill) | water, slight sheet (interill) | water, slight sheet |
Annual rainfall (mm) | 1000–1200 | 1000–1200 | 800–1200 | 800–1200 |
Soil moisture regime (SMR) | ustic | aquic | ustic | ustic |
Mean annual temperature (°C) | 15–20 | 15–20 | 15–22 | 15–22 |
Soil temperature regime (STR) | thermic | thermic | thermic | thermic |
Parameter | Unit | S1 | S2 | S3 | N | Reference |
---|---|---|---|---|---|---|
Annual rainfall | mm | 1000–1500 | 800–1000 or 1500–2000 | 700–800 or 2000–2600 | <700 or >2600 | [46,48,49,50] |
Mean temperature | °C | 9–11 | 11–15 | 15–18 | <8 or >18 | [46,48,49,50] |
Slope | % | 0–12 | 13–18 | 18–25 | >25 | [46,50] |
Altitude | m | 1500–2500 | 1200–1500 or 2500–3200 | 1000–1200 | <1000 or >3200 | [46,48] |
Soil texture | - | L, SL, SiL | SCL, CL, SiCL | SC, C | Loose sands or extreme heavy clays | [46] |
Effective soil depth | cm | >100 | 75–100 | 40–75 | <40 | [33,50] |
Drainage | - | Well-drained | Moderately drained | Poorly drained | Very poorly drained or waterlogged | [33,50] |
Electrical conductivity (EC) | dS/m | <2 | 2–4 | 4–6 | >6 | [33,46,49] |
Exchangeable Sodium (ESP) | % | <6 | 6–10 | 10–15 | >15 | [17,33] |
Soil pH (H2O) | - | 5.5–6.5 | 5–5.5 or 6.5–7 | 4.5–5 or 7–7.5 | <4.5 or >7.5 | [47,49] |
Cation Exchange Capacity (CEC) | cmol(+) kg−1 | 30–50 | 50–60/30–20 | 60–70/20–10 | <10 or > 70 | [46,49] |
Organic Carbon (OC) | % | 2.9–5.8 | 2.9–1.2 | 1.45–0.58 | <0.58 | [46,47,49] |
Total Nitrogen (TN) | % | >0.3 | 0.2–0.3 | 0.1–0.2 | <0.1 | [46,47,49] |
Available Phosphorus (P) | mg/dm3 | 20–40 | 15–20/>40 | 15–10 | <10 | [33,46,47,49] |
Potassium (K) | cmol(+) kg−1 | >0.89 | 0.5–0.89 | 0.2–0.5 | <0.2 | [46] |
Calcium (Ca) | cmol(+) kg−1 | 10–20 | 5–10 | 2–5 | <2 | [47,49] |
Magnesium (Mg) | cmol(+) kg−1 | 3–8 | 1.5–3 | 0.5–1.5 | <0.5 | [49] |
Base saturation (BS) | % | 61–80 | 40–61 | 20–40 | <20 | [47] |
Copper (Cu) | mg/kg | >0.2 | 0.1–0.2 | 0.05–0.1 | <0.05 | [47] |
Manganese (Mn) | mg/kg | >1.1 | 0.5–1.1 | 0.3–0.5 | <0.3 | [33] |
Iron (Fe) | mg/kg | >2.5 | 1.5–2.5 | 0.5–1.5 | <0.5 | [33] |
Zinc (Zn) | mg/kg | >0.6 | 0.3–0.6 | 0.1–0.3 | <0.1 | [47] |
Location | Pedon | Horizon | Depth (cm) | Dry Color (1) | Moist Color (2) | Consistency (3) | Structure (4) | Cutans (5) | Slickensides (6) | Pores (7) | Roots (8) | Horizon Boundary (9) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Ligowe | TSA-P01 | Ap | 0–8 | b(7.5YR4/4) | db(2.5YR3/3) | sha, fi, ss&sp | w-m&c,sbk | - | - | cf | f-c&f-m | c&w |
Bt1 | 8–45 | r(5YR4/4) | drb(5YR3/4) | vha, fi, spl | w-m, m&c, sbk | m-f, cs | - | cf | f-f | g-d&s | ||
Bt2 | 45–112 | yr(5Y4/6) | drb(5YR3/4) | vha, vfr, spl | m-m, sbk | m-f, cs | - | cf | f-f | g-d&s | ||
Bt3 | 112–155+ | yr(5YR5/8) | yr(5 YR4/6) | sha, vfr, spl | m,f&m, sbk | m-f&m, cs | - | cf | vf-f | NA | ||
Ntengo-wa-mbalame | TSA-P02 | Ap | 0–21 | vdg(5YR3/1) | bl(5YR2.5/1) | ha, fr, spl | m&m, sbk | - | - | m-f&m, f-c | m-f, c-m&f-c | c&s |
BA1 | 21–41 | bl(7.5YR2.5/1) | bl(2.5YR2.5/1) | eha, fr, vst&vpl | m,m&c, ab-sbk | - | mds | c-f&m | c-f&fm | c&s | ||
BA2k | 41–75/91 | bl(2.5YR2.5/1) | bl(5YR2.5/1) | eha, fi, vst&vpl | m-s, m&c, ab-sbk | - | mds | c-f&m | f-f | c&w | ||
BCgk | 79/91–155/165 | g(7.5YR6/1) | lob(2.5Y5/4) | vha, fi, vst&vpl | m,m&c, ab&sbk | - | - | f-f&m | vf-f | a&w | ||
CRgk | 155/165–200 | w(5Y2/1) | oy(2.5Y6/6) | sha, fr, ns&np | sg | - | - | m-f, c&m | n | NA | ||
Rinze | ANGO-P01 | Ap | 0–25/30 | db(7.5YR3/4) | db(7.5YR3/2) | sha, vfr, ss&sp | w-f&m, sbk | - | - | m-f&m | c-f | c&w |
Bt1 | 25/30–70 | b(7.5YR4/4) | vdb(7.5YR2.5/3) | sha, vfr, st&pl | m-m, sbk | f-vf, c | - | m-f&m | f-f | d&s | ||
Bt2 | 70–120 | r(2.5YR4/6) | dr(2.5YR3/6) | sha, vfr, st&pl | s-f&m, sbk | m-f&m, cs | - | m-f&m | f-vf | d&s | ||
Bt3 | 120–181 | r(2.5YR4/8) | r(2.5 YR4/6) | ha, fi, st&pl | s-f&m, sbk | m-vf, cs | - | m-f&m | vf-vf | NA | ||
CITTA | ANGO-P02 | Ap | 0–29 | drb(5YR3/2) | bl(5YR2.5/1) | vha, vfr, ss&sp | m,m&c, sbk | - | - | f-m&m-f | m-f | c&s |
BA | 29–50 | drb(5YR3/3) | drb(5YR3/2) | vha, fr, spl | m,m&c, sbk | - | - | m-f&c-m | c-f | c&s | ||
Bt | 50–86/118 | drb(5YR3/4) | drb(5YR3/3) | vha, fr, spl | w-m&c, sbk | m-f, cs | - | m-f&c-m | f-f | c&w | ||
CR | 86/118–181 | sb(7.5YR5/8) | sb(7.5 YR5/6) | so, vfr, ns&np | sg | - | - | m-f, m-m&c | n | NA |
Pedon | Horizon | Depth (cm) | Texture | Silt/Clay Ratio | Bulk Density (kg m−3) | Porosity (%) | AWC (mm m−1) | Penetration Resistance (MPa) | |||
---|---|---|---|---|---|---|---|---|---|---|---|
Clay % | Silt % | Sand % | Texture Class | ||||||||
TSA-P01 | Ap | 0–8 | 34 | 10 | 56 | SCL | 0.29 | 1.58 | 37.31 | 84.9 | 1.75 |
Bt1 | 8–45 | 42 | 10 | 48 | SC | 0.23 | 1.55 | 38.71 | 110.5 | 1.64 | |
Bt2 | 45–112 | 58 | 10 | 32 | C | 0.17 | 1.47 | 37.03 | 128.6 | 1.63 | |
Bt3 | 112–155+ | 58 | 10 | 32 | C | 0.17 | nd | nd | nd | 1.56 | |
TSA-P02 | Ap | 0–21 | 36 | 16 | 48 | SC | 0.44 | 0.78 | 67.54 | 132.1 | 1.68 |
BA1 | 21–41 | 42 | 14 | 44 | SC | 0.33 | nd | nd | nd | 1.74 | |
BA2k | 41–75/91 | 58 | 14 | 28 | C | 0.24 | 1.54 | 34.84 | 149.5 | 1.79 | |
BCgk | 75/91–155/165 | 66 | 14 | 20 | C | 0.21 | 1.58 | 36.82 | 166.6 | 1.53 | |
CRgk | 155/165–200 | 8 | 6 | 86 | S | 0.75 | nd | nd | nd | 1.36 | |
ANGO-P01 | Ap | 0–25/30 | 38 | 18 | 44 | SC | 0.47 | 1.44 | 46.71 | 101.0 | 1.67 |
Bt1 | 25/30–70 | 62 | 14 | 24 | C | 0.22 | 1.41 | 41.82 | 132.9 | 1.61 | |
Bt2 | 70–120 | 78 | 14 | 8 | C | 0.17 | 1.31 | 43.73 | 182.6 | 1.58 | |
Bt3 | 120–181 | 74 | 18 | 8 | C | 0.24 | nd | nd | nd | 1.50 | |
ANGO-P02 | Ap | 0–29 | 54 | 14 | 32 | C | 0.25 | 1.26 | 47.69 | 94.7 | 1.28 |
BA | 29–50 | 62 | 14 | 24 | C | 0.22 | 1.38 | 42.14 | 156.0 | 1.67 | |
Bt | 50–86/118 | 64 | 16 | 20 | C | 0.25 | nd | nd | nd | 1.54 | |
CR | 86/118–181 | 16 | 8 | 76 | SL | 0.5 | 1.25 | 49.72 | 173.4 | 1.18 |
Pedon | Horizon | Depth (cm) | pHwater | pH CaCl2 | EC dS m−1 | Organic C (%) | Total N (%) | C/N | Avail. P Mehlich-3 (mg kg−1) |
---|---|---|---|---|---|---|---|---|---|
TSA-P01 | Ap | 0–8 | 5.6 | 4.4 | 0.06 | 1.35 | 0.12 | 11.3 | 20.94 |
Bt1 | 8–45 | 5.5 | 4.1 | 0.03 | 1.09 | 0.1 | 10.9 | 15.54 | |
Bt2 | 45–112 | 6.0 | 4.9 | 0.02 | 0.6 | 0.07 | 8.6 | 14.18 | |
Bt3 | 112–155+ | 6.4 | 5.2 | 0.02 | 0.53 | 0.06 | 8.8 | 13.37 | |
TSA-P02 | Ap | 0–21 | 6.7 | 5.4 | 0.10 | 2.73 | 0.22 | 12.4 | 15.00 |
BA1 | 21–41 | 7.1 | 5.9 | 0.10 | 1.58 | 0.14 | 11.3 | 13.10 | |
BA2k | 41–75/91 | 7.3 | 6.1 | 0.13 | 0.92 | 0.09 | 10.2 | 28.51 | |
BCgk | 75/91–155/165 | 7.9 | 6.6 | 0.28 | 0.55 | 0.06 | 9.2 | 17.83 | |
CRgk | 155/165–200 | 7.9 | 6.5 | 0.09 | 0.16 | 0.04 | 4.0 | 19.05 | |
ANGO-P01 | Ap | 0–25/30 | 6.1 | 5.0 | 0.04 | 1.44 | 0.13 | 11.1 | 17.56 |
Bt1 | 25/30–70 | 6.2 | 4.6 | 0.01 | 0.98 | 0.09 | 10.9 | 14.18 | |
Bt2 | 70–120 | 6.6 | 4.9 | 0.01 | 0.57 | 0.07 | 8.1 | 14.05 | |
Bt3 | 120–181 | 6.4 | 5.1 | 0.01 | 0.53 | 0.06 | 8.8 | 15.67 | |
ANGO-P02 | Ap | 0–29 | 5.7 | 4.7 | 0.03 | 1.54 | 0.13 | 11.8 | 14.59 |
BA | 29–50 | 6.0 | 4.7 | 0.02 | 0.86 | 0.09 | 9.6 | 14.32 | |
Bt | 50–86/118 | 6.1 | 5.0 | 0.03 | 0.82 | 0.08 | 10.3 | 14.32 | |
CR | 86/118–181 | 5.9 | 5.1 | 0.05 | 0.62 | 0.03 | 0.7 | 14.86 |
Pedons | Horizon | Depth (cm) | Micronutrients (mg kg−1) | |||
---|---|---|---|---|---|---|
Fe | Zn | Mn | Cu | |||
TSA-P01 | Ap | 0–8 | 6.24 | 0.154 | 3.194 | 1.649 |
Bt1 | 8–45 | 4.28 | 0.103 | 3.108 | 1.965 | |
Bt2 | 45–112 | 3.44 | 0.038 | 2.978 | 1.569 | |
Bt3 | 112–155+ | 3.48 | 0.023 | 2.863 | 1.316 | |
TSA-P02 | Ap | 0–21 | 10.96 | 0.202 | 3.144 | 2.098 |
BA1 | 21–41 | 6.32 | 0.065 | 3.173 | 1.930 | |
BA2k | 41–75/91 | 3.84 | 0.091 | 2.007 | 1.836 | |
BCgk | 75/91–155/165 | 4.52 | 0.058 | 2.691 | 1.593 | |
CRgk | 155/165–200 | 1.88 | 0.035 | 1.446 | 1.403 | |
ANGO-P01 | Ap | 0–25/30 | 8.40 | 0.383 | 3.223 | 1.548 |
Bt1 | 25/30–70 | 4.44 | 0.058 | 3.144 | 1.204 | |
Bt2 | 70–120 | 2.88 | 0.023 | 2.763 | 1.148 | |
Bt3 | 120–181 | 3.56 | 0.083 | 3.050 | 1.068 | |
ANGO-P02 | Ap | 0–29 | 4.72 | 0.096 | 2.957 | 1.262 |
BA | 29–50 | 3.44 | 0.048 | 2.367 | 1.187 | |
Bt | 50–86/118 | 3.00 | 0.065 | 2.317 | 0.981 | |
CR | 86/118–181 | 4.40 | 0.098 | 3.072 | 0.981 |
Profile | Horizon | Depth (cm) | Total Elemental Composition % | Weathering Indices | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
L.O.I. | SiO2 | Al2O3 | Fe2O3 | MgO | P2O5 | CaO | TiO2 | SO3 | K2O | Total | SiO2/Al2O3 | SiO2/(Al2O3 + Fe2O3) | |||
TSA-P01 | Ap | 0–8 | 9.39 | 54.60 | 24.13 | 8.44 | 0.37 | 0.68 | 0.43 | 0.66 | 0.37 | 0.33 | 99.4 | 2.26 | 1.68 |
Bt2 | 45–112 | 10.16 | 45.96 | 27.55 | 10.49 | 1.68 | 1.06 | 0.32 | 0.84 | 0.50 | 0.37 | 98.93 | 1.67 | 1.21 | |
Bt3 | 112–155+ | 10.15 | 46.67 | 26.36 | 10.59 | 2.78 | 1.31 | 0.25 | 0.85 | 0.44 | 0.35 | 99.75 | 1.77 | 1.26 | |
TSA-P02 | Ap | 0–21 | 15.84 | 40.78 | 29.67 | 5.41 | 2.56 | 1.73 | 1.37 | 0.75 | 1.09 | 0.52 | 99.72 | 1.37 | 1.16 |
BA2k | 41–75/91 | 14.31 | 40.53 | 31.2 | 6.49 | 1.63 | 1.11 | 1.02 | 0.86 | 1.28 | 0.7 | 99.13 | 1.30 | 1.08 | |
CRgk | 155/165–200 | 3.17 | 69.12 | 16.26 | 1.15 | 1.23 | 0.98 | 5.86 | 0.09 | 0.77 | 0.09 | 98.72 | 4.25 | 3.97 | |
ANGO-P01 | Ap | 0–25/30 | 9.69 | 46.12 | 25.44 | 10.69 | 0.87 | 3.76 | 0.49 | 1.21 | 0.56 | 0.94 | 99.77 | 1.81 | 1.28 |
Bt2 | 70–120 | 14.63 | 39.40 | 27.98 | 13.76 | 0.65 | 0.57 | 0.27 | 1.08 | 0.30 | 0.44 | 99.08 | 1.41 | 0.94 | |
Bt3 | 120–181 | 14.28 | 41.11 | 26.5 | 13.95 | 1.31 | 0.54 | 0.27 | 1.13 | 0.35 | 0.43 | 99.87 | 1.55 | 1.02 | |
ANGO-P02 | Ap | 0–29 | 14.95 | 38.50 | 26.68 | 12.48 | 1.38 | 2.97 | 0.42 | 1.04 | 0.7 | 0.5 | 99.62 | 1.44 | 0.98 |
Bt | 50–186/118 | 14.21 | 40.70 | 25.64 | 12.95 | 1.03 | 2.77 | 0.31 | 0.92 | 0.52 | 0.43 | 99.48 | 1.59 | 1.05 | |
CR | 86/118–181 | 7.62 | 55.16 | 21.96 | 10.23 | 0.66 | 0.66 | 0.68 | 0.59 | 0.65 | 1.13 | 99.34 | 2.51 | 1.71 |
Profile | Horizon | Depth | Ba | Zr | Sr | Pb |
---|---|---|---|---|---|---|
mg dm−3 | ||||||
TSA-P01 | Ap | 0–8 | 209 | 206 | 91 | 129 |
Bt2 | 45–112 | 237 | 141 | 67 | 443 | |
Bt3 | 112–155+ | 190 | 151 | 56 | 39 | |
TSA-P02 | Ap | 0–21 | 380 | 258 | 247 | 62 |
BA2k | 41–75/91 | 579 | 358 | 295 | 51 | |
CRgk | 155/165–200 | 189 | 5 | 342 | 41 | |
ANGO-P01 | Ap | 0–25/30 | 1075 | 783 | 389 | 85 |
Bt2 | 70–120 | 600 | 295 | 164 | 66 | |
Bt3 | 120–181 | 535 | 370 | 158 | 22 | |
ANGO-P02 | Ap | 0–29 | 761 | 1056 | 328 | 32 |
Bt | 50–186/118 | 677 | 650 | 284 | 33 | |
CR | 86/118–181 | 1011 | 448 | 573 | 50 |
Pedon | Diagnostic Horizons | Other Diagnostic Features | Order | Suborder | Great Group | Sub-Group | Family |
---|---|---|---|---|---|---|---|
TSA-P01 | Ochric epipedon; argillic subsurface horizon | Moderately steep, very deep, highly weathered clayey subsoil, ustic SMR, medium acid to slightly acid, thermic STR, mixed to dominantly kaolinitic, many clay + sesquioxide cutans | Ultisols | Ustults | Haplustults | Typic Haplustults | Moderately steep, very deep, clayey, medium acid to slightly acid, mixed to dominantly kaolinitic, thermic, Typic Haplustults |
TSA-P02 | Ochric epipedon. Calcic horizon in the subsoil (strongly effervescent) | Almost flat to gently sloping mbuga (slope about 3%), very deep, black clayey soil (heavy clay), ustic SMR, mildly alkaline, thermic STR, presence of deep, wide cracks, wedge-shaped and extremely hard prismatic aggregates, many distinct slickensides, presence of gilgai micro-relief | Vertisols | Usterts | Calciusterts | Typic Calciusterts | Almost flat to gently sloping, very deep, clayey, mildly alkaline, mixed to dominantly montimorrilonitic; thermic, Typic Calciusterts |
ANGO-P01 | Mollic epipedon; argillic subsurface horizon | Moderately steep, very deep, highly weathered clayey subsoil, ustic SMR, slightly acidic, thermic STR, mixed to dominantly kaolinitic, many clay + sesquioxide cutans | Ultisols | Ustults | Paleustults | Typic Paleustults | Moderately steep, very deep, clayey, slightly acid, mixed to dominantly kaolinitic, thermic, Typic Paleustults |
ANGO-P02 | Umbric epipedon; argillic subsurface | Strongly sloping, very deep, highly weathered clayey subsoil, ustic SMR, medium acid, thermic STR, mixed to dominantly kaolinitic, many clay + sesquioxide cutans | Alfisols | Ustalfs | Haplustalfs | Ultic Haplustalfs | Strongly sloping, very deep, clayey, medium acid, mixed to dominantly kaolinitic, thermic, Ultic Haplustalfs |
Pedon | Diagnostic Horizons, Properties, and Materials | Reference Soil Group (RSG)—TIER-1 | Principal Qualifiers | Supplementary Qualifiers | WRB Soil Name—TIER-2 |
---|---|---|---|---|---|
TSA-P01 | Ochric horizon; argic horizon with CEC of ≥24 cmol(+) kg−1 and low BS of <50%) | Acrisols | Haplic | Clayic, Cutanic, Hyperdystric, Humic, Profondic | Haplic Acrisols (Clayic, Cutanic, Hyperdystric, Humic, Profondic) |
TSA-P02 | Vertic horizon, ≥30% clay between the soil surface and the vertic horizon, shrink–swell cracks, gilgai microrelief | Vertisols | Calcic, Pellic | Calcaric, Hypereutric, Gilgaic, Mazic, Humic | Pellic Calcic Vertisols (Calcaric, Hypereutric, Gilgaic, Mazic, Humic) |
ANGO-P01 | Mollic horizon; argic horizon with CEC of greater part of argic ≥ 24 cmol(+) kg−1 and low BS < 50%) | Alisols | Abruptic, Chromic | Clayic, Cutanic, Hyperdystric, Humic, Profondic | Chromic Abruptic Alisols (Clayic, Cutanic, Hyperdystric, Humic, Profondic) |
ANGO-P02 | Mollic horizon; argic horizon with CEC of argic ≥ 24 cmol(+) kg−1 and high BS ≥ 50%) | Luvisols | Chromic | Clayic, Cutanic, Humic, Profondic | Chromic Luvisols (Clayic, Cutanic, Humic, Profondic) |
Land Quality | Diagnostic Factor | Required Range (S1) | Actual Field Range | Rating | ||||||
---|---|---|---|---|---|---|---|---|---|---|
TSA-P01 | TSA-P02 | ANGO-P01 | ANGO-P02 | TSA-P01 | TSA-P02 | ANGO-P01 | ANGO-P02 | |||
Climate (c) | Annual rainfall | 1000–1500 | 1000–1200 | 1000–1200 | 800–1200 | 800–1200 | S1 | S1 | S2 | S2 |
Temperature | 9–11 | 15–20 | 15–20 | 15–22 | 15–22 | S3 | S3 | S3 | S3 | |
Topography (t) | Slope (%) | 0–12 | 16 | 5 | 16 | 12 | S2 | S1 | S2 | S1 |
Elevation | 1500–2500 | 1427 | 1340 | 1260 | 1200 | S2 | S2 | S2 | S3 | |
Soil physical property (s) | Soil texture | L, SL, SiL | C, SC, SCL | C, SC | C, SC | C, SL | S2 | S3 | S3 | S2 |
Effective depth | >40 cm | >181 cm | >181 cm | >151 cm | >200 cm | S1 | S1 | S1 | S1 | |
Soil drainage | Well-drained | Well-drained | Well-drained | Well to excessively well-drained | Well to moderately well-drained | S1 | S1 | S1 | S1 | |
Soil toxicity (n) | EC (dSm−1) | <2.0 | 0.02–0.06 | 0.09–0.28 | 0.01–0.04 | 0.02–0.05 | S1 | S1 | S1 | S1 |
ESP | <6 | 0.37–0.55 | 0.65–1.30 | 0.47–0.59 | 0.38–0.48 | S1 | S1 | S1 | S1 | |
Soil fertility (f) | Soil pH water | 5.5–6.5 | 5.5–6.4 | 6.7–7.9 | 6.1–6.4 | 5.9–6.1 | S1 | S2 | S1 | S1 |
(CEC cmol(+) kg−1) | 30–50 | 10.15–10.85 | 10.06–10.81 | 10.1–10.72 | 10.1–10.8 | S3 | S3 | S3 | S3 | |
OC (%) | 2.9–5.8 | 0.53–1.35 | 0.16–2.73 | 0.53–1.44 | 0.62–1.54 | S3 | S2 | S3 | S3 | |
TN (%) | > 0.3 | 0.06–0.12 | 0 04–0.22 | 0 06–0.13 | 0 03- 0.3 | S3 | S3 | S3 | S3 | |
Avail. P mg dm−3 | 20–40 | 13.3–20.9 | 13.1–28.5 | 14.0–17.56 | 14.31–14.86 | S2 | S2 | S3 | S3 | |
K (cmol(+) kg−1) | >0.89 | 0.12–0.4 | 0.13–1.19 | 0.22–0.53 | 0.08–0.12 | S2 | S1 | S2 | S3 | |
Ca (cmol(+) kg−1) | 10–20 | 0.65–1.19 | 1.5–13.18 | 1.51–2.2 | 2.37–4.01 | S3 | S1 | S3 | S2 | |
Mg (cmol(+) kg−1) | 3–8 | 0.98–1.66 | 0.64–3.08 | 1.91–2.66 | 0.2–3.08 | S3 | S2 | S2 | S2 | |
BS (%) | 61–80 | 19.3–30.0 | 23.2–153,7 | 34.6–51.8 | 30.7–66.9 | S3 | S1 | S2 | S2 | |
Cu (mg kg−1) | >0.2 | 1.31–1.96 | 1.40–2.09 | 1.06–1.54 | 0.98–1.26 | S1 | S1 | S1 | S1 | |
Mn (mg kg−1) | >1.1 | 2.86–3.19 | 1.44–3.14 | 2.76–3.22 | 2.31–3.07 | S1 | S1 | S1 | S1 | |
Fe (mg kg−1) | >2.5 | 3.44–6.24 | 1.88–10.96 | 2.88–8.40 | 3.00–4.72 | S1 | S1 | S1 | S1 | |
Zn (mg kg−1) | >0.6 | 0.02–0.15 | 0.03–0.20 | 0.05–0.38 | 0.04–0.09 | S3 | S3 | S3 | S3 | |
Overall suitability class (OSC) | S3f(ct) | S3f(cs) | S3f(cts) | S3f(ct) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sande, T.J.; Msanya, B.M.; Tindwa, H.J.; Alovisi, A.M.T.; Semoka, J.M.; Shitindi, M. Advancing Sustainable Practices: Integrated Pedological Characterization and Suitability Assessment for Enhanced Irish Potato Production in Tsangano and Angónia Districts of Tete Province, Mozambique. Soil Syst. 2025, 9, 53. https://doi.org/10.3390/soilsystems9020053
Sande TJ, Msanya BM, Tindwa HJ, Alovisi AMT, Semoka JM, Shitindi M. Advancing Sustainable Practices: Integrated Pedological Characterization and Suitability Assessment for Enhanced Irish Potato Production in Tsangano and Angónia Districts of Tete Province, Mozambique. Soil Systems. 2025; 9(2):53. https://doi.org/10.3390/soilsystems9020053
Chicago/Turabian StyleSande, Tamara José, Balthazar Michael Msanya, Hamisi Juma Tindwa, Alessandra Mayumi Tokura Alovisi, Johnson M. Semoka, and Mawazo Shitindi. 2025. "Advancing Sustainable Practices: Integrated Pedological Characterization and Suitability Assessment for Enhanced Irish Potato Production in Tsangano and Angónia Districts of Tete Province, Mozambique" Soil Systems 9, no. 2: 53. https://doi.org/10.3390/soilsystems9020053
APA StyleSande, T. J., Msanya, B. M., Tindwa, H. J., Alovisi, A. M. T., Semoka, J. M., & Shitindi, M. (2025). Advancing Sustainable Practices: Integrated Pedological Characterization and Suitability Assessment for Enhanced Irish Potato Production in Tsangano and Angónia Districts of Tete Province, Mozambique. Soil Systems, 9(2), 53. https://doi.org/10.3390/soilsystems9020053