Complex Effects of Short Periods of High-Fat Diet on GFAP+ Astrocytes and Maturation of DCX+ Cells in the Dorsal Hippocampus of Adolescent Mice
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals
2.2. Diet Administration Protocol
2.3. Tissue Preparation for IHC Analysis
2.4. Immunohistochemistry
2.5. Image Acquisition
2.6. Morphometric Analysis of GFAP+ and DCX+ Cells
2.7. GFAP+ and DCX+ Cell Density and Maturation Stage
2.8. Statistical Analysis
3. Results
3.1. One-Week HFD Is Associated with Increased Morphological Complexity and Territory Volume of Astrocytes in the Dorsal GCL of Adolescent Mice
3.2. Two-Week-Long HFD Is Associated with Reduced Astrocyte Complexity and Territory Volume in the Dorsal GCL of Adolescent Mice
3.3. One Week-HFD, but Not Two-Week HFD, Increased Astrocyte Density in the Dorsal GCL of Adolescent Mice
3.4. Comparison Between Mice Exposed to Either LFD or HFD at 6 and 7 Weeks of Age
3.5. Short HFD Impairs DCX+ Cell Maturation in the Dorsal GCL of Adolescent Mice
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
| HFD | High-Fat Diet |
| LFD | Low-Fat Diet |
| GFAP | Glial Fibrillary Acidic Protein |
| DCX | Doublecortin |
| DG | Dentate Gyrus |
| GCL | Granular Cell Layer |
| SGZ | SubGranular Zone |
References
- Zaman, R.; Hankir, A.; Jemni, M. Lifestyle Factors and Mental Health. Psychiatr. Danub. 2019, 31, 217–220. [Google Scholar] [PubMed]
- Randolph, J.J.; Lacritz, L.H.; Colvin, M.K.; Espe-Pfeifer, P.; Carter, K.R.; Arnett, P.A.; Fox-Fuller, J.; Aduen, P.A.; Cullum, C.M.; Sperling, S.A. Integrating Lifestyle Factor Science into Neuropsychological Practice: A National Academy of Neuropsychology Education Paper. Arch. Clin. Neuropsychol. Off. J. Natl. Acad. Neuropsychol. 2024, 39, 121–139. [Google Scholar] [CrossRef] [PubMed]
- Gazerani, P. The Neuroplastic Brain: Current Breakthroughs and Emerging Frontiers. Brain Res. 2025, 1858, 149643. [Google Scholar] [CrossRef] [PubMed]
- Augusto-Oliveira, M.; Verkhratsky, A. Lifestyle-Dependent Microglial Plasticity: Training the Brain Guardians. Biol. Direct 2021, 16, 12. [Google Scholar] [CrossRef]
- Bittner, N.; Jockwitz, C.; Mühleisen, T.W.; Hoffstaedter, F.; Eickhoff, S.B.; Moebus, S.; Bayen, U.J.; Cichon, S.; Zilles, K.; Amunts, K.; et al. Combining Lifestyle Risks to Disentangle Brain Structure and Functional Connectivity Differences in Older Adults. Nat. Commun. 2019, 10, 621. [Google Scholar] [CrossRef]
- Arora, S.; Santiago, J.A.; Bernstein, M.; Potashkin, J.A. Diet and Lifestyle Impact the Development and Progression of Alzheimer’s Dementia. Front. Nutr. 2023, 10, 1213223. [Google Scholar] [CrossRef]
- Popa-Wagner, A.; Dumitrascu, D.I.; Capitanescu, B.; Petcu, E.B.; Surugiu, R.; Fang, W.-H.; Dumbrava, D.-A. Dietary Habits, Lifestyle Factors and Neurodegenerative Diseases. Neural Regen. Res. 2020, 15, 394. [Google Scholar] [CrossRef]
- Cordain, L.; Eaton, S.B.; Sebastian, A.; Mann, N.; Lindeberg, S.; Watkins, B.A.; O’Keefe, J.H.; Brand-Miller, J. Origins and Evolution of the Western Diet: Health Implications for the 21st Century. Am. J. Clin. Nutr. 2005, 81, 341–354. [Google Scholar] [CrossRef]
- Attuquayefio, T.; Stevenson, R.J.; Oaten, M.J.; Francis, H.M. A Four-Day Western-Style Dietary Intervention Causes Reductions in Hippocampal-Dependent Learning and Memory and Interoceptive Sensitivity. PLoS ONE 2017, 12, e0172645. [Google Scholar] [CrossRef]
- Förster, L.-J.; Vogel, M.; Stein, R.; Hilbert, A.; Breinker, J.L.; Böttcher, M.; Kiess, W.; Poulain, T. Mental Health in Children and Adolescents with Overweight or Obesity. BMC Public Health 2023, 23, 135. [Google Scholar] [CrossRef]
- Lowe, C.J.; Morton, J.B.; Reichelt, A.C. Adolescent Obesity and Dietary Decision Making—A Brain-Health Perspective. Lancet Child Adolesc. Health 2020, 4, 388–396. [Google Scholar] [CrossRef] [PubMed]
- Murray, S.; Chen, E.Y. Examining Adolescence as a Sensitive Period for High-Fat, High-Sugar Diet Exposure: A Systematic Review of the Animal Literature. Front. Neurosci. 2019, 13, 1108. [Google Scholar] [CrossRef] [PubMed]
- Dennis, E.; Manza, P.; Volkow, N.D. Socioeconomic Status, BMI, and Brain Development in Children. Transl. Psychiatry 2022, 12, 33. [Google Scholar] [CrossRef] [PubMed]
- Yao, X.; Yang, C.; Jia, X.; Yu, Z.; Wang, C.; Zhao, J.; Chen, Y.; Xie, B.; Zhuang, H.; Sun, C.; et al. High-Fat Diet Consumption Promotes Adolescent Neurobehavioral Abnormalities and Hippocampal Structural Alterations via Microglial Overactivation Accompanied by an Elevated Serum Free Fatty Acid Concentration. Brain. Behav. Immun. 2024, 119, 236–250. [Google Scholar] [CrossRef]
- Yao, X.; Yang, C.; Wang, C.; Li, H.; Zhao, J.; Kang, X.; Liu, Z.; Chen, L.; Chen, X.; Pu, T.; et al. High-Fat Diet Consumption in Adolescence Induces Emotional Behavior Alterations and Hippocampal Neurogenesis Deficits Accompanied by Excessive Microglial Activation. Int. J. Mol. Sci. 2022, 23, 8316. [Google Scholar] [CrossRef]
- Vinuesa, A.; Pomilio, C.; Menafra, M.; Bonaventura, M.M.; Garay, L.; Mercogliano, M.F.; Schillaci, R.; Lux Lantos, V.; Brites, F.; Beauquis, J.; et al. Juvenile Exposure to a High Fat Diet Promotes Behavioral and Limbic Alterations in the Absence of Obesity. Psychoneuroendocrinology 2016, 72, 22–33. [Google Scholar] [CrossRef]
- Lu, P.; Gao, C.-X.; Luo, F.-J.; Huang, Y.-T.; Gao, M.-M.; Long, Y.-S. Hippocampal Proteomic Changes in High-Fat Diet-Induced Obese Mice Associated with Memory Decline. J. Nutr. Biochem. 2024, 125, 109554. [Google Scholar] [CrossRef]
- Valladolid-Acebes, I.; Stucchi, P.; Cano, V.; Fernández-Alfonso, M.S.; Merino, B.; Gil-Ortega, M.; Fole, A.; Morales, L.; Ruiz-Gayo, M.; Del Olmo, N. High-Fat Diets Impair Spatial Learning in the Radial-Arm Maze in Mice. Neurobiol. Learn. Mem. 2011, 95, 80–85. [Google Scholar] [CrossRef]
- Fanselow, M.S.; Dong, H.-W. Are the Dorsal and Ventral Hippocampus Functionally Distinct Structures? Neuron 2010, 65, 7–19. [Google Scholar] [CrossRef]
- Kheirbek, M.A.; Hen, R. Dorsal vs Ventral Hippocampal Neurogenesis: Implications for Cognition and Mood. Neuropsychopharmacology 2011, 36, 373–374. [Google Scholar] [CrossRef]
- Privitera, G.J.; Zavala, A.R.; Sanabria, F.; Sotak, K.L. High Fat Diet Intake during Pre and Periadolescence Impairs Learning of a Conditioned Place Preference in Adulthood. Behav. Brain Funct. 2011, 7, 21. [Google Scholar] [CrossRef]
- Chiazza, F.; Bondi, H.; Masante, I.; Ugazio, F.; Bortolotto, V.; Canonico, P.L.; Grilli, M. Short High Fat Diet Triggers Reversible and Region Specific Effects in DCX+ Hippocampal Immature Neurons of Adolescent Male Mice. Sci. Rep. 2021, 11, 21499. [Google Scholar] [CrossRef] [PubMed]
- Seri, B.; García-Verdugo, J.M.; McEwen, B.S.; Alvarez-Buylla, A. Astrocytes Give Rise to New Neurons in the Adult Mammalian Hippocampus. J. Neurosci. 2001, 21, 7153–7160. [Google Scholar] [CrossRef] [PubMed]
- Sultan, S.; Li, L.; Moss, J.; Petrelli, F.; Cassé, F.; Gebara, E.; Lopatar, J.; Pfrieger, F.W.; Bezzi, P.; Bischofberger, J.; et al. Synaptic Integration of Adult-Born Hippocampal Neurons Is Locally Controlled by Astrocytes. Neuron 2015, 88, 957–972. [Google Scholar] [CrossRef] [PubMed]
- Chalmers, N.; Masouti, E.; Beckervordersandforth, R. Astrocytes in the Adult Dentate Gyrus—Balance between Adult and Developmental Tasks. Mol. Psychiatry 2024, 29, 982–991. [Google Scholar] [CrossRef]
- Uguagliati, B.; Grilli, M. Astrocytic Alterations and Dysfunction in Down Syndrome: Focus on Neurogenesis, Synaptogenesis, and Neural Circuits Formation. Cells 2024, 13, 2037. [Google Scholar] [CrossRef]
- Lee, J.A.; Hall, B.; Allsop, J.; Alqarni, R.; Allen, S.P. Lipid Metabolism in Astrocytic Structure and Function. Semin. Cell Dev. Biol. 2021, 112, 123–136. [Google Scholar] [CrossRef]
- Pfrieger, F.W.; Ungerer, N. Cholesterol Metabolism in Neurons and Astrocytes. Prog. Lipid Res. 2011, 50, 357–371. [Google Scholar] [CrossRef]
- Ricci, G.; Volpi, L.; Pasquali, L.; Petrozzi, L.; Siciliano, G. Astrocyte–Neuron Interactions in Neurological Disorders. J. Biol. Phys. 2009, 35, 317–336. [Google Scholar] [CrossRef]
- Allaman, I.; Bélanger, M.; Magistretti, P.J. Astrocyte–Neuron Metabolic Relationships: For Better and for Worse. Trends Neurosci. 2011, 34, 76–87. [Google Scholar] [CrossRef]
- Semyanov, A.; Verkhratsky, A. Astrocytic Processes: From Tripartite Synapses to the Active Milieu. Trends Neurosci. 2021, 44, 781–792. [Google Scholar] [CrossRef] [PubMed]
- Pellizzon, M.A.; Ricci, M.R. Choice of Laboratory Rodent Diet May Confound Data Interpretation and Reproducibility. Curr. Dev. Nutr. 2020, 4, nzaa031. [Google Scholar] [CrossRef] [PubMed]
- Pellizzon, M.A.; Ricci, M.R. The Common Use of Improper Control Diets in Diet-Induced Metabolic Disease Research Confounds Data Interpretation: The Fiber Factor. Nutr. Metab. 2018, 15, 3. [Google Scholar] [CrossRef]
- Paxinos, G.; Franklin, K.B.J. The Mouse Brain in Stereotaxic Coordinates; Academic Press: San Diego, CA, USA, 2001; Volume 296. [Google Scholar]
- Dellarole, A.; Grilli, M. Adult Dorsal Root Ganglia Sensory Neurons Express the Early Neuronal Fate Marker Doublecortin. J. Comp. Neurol. 2008, 511, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Bondi, H.; Chiazza, F.; Masante, I.; Bortolotto, V.; Canonico, P.L.; Grilli, M. Heterogenous Response to Aging of Astrocytes in Murine Substantia Nigra Pars Compacta and Pars Reticulata. Neurobiol. Aging 2023, 123, 23–34. [Google Scholar] [CrossRef]
- Radic, T.; Al-Qaisi, O.; Jungenitz, T.; Beining, M.; Schwarzacher, S.W. Differential Structural Development of Adult-Born Septal Hippocampal Granule Cells in the Thy1-GFP Mouse, Nuclear Size as a New Index of Maturation. PLoS ONE 2015, 10, e0135493. [Google Scholar] [CrossRef]
- Longair, M.H.; Baker, D.A.; Armstrong, J.D. Simple Neurite Tracer: Open Source Software for Reconstruction, Visualization and Analysis of Neuronal Processes. Bioinformatics 2011, 27, 2453–2454. [Google Scholar] [CrossRef]
- Scorcioni, R.; Polavaram, S.; Ascoli, G.A. L-Measure: A Web-Accessible Tool for the Analysis, Comparison and Search of Digital Reconstructions of Neuronal Morphologies. Nat. Protoc. 2008, 3, 866–876. [Google Scholar] [CrossRef]
- Akram, M.A.; Wei, Q.; Ascoli, G.A. Machine Learning Classification Reveals Robust Morphometric Biomarker of Glial and Neuronal Arbors. J. Neurosci. Res. 2023, 101, 112–129. [Google Scholar] [CrossRef]
- Tassinari, M.; Uguagliati, B.; Trazzi, S.; Cerchier, C.B.; Cavina, O.V.; Mottolese, N.; Loi, M.; Candini, G.; Medici, G.; Ciani, E. Early-Onset Brain Alterations during Postnatal Development in a Mouse Model of CDKL5 Deficiency Disorder. Neurobiol. Dis. 2023, 182, 106146. [Google Scholar] [CrossRef]
- Encinas, J.M.; Vaahtokari, A.; Enikolopov, G. Fluoxetine Targets Early Progenitor Cells in the Adult Brain. Proc. Natl. Acad. Sci. USA 2006, 103, 8233–8238. [Google Scholar] [CrossRef]
- Terranova, J.I.; Ogawa, S.K.; Kitamura, T. Adult Hippocampal Neurogenesis for Systems Consolidation of Memory. Behav. Brain Res. 2019, 372, 112035. [Google Scholar] [CrossRef] [PubMed]
- Deng, W.; Aimone, J.B.; Gage, F.H. New Neurons and New Memories: How Does Adult Hippocampal Neurogenesis Affect Learning and Memory? Nat. Rev. Neurosci. 2010, 11, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Rao, M.S.; Shetty, A.K. Efficacy of Doublecortin as a Marker to Analyse the Absolute Number and Dendritic Growth of Newly Generated Neurons in the Adult Dentate Gyrus. Eur. J. Neurosci. 2004, 19, 234–246. [Google Scholar] [CrossRef] [PubMed]
- Plümpe, T.; Ehninger, D.; Steiner, B.; Klempin, F.; Jessberger, S.; Brandt, M.; Römer, B.; Rodriguez, G.R.; Kronenberg, G.; Kempermann, G. Variability of Doublecortin-Associated Dendrite Maturation in Adult Hippocampal Neurogenesis Is Independent of the Regulation of Precursor Cell Proliferation. BMC Neurosci. 2006, 7, 77. [Google Scholar] [CrossRef]
- Murphy, T.; Dias, G.P.; Thuret, S. Effects of Diet on Brain Plasticity in Animal and Human Studies: Mind the Gap. Neural Plast. 2014, 2014, 563160. [Google Scholar] [CrossRef]
- Verkhratsky, A.; Ho, M.S.; Vardjan, N.; Zorec, R.; Parpura, V. General Pathophysiology of Astroglia. In Neuroglia in Neurodegenerative Diseases; Verkhratsky, A., Ho, M.S., Zorec, R., Parpura, V., Eds.; Springer: Singapore, 2019; pp. 149–179. ISBN 978-981-13-9913-8. [Google Scholar]
- Verkhratsky, A.; Nedergaard, M. Physiology of Astroglia. Physiol. Rev. 2018, 98, 239–389. [Google Scholar] [CrossRef]
- Augusto-Oliveira, M.; Arrifano, G.P.; Takeda, P.Y.; Lopes-Araújo, A.; Santos-Sacramento, L.; Anthony, D.C.; Verkhratsky, A.; Crespo-Lopez, M.E. Astroglia-Specific Contributions to the Regulation of Synapses, Cognition and Behaviour. Neurosci. Biobehav. Rev. 2020, 118, 331–357. [Google Scholar] [CrossRef]
- Mota, B.; Brás, A.R.; Araújo-Andrade, L.; Silva, A.; Pereira, P.A.; Madeira, M.D.; Cardoso, A. High-Caloric Diets in Adolescence Impair Specific GABAergic Subpopulations, Neurogenesis, and Alter Astrocyte Morphology. Int. J. Mol. Sci. 2024, 25, 5524. [Google Scholar] [CrossRef]
- Popov, A.; Brazhe, N.; Fedotova, A.; Tiaglik, A.; Bychkov, M.; Morozova, K.; Brazhe, A.; Aronov, D.; Lyukmanova, E.; Lazareva, N.; et al. A High-Fat Diet Changes Astrocytic Metabolism to Promote Synaptic Plasticity and Behavior. Acta Physiol. Oxf. Engl. 2022, 236, e13847. [Google Scholar] [CrossRef]
- Mongin, A.A. Astrocytes on “Cholesteroids”: The Size- and Function-Promoting Effects of a High-Fat Diet on Hippocampal Astroglia. Acta Physiol. 2022, 236, e13859. [Google Scholar] [CrossRef] [PubMed]
- Buckman, L.B.; Thompson, M.M.; Lippert, R.N.; Blackwell, T.S.; Yull, F.E.; Ellacott, K.L.J. Evidence for a Novel Functional Role of Astrocytes in the Acute Homeostatic Response to High-Fat Diet Intake in Mice. Mol. Metab. 2015, 4, 58–63. [Google Scholar] [CrossRef] [PubMed]
- Gleeson, J.G.; Lin, P.T.; Flanagan, L.A.; Walsh, C.A. Doublecortin Is a Microtubule-Associated Protein and Is Expressed Widely by Migrating Neurons. Neuron 1999, 23, 257–271. [Google Scholar] [CrossRef] [PubMed]
- Couillard-Despres, S.; Winner, B.; Schaubeck, S.; Aigner, R.; Vroemen, M.; Weidner, N.; Bogdahn, U.; Winkler, J.; Kuhn, H.-G.; Aigner, L. Doublecortin Expression Levels in Adult Brain Reflect Neurogenesis. Eur. J. Neurosci. 2005, 21, 1–14. [Google Scholar] [CrossRef]
- Jungenitz, T.; Radic, T.; Jedlicka, P.; Schwarzacher, S.W. High-Frequency Stimulation Induces Gradual Immediate Early Gene Expression in Maturing Adult-Generated Hippocampal Granule Cells. Cereb. Cortex 2014, 24, 1845–1857. [Google Scholar] [CrossRef]
- Cassé, F.; Richetin, K.; Toni, N. Astrocytes’ Contribution to Adult Neurogenesis in Physiology and Alzheimer’s Disease. Front. Cell. Neurosci. 2018, 12, 432. [Google Scholar] [CrossRef]
- Spampinato, S.F.; Bortolotto, V.; Canonico, P.L.; Sortino, M.A.; Grilli, M. Astrocyte-Derived Paracrine Signals: Relevance for Neurogenic Niche Regulation and Blood–Brain Barrier Integrity. Front. Pharmacol. 2019, 10, 1346. [Google Scholar] [CrossRef]
- Boitard, C.; Etchamendy, N.; Sauvant, J.; Aubert, A.; Tronel, S.; Marighetto, A.; Layé, S.; Ferreira, G. Juvenile, but Not Adult Exposure to High-Fat Diet Impairs Relational Memory and Hippocampal Neurogenesis in Mice. Hippocampus 2012, 22, 2095–2100. [Google Scholar] [CrossRef]
- Boitard, C.; Cavaroc, A.; Sauvant, J.; Aubert, A.; Castanon, N.; Layé, S.; Ferreira, G. Impairment of Hippocampal-Dependent Memory Induced by Juvenile High-Fat Diet Intake Is Associated with Enhanced Hippocampal Inflammation in Rats. Brain. Behav. Immun. 2014, 40, 9–17. [Google Scholar] [CrossRef]
- Khazen, T.; Hatoum, O.A.; Ferreira, G.; Maroun, M. Acute Exposure to a High-Fat Diet in Juvenile Male Rats Disrupts Hippocampal-Dependent Memory and Plasticity through Glucocorticoids. Sci. Rep. 2019, 9, 12270. [Google Scholar] [CrossRef]
- Yuan, Y.; Liu, H.; Dai, Z.; He, C.; Qin, S.; Su, Z. From Physiology to Pathology of Astrocytes: Highlighting Their Potential as Therapeutic Targets for CNS Injury. Neurosci. Bull. 2025, 41, 131–154. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, Y.; Long, C.; Peng, X.; Tao, J.; Pu, Y.; Yue, R. Bridging Metabolic Syndrome and Cognitive Dysfunction: Role of Astrocytes. Front. Endocrinol. 2024, 15, 1393253. [Google Scholar] [CrossRef]
- Verkhratsky, A.; Butt, A.; Li, B.; Illes, P.; Zorec, R.; Semyanov, A.; Tang, Y.; Sofroniew, M.V. Astrocytes in Human Central Nervous System Diseases: A Frontier for New Therapies. Signal Transduct. Target. Ther. 2023, 8, 396. [Google Scholar] [CrossRef]
- Hwang, L.-L.; Wang, C.-H.; Li, T.-L.; Chang, S.-D.; Lin, L.-C.; Chen, C.-P.; Chen, C.-T.; Liang, K.-C.; Ho, I.-K.; Yang, W.-S.; et al. Sex Differences in High-Fat Diet-Induced Obesity, Metabolic Alterations and Learning, and Synaptic Plasticity Deficits in Mice. Obesity 2010, 18, 463–469. [Google Scholar] [CrossRef]
- Robison, L.S.; Albert, N.M.; Camargo, L.A.; Anderson, B.M.; Salinero, A.E.; Riccio, D.A.; Abi-Ghanem, C.; Gannon, O.J.; Zuloaga, K.L. High-Fat Diet-Induced Obesity Causes Sex-Specific Deficits in Adult Hippocampal Neurogenesis in Mice. eNeuro 2020, 7, ENEURO.0391-19.2019. [Google Scholar] [CrossRef]







| 1 w-LFD | 1 w-HFD | |
|---|---|---|
| Sum Intersections | 46.50 ± 1.92 | 59.52 ± 2.15 3 |
| Mean of Intersections | 7.64 ± 0.36 | 8.27 ± 0.30 |
| Max Number of Intersections | 10.83 ± 0.38 | 14.15 ± 0.55 3 |
| Max Intersection Radius (µm) | 14.06 ± 0.89 | 16.77 ± 0.94 1 |
| Number of Branches | 45.46 ± 1.62 | 63.13 ± 2.30 3 |
| Number of Tips | 25.02 ± 0.84 | 34.35 ± 1.19 3 |
| Number of Bifurcations | 21.44 ± 0.78 | 29.67 ± 1.13 3 |
| Number of Primary Branches | 3.83 ± 0.12 | 4.56 ± 0.15 2 |
| Total Length (µm) | 342.2 ± 13.05 | 441.4 ± 14.90 3 |
| Path Distance (µm) | 40.55 ± 1.22 | 42.63 ± 1.29 |
| Mean Branch Length (µm) | 7.76 ± 0.25 | 7.10 ± 0.16 1 |
| Convex Hull Volume (µm3) | 3429 ± 256.7 | 4446 ± 290.5 1 |
| 2 w-LFD | 2 w-HFD | 1 w-HFD – 1 w-LFD | |
|---|---|---|---|
| Sum Intersections | 62.98 ± 2.09 | 49.40 ± 1.80 3 | 47.46 ± 1.72 3 |
| Mean of Intersections | 8.00 ± 0.24 | 6.74 ± 0.20 3 | 6.98 ± 0.18 1 |
| Max Number of Intersections | 13.17 ± 0.43 | 11.27 ± 0.39 1 | 11.50 ± 0.32 1 |
| Max Intersection Radius (µm) | 16.15 ± 0.87 | 15.94 ± 0.85 | 15.52 ± 0.88 |
| Number of Branches | 53.54 ± 1.61 | 45.60 ± 1.50 1 | 45.81 ± 1.60 1 |
| Number of Tips | 29.25 ± 0.85 | 24.96 ± 0.78 2 | 25.17 ± 0.84 1 |
| Number of Bifurcations | 25.15 ± 0.75 | 21.60 ± 0.73 1 | 21.60 ± 0.73 1 |
| Number of Primary Branches | 3.35 ± 0.08 | 3.35 ± 0.08 | 3.50 ± 0.11 |
| Total Length (µm) | 442.5 ± 13.81 | 359.5 ± 11.69 3 | 330.9 ± 11.18 3 |
| Path Distance (µm) | 47.86 ± 1.19 | 44.50 ± 1.21 | 42.35 ± 1.22 1 |
| Mean Branch Length (µm) | 8.37 ± 0.20 | 8.03 ± 0.22 | 7.38 ± 0.23 1 |
| Convex Hull Volume (µm3) | 6470 ± 333.3 | 4891 ± 301.5 3 | 4056 ± 322.3 3 |
| 2 w-LFD | 2 w-HFD | 1 w-HFD– 1 w-LFD | |
|---|---|---|---|
| Sum Intersections | 66.42 ± 1.41 | 43.94 ± 0.94 3 | 61.44 ± 1.36 1;5 |
| Mean of Intersections | 2.02 ± 0.39 | 1.58 ± 0.02 3 | 1.97 ± 0.04 5 |
| Max Number of Intersections | 4.49 ± 0.12 | 3.37 ± 0.09 3 | 4.49 ± 0.13 5 |
| Max Intersection Radius (µm) | 76.17 ± 2.50 | 60.42 ± 1.94 3 | 72.88 ± 2.12 4 |
| Number of Bifurcations | 8.49 ± 0.22 | 5.32 ± 0.15 3 | 7.85 ± 0.24 5 |
| Number of Branches | 16.98 ± 0.43 | 10.64 ± 0.30 3 | 15.70 ± 0.48 5 |
| Branch Order | 5.71 ± 0.15 | 3.66 ± 0.11 3 | 5.02 ± 0.14 2;5 |
| Number of Tips | 9.48 ± 0.22 | 6.32 ± 0.15 3 | 8.85 ± 0.24 5 |
| Total Length (µm) | 383.0 ± 8.16 | 251.9 ± 5.22 3 | 356.8 ± 7.97 1;5 |
| Path Distance (µm) | 177.0 ± 2.44 | 148.2 ± 2.60 3 | 168.0 ± 2.76 1;5 |
| EuDistance (µm) | 158.8 ± 2.21 | 133.8 ± 2.34 3 | 150.2 ± 2.41 1;5 |
| Convex Hull Volume (µm3) | 4286 ± 242.5 | 2049 ± 132.6 3 | 4929 ± 300.6 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.
Share and Cite
De Cicco, G.; Chiazza, F.; Gibin Borzoni, G.; Pessolano, E.; Bortolotto, V.; Grilli, M. Complex Effects of Short Periods of High-Fat Diet on GFAP+ Astrocytes and Maturation of DCX+ Cells in the Dorsal Hippocampus of Adolescent Mice. Neuroglia 2026, 7, 2. https://doi.org/10.3390/neuroglia7010002
De Cicco G, Chiazza F, Gibin Borzoni G, Pessolano E, Bortolotto V, Grilli M. Complex Effects of Short Periods of High-Fat Diet on GFAP+ Astrocytes and Maturation of DCX+ Cells in the Dorsal Hippocampus of Adolescent Mice. Neuroglia. 2026; 7(1):2. https://doi.org/10.3390/neuroglia7010002
Chicago/Turabian StyleDe Cicco, Greta, Fausto Chiazza, Giada Gibin Borzoni, Emanuela Pessolano, Valeria Bortolotto, and Mariagrazia Grilli. 2026. "Complex Effects of Short Periods of High-Fat Diet on GFAP+ Astrocytes and Maturation of DCX+ Cells in the Dorsal Hippocampus of Adolescent Mice" Neuroglia 7, no. 1: 2. https://doi.org/10.3390/neuroglia7010002
APA StyleDe Cicco, G., Chiazza, F., Gibin Borzoni, G., Pessolano, E., Bortolotto, V., & Grilli, M. (2026). Complex Effects of Short Periods of High-Fat Diet on GFAP+ Astrocytes and Maturation of DCX+ Cells in the Dorsal Hippocampus of Adolescent Mice. Neuroglia, 7(1), 2. https://doi.org/10.3390/neuroglia7010002

