Century-Scale Fire Dynamics in a Savanna Ecosystem
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site
2.2. Fire Scar Analysis
2.3. Sediment Core
2.4. Paleoclimate Data
2.5. Statistical Tests
3. Results and Discussion
3.1. Tree-Ring Evidence of Fire History and Climate Impact
3.2. Perspectives from Fire History in Sedimentary Charcoal
3.3. Synthesis of Fire History, Human Activities, and Climate Impact
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bond, W.J.; Woodward, F.I.; Midgley, G.F. The Global Distribtuion of Ecosystems in a world without Fire. New Phytol. 2005, 165, 525–538. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P. Fire in the Earth system. Science (80) 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- White, R.P.; Murray, S.; Rohweder, M.; Prince, S.D.; Thompson, K.M.J. Grassland Ecosystems; World Resources Institute: Washington, DC, USA, 2000; ISBN 1569734615. [Google Scholar]
- Gleason, H.A. The relation of forest distribution and prairie fires in the middle west. Torreya 1913, 13, 173–181. [Google Scholar]
- Lehmann, C.E.R.; Anderson, T.M.; Sankaran, M.; Higgins, S.I.; Archibald, S.; Hoffmann, W.A.; Hanan, N.P.; Williams, R.J.; Fensham, R.J.; Felfili, J.; et al. Savanna vegetation-fire-climate relationships differ among continents. Science (80) 2014, 343, 548–552. [Google Scholar] [CrossRef]
- Whelan, R.J. The Ecology of Fire; Cambridge University Press: Cambridge, UK, 1995; ISBN 0521328721. [Google Scholar]
- Briggs, J.M.; Knapp, A.K.; Brock, B.L. Expansion of Woody Plants in Tallgrass Prairie: A Fifteen-year Study of Fire and Fire-grazing Interactions. Am. Midl. Nat. 2002, 147, 287–294. [Google Scholar] [CrossRef]
- Aleman, J.C.; Blarquez, O.; Bentaleb, I.; Bonté, P.; Brossier, B.; Carcaillet, C.; Gond, V.; Gourlet-Fleury, S.; Kpolita, A.; Lefèvre, I. Tracking land-cover changes with sedimentary charcoal in the Afrotropics. Holocene 2013, 23, 1853–1862. [Google Scholar] [CrossRef]
- Leys, B.; Marlon, J.R.; Umbanhowar, C.; Vannière, B. Global fire history of grassland biomes. Ecol. Evol. 2018, 8, 8831–8852. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allen, C.D.; Breshears, D.D.; McDowell, N.G. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene. Ecosphere 2015, 6, 1–55. [Google Scholar] [CrossRef]
- Anderegg, W.R.L.; Schwalm, C.; Biondi, F.; Camarero, J.J.; Koch, G.; Litvak, M.; Ogle, K.; Shaw, J.D.; Shevliakova, E.; Williams, A.P.; et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science (80) 2015, 349, 528–532. [Google Scholar] [CrossRef] [Green Version]
- Schlesinger, W.H.; Dietze, M.C.; Jackson, R.B.; Phillips, R.P.; Rhoades, C.C.; Rustad, L.E.; Vose, J.M. Forest biogeochemistry in response to drought. Glob. Chang. Biol. 2015, 22, 2318–2328. [Google Scholar] [CrossRef]
- Krawchuk, M.A.; Moritz, M.A.; Parisien, M.-A.; Van Dorn, J.; Hayhoe, K. Global Pyrogeography: The Current and Future Distribution of Wildfire. PLoS ONE 2009, 4, e5102. [Google Scholar] [CrossRef] [PubMed]
- Knapp, A.K.; Smith, M.D. Variation among biomes in temporal dynamics of aboveground primary production. Science (80) 2001, 291, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Swetnam, T.W.; Betancourt, J.L. Fire-southern oscillation relations in the southwestern United States. Science (Washington) 1990, 249, 1017–1020. [Google Scholar] [CrossRef] [PubMed]
- Williams, J.J.; McLauchlan, K.K.; Mueller, J.R.; Mellicant, E.M.; Myrbo, A.E.; Lascu, I. Ecosystem development following deglaciation: A new sedimentary record from Devils Lake, Wisconsin, USA. Quat. Sci. Rev. 2015, 125, 131–143. [Google Scholar] [CrossRef] [Green Version]
- Nelson, D.M.; Verschuren, D.; Urban, M.A.; Hu, F.S. Long-term variability and rainfall control of savanna fire regimes in equatorial East Africa. Glob. Chang. Biol. 2012, 18, 3160–3170. [Google Scholar] [CrossRef] [PubMed]
- Leys, B.; Carcaillet, C. Subalpine fires in the Alps for the past 8000 years: The roles of vegetation, climate and, untimely, land uses. Clim. Chang. 2016, 135, 683–697. [Google Scholar] [CrossRef]
- Dubinin, M.; Luschekina, A.; Radeloff, V.C. Climate, Livestock, and Vegetation: What Drives Fire Increase in the Arid Ecosystems of Southern Russia? Ecosystems 2011, 14, 547–562. [Google Scholar] [CrossRef]
- Sheuyange, A.; Oba, G.; Weladji, R.B. Effects of anthropogenic fire history on savanna vegetation in northeastern Namibia. J. Environ. Manag. 2005, 75, 189–198. [Google Scholar] [CrossRef] [PubMed]
- Behling, H.; Pillar, V.D.; Orlóci, L.; Bauermann, S.G. Late Quaternary Araucaria forest, grassland (Campos), fire and climate dynamics, studied by high-resolution pollen, charcoal and multivariate analysis of the Cambará do Sul core in southern Brazil. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 203, 277–297. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Balch, J.; Artaxo, P.; Bond, W.J.; Cochrane, M.A.; D’Antonio, C.M.; Defries, R.; Johnston, F.H.; Keeley, J.E.; Krawchuk, M.A.; et al. The human dimension of fire regimes on Earth. J. Biogeogr. 2011, 38, 2223–2236. [Google Scholar] [CrossRef] [Green Version]
- Foster, D.R.; Aber, J.D. Forests in Time: The Environmental Consequences of 1000 Years of Change in New England; Yale University Press: NewHaven, CT, USA, 2006; ISBN 0300115377. [Google Scholar]
- Marlon, J.R.; Bartlein, P.J.; Gavin, D.G.; Long, C.J.; Anderson, R.S.; Briles, C.E.; Brown, K.J.; Colombaroli, D.; Hallett, D.J.; Power, M.J.; et al. Long-term perspective on wildfires in the western USA. Proc. Natl. Acad. Sci. USA 2012, 109, E535–E543. [Google Scholar] [CrossRef] [Green Version]
- Vale, T.R. The Pre-European Landscape of the United States: Pristine or Humanized; Island Press: Washington, DC, USA, 2002. [Google Scholar]
- Nelson, D.M.; Hu, F.S.; Grimm, E.C.; Curry, B.B.; Slate, J.E.; Feng, S.H.; Grimm, E.C.; Curry, B.B.; Slate, J.E. The influence of aridity and fire on Holocene prairie communities in the eastern Prairie Peninsula. Ecology 2006, 87, 2523–2536. [Google Scholar] [CrossRef]
- Allen, M.S.; Palmer, M.W. Fire history of a prairie/forest boundary: More than 250 years of frequent fire in a North American tallgrass prairie. J. Veg. Sci. 2011, 22, 436–444. [Google Scholar] [CrossRef]
- Cardille, J.A.; Ventura, S.J.; Turner, M.G. Environmental and social factors influencing wildfires in the Upper Midwest, United States. Ecol. Appl. 2001, 11, 111–127. [Google Scholar] [CrossRef]
- Kipfmueller, K.F.; Schneider, E.A.; Weyenberg, S.A.; Johnson, L.B. Historical drivers of a frequent fire regime in the red pine forests of Voyageurs National Park, MN, USA. For. Ecol. Manag. 2017, 405, 31–43. [Google Scholar] [CrossRef]
- Muzika, R.M.; Guyette, R.P.; Stambaugh, M.C.; Marschall, J.M. Fire, drought, and humans in a heterogeneous Lake Superior landscape. J. Sustain. For. 2015, 34, 49–70. [Google Scholar] [CrossRef]
- Sturtevant, B.R.; Cleland, D.T. Human and biophysical factors influencing modern fire disturbance in northern Wisconsin. Int. J. Wildl. Fire 2007, 16, 398–413. [Google Scholar] [CrossRef] [Green Version]
- Aaseng, N.E.; Almendinger, J.C.; Dana, R.P.; Hanson, D.S.; Lee, M.D.; Rowe, E.R.; Rusterholz, K.A.; Wovcha, D.S. Minnesota’s native plant community classification: A statewide classification of terrestrial and wetland vegetation based on numerical analysis of plot data. Biol. Rep. 2011, 108, 1–27. [Google Scholar]
- Lindeman, R.L. The trophic-dynamic aspect of ecology. Ecology 1942, 23, 399–417. [Google Scholar] [CrossRef]
- Lindeman, R.L. The developmental history of Cedar Creek bog, Minnesota. Am. Midl. Nat. 1941, 25, 101–112. [Google Scholar] [CrossRef]
- Cushing, E.J. Late-Wisconsin Pollen Stratigraphy in East-Central Minnesota. Ph.D. Thesis, University of Minnesota, Minneapolis, MN, USA, 1963. [Google Scholar]
- Pierce, R.L. Vegetation Cover Types and Land Use History of the Cedar Creek Natural History Reservation, Anoka and Isanti counties, Minnesota. Master’s Thesis, University of Minnesota, Minneapolis, MN, USA, 1954. [Google Scholar]
- Peterson, D.W.; Reich, P.B. Prescribed fire in oak savanna: Fire frequency effects on stand structure and dynamics. Ecol. Appl. 2001, 11, 914–927. [Google Scholar] [CrossRef]
- Dijkstra, F.A.; Wrage, K.; Hobbie, S.E.; Reich, P.B. Tree patches show greater N losses but maintain higher soil N availability than grassland patches in a frequently burned oak savanna. Ecosystems 2006, 9, 441–452. [Google Scholar] [CrossRef]
- Baisan, C.H.; Swetnam, T.W. Fire history on a desert mountain range: Rincon Mountain Wilderness, Arizona, USA. Can. J. For. Res. 1990, 20, 1559–1569. [Google Scholar] [CrossRef]
- Manning, S.W. IntCal09 and Marine09 Radiocarbon Age Calibration Curves, 0-50,000 Years cal BP PJ Reimer, MGL Baillie, E Bard, A Bayliss, JW Beck, PG Blackwell, C Bronk Ramsey, CE Buck, GS Burr, RL Edwards, M Friedrich, PM Grootes, TP Guilderson, I Hajdas, TJ Heaton, AG. Radiocarbon 2009, 51, 1111–1150. [Google Scholar]
- Blaauw, M.; Heegaard, E. Estimation of Age-Depth RelationshipsTracking Environmental Change Using Lake Sediments; Birks, H.J.B., Lotter, A.F., Juggins, S., Smol, J.P., Eds.; Springer Science and Business Media: Utrecht, The Netherlands, 2012; Volume 5, pp. 379–413. ISBN 978-94-007-2745-8. [Google Scholar]
- Leys, B.; Commerford, J.L.; McLauchlan, K.K. Reconstructing grassland fire history using sedimentary charcoal: Considering count, size and shape. PLoS ONE 2017, 12, e0176445. [Google Scholar] [CrossRef]
- Umbanhowar, C.E.; Mcgrath, M.J. Experimental production and analysis of microscopic charcoal from wood, leaves and grasses. Holocene 1998, 8, 341–346. [Google Scholar] [CrossRef]
- Leys, B.; Brewer, S.C.; McConaghy, S.; Mueller, J.; McLauchlan, K.K. Fire history reconstruction in grassland ecosystems: Amount of charcoal reflects local area burned. Environ. Res. Lett. 2015, 10, 114009. [Google Scholar] [CrossRef]
- Higuera, P.E.; Brubaker, L.B.; Anderson, P.M.; Brown, T.A.; Kennedy, A.T.; Hu, F.S. Frequent fires in ancient shrub tundra: Implications of paleorecords for Arctic environmental change. PLoS ONE 2008, 3, e0001744. [Google Scholar] [CrossRef]
- Tinner, W.; Hofstetter, S.; Zeugin, F.; Conedera, M.; Wohlgemuth, T.; Zimmermann, L.; Zweifel, R. Long-distance transport of macroscopic charcoal by an intensive crown fire in the Swiss Alps-implications for fire history reconstruction. Holocene 2006, 16, 287–292. [Google Scholar] [CrossRef]
- George, S.S.; Meko, D.M.; Cook, E.R. The seasonality of precipitation signals embedded within the North American Drought Atlas. Holocene 2010, 20, 983–988. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Austria, 2015. 2018. Available online: r-project.org (accessed on 11 September 2019).
- Cook, E.R.; Seager, R.; Cane, M.A.; Stahle, D.W. North American drought: Reconstructions, causes, and consequences. Earth-Sci. Rev. 2007, 81, 93–134. [Google Scholar] [CrossRef]
- Cook, E.R.; Peters, K. The smoothing spline: A new approach to standardizing forest interior tree-ring width series for dendroclimatic studies. Bibliogr. Inf. 1981, 41, 45–53. [Google Scholar]
- Johnson, L.B.; Kipfmueller, K.F. A fire history derived from Pinus resinosa Ait. for the Islands of Eastern Lac La Croix, Minnesota, USA. Ecol. Appl. 2016, 26, 1030–1046. [Google Scholar] [CrossRef] [PubMed]
- Larson, E.R.; Green, M.A. Fire History at the Confluence of the Driftless Area and Central Sand Plains of Wisconsin: A Case Study from Castle Mound Pine Forest State Natural Area. Nat. Areas J. 2017, 37, 309–322. [Google Scholar] [CrossRef]
- Cook, E.R.; Meko, D.M.; Stahle, D.W.; Cleaveland, M.K. Drought Reconstructions for the Continental United States. J. Clim. 1999, 12, 1145–1162. [Google Scholar] [CrossRef]
- White, A.S. The effects of thirteen years of annual prescribed burning on a Quercus ellipsoidalis community in Minnesota. Ecology 1983, 64, 1081–1085. [Google Scholar] [CrossRef]
- Umbanhowar, C.E. Interaction of fire, climate and vegetation change at a large landscape scale in the Big Woods of Minnesota, USA. Holocene 2004, 14, 661–676. [Google Scholar] [CrossRef]
- Williams, J.W.; Shuman, B.; Bartlein, P.J. Rapid responses of the prairie-forest ecotone to early Holocene aridity in mid-continental North America. Glob. Planet. Chang. 2009, 66, 195–207. [Google Scholar] [CrossRef]
- Grimm, E.C. Fire and other factors controlling the Big Woods vegetation of Minnesota in the mid-nineteenth century. Ecol. Monogr. 1984, 54, 291–311. [Google Scholar] [CrossRef]
- Umbanhowar, C.E.; Camill, P.; Dorale, J.A. Regional heterogeneity and the effects of land use and climate on 20 lakes in the big woods region of Minnesota. J. Paleolimnol. 2011, 45, 151–166. [Google Scholar] [CrossRef]
- McKenzie, D.; Littell, J.S. Climate change and the eco-hydrology of fire: Will area burned increase in a warming western USA? Ecol. Appl. 2017, 27, 26–36. [Google Scholar] [CrossRef] [PubMed]
- Warren, W.W. History of the Ojibway People; Minnesota Historical Society: St. Paul, MN, USA, 2009; ISBN 0873516435. [Google Scholar]
Spearman correlations | X | Y | Period | rho | p |
Charcoal count | PDSI | 1548–2004 | 0.18 | 0.1 | |
1548–1900 | 0.07 | 0.7 | |||
1900–2004 | 0.07 | 0.6 | |||
Charcoal WL ratio | PDSI | 1548–2004 | 0.06 | 0.6 | |
1548–1900 | −0.09 | 0.5 | |||
1900–2004 | −0.01 | 0.9 | |||
Superposed Epoch Analysis | Events | Period | mean | 95 CI | 99 CI |
Charcoal-derived fires | 1548–2004 | 0.05 | −0.54 <.> 0.55 | −0.72 <.> 0.71 | |
1548–1900 | −0.13 | −0.73 <.> 0.73 | −0.97 <.> 0.95 | ||
1900–2004 | 0.28 | −0.78 <.> 0.79 | −1.04 <.> 1.03 | ||
Tree scar-derived fires | 1822–1924 | −0.16 | −0.69 <.> 0.69 | −0.90 <.> 0.91 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leys, B.A.; Griffin, D.; Larson, E.R.; McLauchlan, K.K. Century-Scale Fire Dynamics in a Savanna Ecosystem. Fire 2019, 2, 51. https://doi.org/10.3390/fire2030051
Leys BA, Griffin D, Larson ER, McLauchlan KK. Century-Scale Fire Dynamics in a Savanna Ecosystem. Fire. 2019; 2(3):51. https://doi.org/10.3390/fire2030051
Chicago/Turabian StyleLeys, Bérangère A., Daniel Griffin, Evan R. Larson, and Kendra K. McLauchlan. 2019. "Century-Scale Fire Dynamics in a Savanna Ecosystem" Fire 2, no. 3: 51. https://doi.org/10.3390/fire2030051
APA StyleLeys, B. A., Griffin, D., Larson, E. R., & McLauchlan, K. K. (2019). Century-Scale Fire Dynamics in a Savanna Ecosystem. Fire, 2(3), 51. https://doi.org/10.3390/fire2030051