Forest Fire Susceptibility and Risk Mapping Using Social/Infrastructural Vulnerability and Environmental Variables
Abstract
:1. Introduction
2. Material and Methods
- ▪
- Preparing the conditioning forest fire factors.
- ▪
- Defining and preparing the social/infrastructural vulnerability factors localised for the case study area.
- ▪
- Preparing a forest fire inventory map from the hotspots of MODIS enhanced using field survey GPS polygons.
- ▪
- Applying the artificial neural network (ANN) method for the spatial prediction of forest fire susceptibility mapping.
- ▪
- Applying the GIS-MCDA method for the social/infrastructural vulnerability mapping.
- ▪
- Validating the performances of the ANN method using the receiver operating characteristics (ROC) curve and the root mean square error (RMSE).
2.1. Study Area
2.2. Data Used in the Analysis
2.3. Data Generation for Training and Testing
3. Workflow
3.1. Forest Fire Susceptibility Mapping Using Artificial Neural Network (ANN)
3.2. Social/Infrastructural Vulnerability Indexes
Choice of Indicators
3.3. Aggregation of Different Indicators Using Geographic Information System Multi-Criteria Decision Making (GIS-MCDM)
4. Results
4.1. The Predictive Performances and Resulting Hazard Map
4.2. Social/Infrastructural Vulnerability Mapping
4.3. Generation of the Risk Map
5. Discussion and Conclusion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Liu, Q.; Shan, Y.; Shu, L.; Sun, P.; Du, S. Spatial and temporal distribution of forest fire frequency and forest area burnt in Jilin Province, Northeast China. J. For. Res. 2018, 29, 1233–1239. [Google Scholar] [CrossRef]
- Preston, B.; Brooke, C.; Measham, T.G.; Smith, T.; Gorddard, R. Igniting change in local government: Lessons learned from a bushfire vulnerability assessment. Mitig. Adapt. Strateg. Glob. Chang. 2009, 14, 251–283. [Google Scholar] [CrossRef]
- Ahn, Y.S.; Ryu, S.-R.; Lim, J.; Lee, C.H.; Shin, J.H.; Choi, W.I.; Lee, B.; Jeong, J.-H.; An, K.W.; Seo, J.I. Erratum to: Effects of forest fires on forest ecosystems in eastern coastal areas of Korea and an overview of restoration projects. Landsc. Ecol. Eng. 2014, 10, 239. [Google Scholar] [CrossRef]
- Chowdhury, E.H.; Hassan, Q.K. Operational perspective of remote sensing-based forest fire danger forecasting systems. ISPRS J. Photogramm. Remote. Sens. 2015, 104, 224–236. [Google Scholar] [CrossRef]
- Pourghasemi, H.R. GIS-based forest fire susceptibility mapping in Iran: A comparison between evidential belief function and binary logistic regression models. Scand. J. For. Res. 2016, 31, 80–98. [Google Scholar] [CrossRef]
- Darvishsefat, A.; Mostafavi, M.; Etemad, V.; Jahdi, R. Wind Effect on Wildfire and Simulation of Its Spread (Case Study: Siahkal Forest in Northern Iran). J. Agr. Sci. Tech. 2014, 16, 1109–1121. [Google Scholar]
- Miller, C.; Ager, A.A. A review of recent advances in risk analysis for wildfire management. Int. J. Wildland Fire 2013, 22, 1. [Google Scholar] [CrossRef]
- Emrich, C.T.; Borden, K.A.; Schmidtlein, M.C.; Piegorsch, W.W.; Cutter, S.L. Vulnerability of U.S. Cities to Environmental Hazards. J. Homel. Secur. Emerg. Manag. 2007, 4, 4. [Google Scholar]
- Van Westen, C. 3.10 Remote Sensing and GIS for Natural Hazards Assessment and Disaster Risk Management. Treatise Geomorphol. 2013, 3, 259–298. [Google Scholar]
- Dwyer, A.; Zoppou, C.; Nielsen, O.; Day, S.; Roberts, S. Quantifying Social Vulnerability: A Methodology for Identifying Those at Risk to Natural Hazards; Australian Government: Canberra, Australia, 2004.
- Aryal, J.; Louvet, R. Quantifying Bushfire Mapping Uncertainty Using Single and Multi-Scale Approach: A Case Study from Tasmania, Australia. In Proceedings of the GEOBIA 2016: Solutions and Synergies, Twente, The Netherlands, 14–16 September 2016. [Google Scholar]
- Pourghasemi, H.R.; Rahmati, O. Prediction of the landslide susceptibility: Which algorithm, which precision? Catena 2018, 162, 177–192. [Google Scholar] [CrossRef]
- Meena, S.R.; Ghorbanzadeh, O.; Blaschke, T. A Comparative Study of Statistics-Based Landslide Susceptibility Models: A Case Study of the Region Affected by the Gorkha Earthquake in Nepal. ISPRS Int. J. Geo-Inf. 2019, 8, 94. [Google Scholar] [CrossRef]
- Meena, S.R.; Mishra, B.K.; Piralilou, S.T. A Hybrid Spatial Multi-Criteria Evaluation Method for Mapping Landslide Susceptible Areas in Kullu Valley, Himalayas. Geosciences 2019, 9, 156. [Google Scholar] [CrossRef]
- Shahabi, H.; Hashim, M. Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment. Sci. Rep. 2015, 5, 9899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Eidsvig, U.M.K.; McLean, A.; Vangelsten, B.V.; Kalsnes, B.; Ciurean, R.L.; Argyroudis, S.; Winter, M.G.; Mavrouli, O.C.; Fotopoulou, S.; Pitilakis, K.; et al. Assessment of socioeconomic vulnerability to landslides using an indicator-based approach: Methodology and case studies. Bull. Int. Assoc. Eng. Geol. 2014, 73, 307–324. [Google Scholar] [CrossRef]
- McCaffrey, S.; Toman, E.; Stidham, M.; Shindler, B. And Social science research related to wildfire management: An overview of recent findings and future research needs. Int. J. Wildland Fire 2013, 22, 15. [Google Scholar] [CrossRef]
- Wigtil, G.; Hammer, R.B.; Kline, J.D.; Mockrin, M.H.; Stewart, S.I.; Roper, D.; Radeloff, V.C. Places where wildfire potential and social vulnerability coincide in the coterminous United States. Int. J. Wildland Fire 2016, 25, 896–908. [Google Scholar] [CrossRef] [Green Version]
- Lueck, D.; Yoder, J. Clearing the Smoke from Wildfire Policy: An Economic Perspective; PERC: Bozeman, MT, USA, 2016. [Google Scholar]
- Chuvieco, E.; Martínez, S.; Román, M.V.; Hantson, S.; Pettinari, M.L. Integration of ecological and socio-economic factors to assess global vulnerability to wildfire. Glob. Ecol. Biogeogr. 2014, 23, 245–258. [Google Scholar] [CrossRef]
- Molina, J.R.; Silva, F.R.Y.; Herrera, M.Á. Integrating economic landscape valuation into Mediterranean territorial planning. Environ. Sci. Policy 2016, 56, 120–128. [Google Scholar] [CrossRef]
- Poudyal, N.C.; Johnson-Gaither, C.; Goodrick, S.; Bowker, J.M.; Gan, J. Locating Spatial Variation in the Association Between Wildland Fire Risk and Social Vulnerability Across Six Southern States. Environ. Manag. 2012, 49, 623–635. [Google Scholar] [CrossRef] [Green Version]
- Kamran, K.V.; Omrani, K.; Khosroshahi, S.S. Forest fire risk assessment using multi-criteria analysis: A case study kaleybar forest. In Proceedings of the International Conference on Agriculture, Environment and Biological Sciences, Antalya, Turkey, 4–5 June 2014; pp. 30–33. [Google Scholar]
- Pourghasemi, H.R.; Beheshtirad, M.; Pradhan, B. A comparative assessment of prediction capabilities of modified analytical hierarchy process (m-AHP) and Mamdani fuzzy logic models using NETCAD-GIS for forest fire susceptibility mapping. Geomat. Nat. Hazards Risk 2016, 7, 861–885. [Google Scholar] [CrossRef]
- Suryabhagavan, K.; Alemu, M.; Balakrishnan, M. Gis-based multi-criteria decision analysis for forest fire susceptibility mapping: A case study in harenna forest, Southwestern Ethiopia. Trop. Ecol. 2016, 57, 33–43. [Google Scholar]
- Liu, X.-P.; Zhang, J.-Q.; Tong, Z.-J.; Bao, Y. GIS-based multi-dimensional risk assessment of the grassland fire in northern China. Nat. Hazards 2012, 64, 381–395. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Blaschke, T. Wildfire susceptibility evaluation by integrating an analytical network process approach into GIS-based analyses. Int. J. Adv. Sci. Eng. Technol. 2018, 6, 48–53. [Google Scholar]
- De Souza, F.T.; Koerner, T.C.; Chlad, R. A data-based model for predicting wildfires in Chapada das Mesas National Park in the State of Maranhão. Environ. Earth Sci. 2015, 74, 3603–3611. [Google Scholar] [CrossRef]
- Dutta, R.; Das, A.; Aryal, J. Big data integration shows Australian bush-fire frequency is increasing significantly. R. Soc. Open Sci. 2016, 3, 150241. [Google Scholar] [CrossRef]
- Dutta, R.; Aryal, J.; Das, A.; Kirkpatrick, J.B. Deep cognitive imaging systems enable estimation of continental-scale fire incidence from climate data. Sci. Rep. 2013, 3, 3188. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Lim, C.-H.; Kim, G.S.; Lee, J.; Geiger, T.; Rahmati, O.; Son, Y.; Lee, W.-K. Multi-Temporal Analysis of Forest Fire Probability Using Socio-Economic and Environmental Variables. Remote. Sens. 2019, 11, 86. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Blaschke, T.; Aryal, J.; Gholaminia, K. A new GIS-based technique using an adaptive neuro-fuzzy inference system for land subsidence susceptibility mapping. J. Spat. Sci. 2018, 1–17. [Google Scholar] [CrossRef]
- Korup, O.; Stolle, A. Landslide prediction from machine learning. Geol. Today 2014, 30, 26–33. [Google Scholar] [CrossRef]
- Carr, J.A. Pre-Disaster Integration of Community Emergency Response Teams within Local Emergency Management Systems. M.Sc. Thesis, Dep of Emergency Management, North Dakota State University, Fargo, ND, USA, 2014. [Google Scholar]
- King, D.; MacGregor, C. Using social indicators to measure community vulnerability to natural hazards. Aust. J. Emerg. Manag. 2000, 15, 52. [Google Scholar]
- Eidsvig, U.; McLean, A.; Vangelsten, B.; Kalsnes, B.; Ciurean, R.; Argyroudis, S.; Winter, M.; Corominas, J.; Mavrouli, O.; Fotopoulou, S. In Socio-economic vulnerability to natural hazards–proposal for an indicator-based model. In Proceedings of the 3rd International Symposium on Geotechnical Safety and Risk (ISGSR2011), Munich, Germany, 2–3 June 2011; pp. 2–3. [Google Scholar]
- Contreras, D.; Blaschke, T.; Tiede, D.; Jilge, M. Monitoring recovery after earthquakes through the integration of remote sensing, gis, and ground observations: The case of L’Aquila (Italy). Cartogr. Geogr. Inf. Sci. 2016, 43, 115–133. [Google Scholar] [CrossRef]
- Cutter, S.L.; Boruff, B.J.; Shirley, W.L. Social Vulnerability to Environmental Hazards*. Soc. Sci. Q. 2003, 84, 242–261. [Google Scholar] [CrossRef]
- Norris, F.H. Disasters in urban context. J. Urban Health 2002, 79, 308–314. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Malczewski, J. Ordered weighted averaging with fuzzy quantifiers: GIS-based multicriteria evaluation for land-use suitability analysis. Int. J. Appl. Earth Obs. Geoinf. 2006, 8, 270–277. [Google Scholar] [CrossRef]
- Cabrera-Barona, P.; Ghorbanzadeh, O. Comparing Classic and Interval Analytical Hierarchy Process Methodologies for Measuring Area-Level Deprivation to Analyze Health Inequalities. Int. J. Environ. Res. Public Heal. 2018, 15, 140. [Google Scholar] [CrossRef] [PubMed]
- Feizizadeh, B.; Ghorbanzadeh, O. GIS-based Interval Pairwise Comparison Matrices as a Novel Approach for Optimizing an Analytical Hierarchy Process and Multiple Criteria Weighting. Gi_Forum 2017, 1, 27–35. [Google Scholar] [CrossRef]
- Shahabi, H.; Khezri, S.; Bin Ahmad, B.; Hashim, M. Landslide susceptibility mapping at central Zab basin, Iran: A comparison between analytical hierarchy process, frequency ratio and logistic regression models. Catena 2014, 115, 55–70. [Google Scholar] [CrossRef]
- Franěk, J.; Kresta, A. Judgment Scales and Consistency Measure in AHP. Procedia Econ. Financ. 2014, 12, 164–173. [Google Scholar] [CrossRef] [Green Version]
- Alexakis, D.; Sarris, A. Environmental and human risk assessment of the prehistoric and historic archaeological sites of western Crete (Greece) with the use of GIs, remote sensing, fuzzy logic and neural networks. In Proceedings of the Euro-Mediterranean Conference, Limassol, Cyprus, 29 October–3 November 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 332–342. [Google Scholar]
- Gaither, C.J.; Poudyal, N.C.; Goodrick, S.; Bowker, J.; Malone, S.; Gan, J. Wildland fire risk and social vulnerability in the Southeastern United States: An exploratory spatial data analysis approach. For. Policy Econ. 2011, 13, 24–36. [Google Scholar] [CrossRef]
- Kolden, C.A.; Abatzoglou, J.T. Spatial Distribution of Wildfires Ignited under Katabatic versus Non-Katabatic Winds in Mediterranean Southern California USA. Fire 2018, 1, 19. [Google Scholar] [CrossRef]
- Lautenberger, C. Mapping areas at elevated risk of large-scale structure loss using Monte Carlo simulation and wildland fire modeling. Fire Saf. J. 2017, 91, 768–775. [Google Scholar] [CrossRef]
- Sayad, Y.O.; Mousannif, H.; Al Moatassime, H. Predictive modeling of wildfires: A new dataset and machine learning approach. Fire Saf. J. 2019, 104, 130–146. [Google Scholar] [CrossRef]
- Ganteaume, A.; Camia, A.; Jappiot, M.; San-Miguel-Ayanz, J.; Long-Fournel, M.; Lampin, C. A review of the main driving factors of forest fire ignition over Europe. Environ. Manag. 2013, 51, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Pourtaghi, Z.S.; Pourghasemi, H.R.; Rossi, M. Forest fire susceptibility mapping in the minudasht forests, golestan province. Iran. Environ. Earth Sci. 2015, 73, 1515–1533. [Google Scholar] [CrossRef]
- SWOAC. A National Project of Mazandaran Province; SWOAC: Mazandaran, Iran, 2018. [Google Scholar]
- SMOAC. A National Project of Mazandaran Province; SMOAC: Mazandaran, Iran, 2018. [Google Scholar]
- Hirano, A.; Welch, R.; Lang, H. Mapping from ASTER stereo image data: DEM validation and accuracy assessment. ISPRS J. Photogramm. Remote. Sens. 2003, 57, 356–370. [Google Scholar] [CrossRef]
- Castruccio, S.; Nadzir, M.S.M.; Dominick, D.; Thota, A.; Crippa, P.; Mead, M.I.; Latif, M.T.; Nadzir, M.S.M. Impact of the 2015 wildfires on Malaysian air quality and exposure: A comparative study of observed and modeled data. Environ. Res. Lett. 2018, 13, 044023. [Google Scholar]
- Cusworth, D.H.; Mickley, L.J.; Sulprizio, M.P.; Liu, T.; E Marlier, M.; DeFries, R.S.; Guttikunda, S.K.; Gupta, P. Quantifying the influence of agricultural fires in northwest India on urban air pollution in Delhi, India. Environ. Res. Lett. 2018, 13, 044018. [Google Scholar] [CrossRef] [Green Version]
- Cattau, M.E.; Marlier, M.E.; DeFries, R. Effectiveness of Roundtable on Sustainable Palm Oil (RSPO) for reducing fires on oil palm concessions in Indonesia from 2012 to 2015. Environ. Res. Lett. 2016, 11, 105007. [Google Scholar] [CrossRef]
- Gilks, W. Markov Chain Monte Carlo in Practice; Chapman and Hall/CRC: London, UK, 1995. [Google Scholar]
- Witten, I.H.; Frank, E.; Hall, M.A.; Pal, C.J. Data Mining: Practical Machine Learning Tools and Techniques; Morgan Kaufmann: Burlington, MA, USA, 2016. [Google Scholar]
- Boria, R.A.; Olson, L.E.; Goodman, S.M.; Anderson, R.P. Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol. Model. 2014, 275, 73–77. [Google Scholar] [CrossRef]
- Wiens, T.S.; Dale, B.C.; Boyce, M.S.; Kershaw, G.P. Three way k-fold cross-validation of resource selection functions. Ecol. Model. 2008, 212, 244–255. [Google Scholar] [CrossRef]
- Goldarag, Y.J.; Mohammadzadeh, A.; Ardakani, A.S. Fire Risk Assessment Using Neural Network and Logistic Regression. J. Indian Soc. Remote Sens. 2016, 44, 885–894. [Google Scholar] [CrossRef]
- Gorsevski, P.V.; Brown, M.K.; Panter, K.; Onasch, C.M.; Simic, A.; Snyder, J. Landslide detection and susceptibility mapping using lidar and an artificial neural network approach: A case study in the cuyahoga valley national park, Ohio. Landslides 2016, 13, 467–484. [Google Scholar] [CrossRef]
- Paola, J.D.; Schowengerdt, R.A. A review and analysis of backpropagation neural networks for classification of remotely-sensed multi-spectral imagery. Int. J. Remote. Sens. 1995, 16, 3033–3058. [Google Scholar] [CrossRef]
- Neaupane, K.; Achet, S. Use of backpropagation neural network for landslide monitoring: A case study in the higher Himalaya. Eng. Geol. 2004, 74, 213–226. [Google Scholar] [CrossRef]
- Bi, R.; Schleier, M.; Rohn, J.; Ehret, D.; Xiang, W. Landslide susceptibility analysis based on ArcGIS and Artificial Neural Network for a large catchment in Three Gorges region, China. Environ. Earth Sci. 2014, 72, 1925–1938. [Google Scholar] [CrossRef]
- Pascale, S.; Parisi, S.; Mancini, A.; Schiattarella, M.; Conforti, M.; Sole, A.; Murgante, B.; Sdao, F. Landslide susceptibility mapping using artificial neural network in the urban area of senise and san costantino Albanese (Basilicata, Southern Italy). In Proceedings of the International Conference on Computational Science and Its Applications, Ho Chi Minh City, Vietnam, 24–27 June 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 473–488. [Google Scholar]
- De Brito, M.M.; Evers, M.; Almoradie, A.D.S. Participatory flood vulnerability assessment: A multi-criteria approach. Hydrol. Earth Syst. Sci. 2018, 22, 373–390. [Google Scholar] [CrossRef]
- Malczewski, J. GIS-based land-use suitability analysis: A critical overview. Prog. Plan. 2004, 62, 3–65. [Google Scholar] [CrossRef]
- Entani, T.; Sugihara, K. Uncertainty index based interval assignment by Interval AHP. Eur. J. Oper. Res. 2012, 219, 379–385. [Google Scholar] [CrossRef]
- Duleba, S.; Moslem, S. Examining Pareto optimality in analytic hierarchy process on real Data: An application in public transport service development. Expert Syst. Appl. 2019, 116, 21–30. [Google Scholar] [CrossRef]
- Vidal, L.-A.; Marle, F.; Bocquet, J.-C. Using a Delphi process and the Analytic Hierarchy Process (AHP) to evaluate the complexity of projects. Expert Syst. Appl. 2011, 38, 5388–5405. [Google Scholar] [CrossRef]
- Saaty, T.L.; Vargas, L.G. Prediction, Projection, and Forecasting: Applications of the Analytic Hierarchy Process in Economics, Finance, Politics, Games, and Sports; Kluwer Academic Pub: Boston, MA, USA, 1991. [Google Scholar]
- Saaty, T.L. Some Mathematical Concepts of the Analytic Hierarchy Process. Behaviormetrika 1991, 18, 1–9. [Google Scholar] [CrossRef]
- Malczewski, J.; Rinner, C. Multicriteria Decision Analysis in Geographic Information Science; Springer: New York, NY, USA, 2016. [Google Scholar]
- Ghorbanzadeh, O.; Feizizadeh, B.; Blaschke, T. Multi-criteria risk evaluation by integrating an analytical network process approach into gis-based sensitivity and uncertainty analyses. Geomat. Nat. Hazards Risk 2018, 9, 127–151. [Google Scholar] [CrossRef]
- Ghorbanzadeh, O.; Rostamzadeh, H.; Blaschke, T.; Gholaminia, K.; Aryal, J. A new GIS-based data mining technique using an adaptive neuro-fuzzy inference system (ANFIS) and k-fold cross-validation approach for land subsidence susceptibility mapping. Nat. Hazards 2018, 1, 497–517. [Google Scholar] [CrossRef]
- Bui, D.T.; Pradhan, B.; Löfman, O.; Revhaug, I.; Dick, O.B. Landslide susceptibility mapping at Hoa Binh province (Vietnam) using an adaptive neuro-fuzzy inference system and GIS. Comput. Geosci. 2012, 45, 199–211. [Google Scholar]
- Pham, B.T.; Pradhan, B.; Bui, D.T.; Prakash, I.; Dholakia, M. A comparative study of different machine learning methods for landslide susceptibility assessment: A case study of Uttarakhand area (India). Environ. Model. Softw. 2016, 84, 240–250. [Google Scholar] [CrossRef]
- Popoola, O.M.; Munda, J.; Mpanda, A. Residential lighting load profile modelling: Anfis approach using weighted and non-weighted data. Energy Effici. 2018, 11, 169–188. [Google Scholar] [CrossRef]
- Abrams, J.; Nielsen-Pincus, M.; Paveglio, T.; Moseley, C. Community wildfire protection planning in the american west: Homogeneity within diversity? J. Environ. Plan. Manag. 2016, 59, 557–572. [Google Scholar] [CrossRef]
- Feizizadeh, B.; Blaschke, T. Landslide risk assessment based on gis multi-criteria evaluation: A case study in bostan-abad county, Iran. J. Earth Sci. Eng. 2011, 1, 66–77. [Google Scholar]
- Haas, J.R.; Calkin, D.E.; Thompson, M.P. A national approach for integrating wildfire simulation modeling into Wildland Urban Interface risk assessments within the United States. Landsc. Urban. Plan. 2013, 119, 44–53. [Google Scholar] [CrossRef] [Green Version]
- Solangaarachchi, D.; Griffin, A.L.; Doherty, M.D. Social vulnerability in the context of bushfire risk at the urban-bush interface in Sydney: A case study of the Blue Mountains and Ku-ring-gai local council areas. Nat. Hazards 2012, 64, 1873–1898. [Google Scholar] [CrossRef]
- Bedia, J.; Herrera, S.; Camia, A.; Moreno, J.M.; Gutiérrez, J.M. Forest fire danger projections in the mediterranean using ensembles regional climate change scenarios. Clim. Chang. 2014, 122, 185–199. [Google Scholar] [CrossRef]
Factors | Class | # of Pixels in Domain | Area (ha) | % of Domain | Area of Forest Fires (ha) | % of Forest Fires | Source |
---|---|---|---|---|---|---|---|
Slope aspect | (1) Flat | 413 | 32.66 | 0.05 | 0.23 | 0.04 | ASTER DEM |
(2) North | 163,477 | 12,929.5 | 20.017 | 78.87 | 15.74 | ||
(3) Northeast | 157,185 | 12,431.86 | 16.25 | 74.90 | 14.95 | ||
(4) East | 111,057 | 8783.56 | 13.60 | 59.27 | 11.83 | ||
(5) Southeast | 64,513 | 5102.32 | 7.9 | 35.55 | 7.09 | ||
(6) South | 59,425 | 4699.96 | 7.27 | 53.12 | 10.6 | ||
(7) Southwest | 69,288 | 5480.03 | 8.48 | 65.06 | 12.98 | ||
(8) West | 89,748 | 7098 | 10.98 | 83.87 | 16.71 | ||
(9) Northwest | 101,549 | 8031.57 | 12.43 | 50.21 | 10.02 | ||
Slope (%) | ASTER DEM | ||||||
(1) 0–5 | 52,438 | 4147.35 | 6.42 | 49.13 | 9.8 | ||
(2) 5-10 | 131,189 | 10,375.82 | 16.06 | 129.72 | 25.89 | ||
(3) 10–15 | 165,158 | 13,062.45 | 20.22 | 160.07 | 31.95 | ||
(4) 15–20 | 132,343 | 10,467.09 | 16.20 | 68.49 | 13.67 | ||
(5) 20–30 | 172,740 | 13,662.11 | 21.15 | 55.58 | 11.09 | ||
(6) 30< | 162,787 | 12,874.92 | 19.93 | 37.93 | 7.57 | ||
Altitude (m) | ASTER DEM | ||||||
(1) 500> | 267,103 | 20,609.83 | 31.76 | 272.50 | 54.39 | ||
(2 500–1000 | 221,070 | 17,057.90 | 26.28 | 139.98 | 27.93 | ||
(3) 1000–1500 | 175,496 | 13,541.38 | 20.86 | 33.66 | 6.72 | ||
(4) 1500–2000 | 131,112 | 10,116.68 | 15.59 | 51.22 | 10.23 | ||
(5) 2000–2500 | 44,074 | 3400.77 | 5.59 | 3.57 | 0.71 | ||
(6) 2500< | 2064 | 159.25 | 0.24 | 0 | |||
Annual temperature (°C) | SMOAC | ||||||
(1) 10> | 30,663 | 2425.1 | 3.75 | 0 | 0 | ||
(2) 10–12 | 190,487 | 15,065.7 | 23.29 | 3.61 | 0.72 | ||
(3) 12–14 | 213,835 | 16,912.3 | 26.15 | 92.93 | 18.55 | ||
(4) 14–16 | 234,441 | 18,542.0 | 28.67 | 162.79 | 32.48 | ||
(5) 16< | 148,230 | 11,723.6 | 18.1 | 241.12 | 48.25 | ||
Annual rainfall (mm) | SMOAC | ||||||
(1) 400–450 | 40,288 | 3186.40 | 4.92725 | 0 | 0 | ||
(2) 450–500 | 129,427 | 10,236.4 | 15.8290 | 0 | 0 | ||
(3) 500–550 | 138,521 | 10,955.7 | 16.9412 | 30.56 | 6.10 | ||
(4) 550–600 | 311,886 | 24,667.2 | 38.1439 | 146.55 | 29.25 | ||
(5) 600< | 197,534 | 15,623.0 | 24.1585 | 323.83 | 64.64 | ||
Wind effect | ASTER DEM & SMOAC | ||||||
(1) 0.73–0.93 | 203,575 | 16,100.8 | 24.9279 | 161.16 | 32.25 | ||
(2) 0.93–1.09 | 204,281 | 16,156.7 | 25.0143 | 143.42 | 28.62 | ||
(3) 1.09–1.25 | 204,979 | 16,211.9 | 25.0998 | 123.72 | 24.69 | ||
(4) 1.25–1.35 | 203,820 | 16,120.2 | 24.9579 | 72.25 | 14.42 | ||
Plan curvature (100/m) | ASTER DEM | ||||||
(1) Concave | 153,099 | 12,108.7 | 18.73 | 62.9 | 12.55 | ||
(2) Flat | 499,095 | 39,473.7 | 61.05 | 351.45 | 70.15 | ||
(3) Convex | 165,204 | 13,066 | 20.21 | 86.59 | 17.28 | ||
Topographic wetness index (TWI) | ASTER DEM | ||||||
(1) 5–10 | 89,647 | 7090.23 | 10.97 | 61.82 | 12.34 | ||
(2) 10–15 | 186,858 | 14,778.7 | 22.8 | 117.62 | 23.48 | ||
(3) 15–20 | 113,587 | 8983.66 | 13.9 | 61.22 | 12.22 | ||
(4) 20 < | 259,476 | 20,522.1 | 31.7 | 174.21 | 34.72 | ||
167,087 | 13,215. | 20.45 | 86.07 | 17.18 | |||
Landform | ASTER DEM | ||||||
(1) canyon | 39,975 | 3161.64 | 4.8 | 16.10 | 3.21 | ||
(2) Gentle slopes | 159,331 | 12,601.5 | 19.48 | 63.23 | 12.62 | ||
(3) steep slope | 513,481 | 40,611.5 | 62.79 | 375.23 | 75.02 | ||
(4) ridges | 104,869 | 8294.15 | 12.825 | 45.75 | 9.13 | ||
Land use | LANDSAT satellite image | ||||||
(1) Forest | 748,822 | 59,224.8 | 91.4729 | 491.8 | 98.03 | ||
(2) Non-forest | 56,744 | 4487.91 | 6.93160 | 9.87 | 1.97 | ||
(3) Farm | 10,619 | 839.863 | 1.29717 | 0 | 0 | ||
(4) village | 2442 | 193.139 | 0.29830 | 0 | 0 | ||
NDVI | LANDSAT 8 | ||||||
(1) −0.08–0.1 | 162,431 | 12,846.7 | 19.86 | 38.03 | 7.59 | ||
(2) 0.1–0.36 | 153,261 | 12,121.5 | 18.74 | 72.30 | 14.44 | ||
(3) 0.36–0.41 | 161,025 | 12,735.5 | 19.69 | 103.78 | 20.73 | ||
(4) 0.41–0.43 | 176,758 | 13,979.9 | 21.617 | 160.03 | 31.94 | ||
(5) 0.43< | 164,181 | 12,985.1 | 20.07 | 121.70 | 25.29 | ||
Distance to stream (m) | ASTER DEM | ||||||
(1) 200> | 78,797 | 6232.1 | 9.636 | 22.56 | 4.5 | ||
(2) 200–500 | 106,507 | 8423.7 | 13.02 | 83.04 | 16.57 | ||
(3)500–800 | 106,173 | 8397.2 | 12.985 | 97.99 | 19.57 | ||
(4) 800–1200 | 131,936 | 10,434.9 | 16.135 | 67.93 | 13.56 | ||
(5)1200< | 394,243 | 31,180.93 | 48.216 | 229.43 | 45.79 | ||
Distance to road (m) | SWOAC [52] | ||||||
(1) 0–300 | 141,880 | 11,221.3 | 17.352 | 115.99 | 23.15 | ||
(2) 300–600 | 116,931 | 9248.14 | 14.30 | 107.178 | 21.49 | ||
(3) 600–1200 | 172,493 | 13,642.5 | 21.096 | 99.06 | 19.77 | ||
(4) 1200–1800 | 129,926 | 10,275.9 | 15.890 | 88.82 | 17.73 | ||
(5) 1800< | 256,426 | 20,280.9 | 31.36 | 89.40 | 17.78 | ||
Recreation area (m) | SWOAC [52] | ||||||
(1) 0–300 | 32,430 | 2689.05 | 3.881 | 13.87 | 2.77 | ||
(2) 300–700 | 72,251 | 5985.99 | 9.006 | 0.098 | 0.019 | ||
(3) 700< | 751,341 | 59,830.23 | 87.021 | 468.21 | 97.20 | ||
Potential solar radiation | SWOAC [52] | ||||||
(1) 282.943–983.084 | 64,516 | 5102.61 | 7.89 | 98.04 | 3.9 | ||
(2) 983.084–1.189.376 | 21,641 | 1711.60 | 2.646 | 1.26 | 0.25 | ||
(3) 1.189.376–1.339.406 | 54,780 | 4332.58 | 6.699 | 2.47 | 0.49 | ||
(4) 1.339.406–1.501.939 | 113,723 | 8994.4 | 13.90 | 59.65 | 11.9 | ||
(5) 1.501.939–1.877.015 | 562,996 | 44,527.71 | 68.85 | 339.51 | 67.71 | ||
Distance to village (m) | |||||||
(1) 0–300 | 33,175 | 2623.83 | 4.05 | 0.094 | 0.018 | SWOAC [52] | |
(2) 300–600 | 33,140 | 2621.06 | 4.053 | 13.85 | 2.76 | ||
(3) 600–1200 | 82,832 | 6551.23 | 10.13 | 16.99 | 3.39 | ||
(4) 1200–2400 | 203,181 | 16,069.71 | 24.84 | 73.72 | 14.71 | ||
(5) 2400> | 465,328 | 36,803.0 | 56.90 | 396.28 | 79.1 |
IOI | Description |
---|---|
1 | Equal importance |
3 | Moderate importance |
5 | Strong or essential importance |
7 | Very strong or demonstrated importance |
9 | Extreme importance |
2,4,6,8 | Intermediate values |
Reciprocals | Values for inverse comparison |
Indicators | Sub-Indicators | AHP Weights |
---|---|---|
Education | ||
Speaking the official language (Persian) as a second language with limited Persian proficiency (%) | 0.045 | |
Population that does not have any level of formal education or instruction (%) | 0.051 | |
Population that does not have access to school\high school (%) | 0.040 | |
Housing | ||
Houses older than ten years (%) | 0.041 | |
Houses without steel or concrete skeleton (%) | 0.059 | |
Houses with an area less than 75 (%) | 0.007 | |
Houses without garbage collection service (%) | 0.006 | |
Age | ||
Population under 14 years or 65 and older (%) | 0.064 | |
Female | ||
Female population (%) | 0.035 | |
Female-headed households (%) | 0.047 | |
Health services | ||
The population that does not have access to health centres (%) | 0.072 | |
The population that does not have access to a family doctor (%) | 0.021 | |
The population that does not have access to a lab and pharmacy (%) | 0.025 | |
Facilities | ||
Households without access to the public electricity network (%) | 0.073 | |
Households without access to drinking water from the public system (%) | 0.050 | |
Households without access to the public gas pipeline network (%) | 0.033 | |
Households without access to the sewerage system (%) | 0.007 | |
Households without access to the internet network (%) | 0.034 | |
The population that does not have access to the public transportation system (%) | 0.012 | |
Fire station | 0.201 | |
Police station | 0.034 | |
Occupation | ||
Unemployed population (%) | 0.040 |
Indicators | Sub-Indicators | AHP Weights |
---|---|---|
Industrial area | ||
Mines | 0.033 | |
Livestock and poultry farming (nests) | 0.242 | |
The national power line | 0.035 | |
Recreational area | ||
Forest parks with some amenities such as shelters for temporary stays in the woods | 0.103 | |
Restaurants and buffets | 0.067 | |
Motels and Inns | 0.095 | |
Roads | ||
The main road from Tehran to northern Iran mainly used for transporting essential goods and tourists | 0.060 | |
Gravel roads mainly used by the local population and illegal hunters | 0.041 | |
Agricultural area | ||
Orchards, including walnut and apple gardens | 0.136 | |
Irrigated agriculture | 0.088 | |
Rain-fed agriculture mainly wheat and barley | 0.097 |
Resulted Maps | AHP Weights | Classes | Area (ha) | Area (%) | AHP Weights |
---|---|---|---|---|---|
Forest fire | 0.53 | Very low | 26,665.96 | 41.31 | 0.05 |
susceptibility | Low | 23,257.7 | 36.03 | 0.08 | |
Moderate | 14,399.16 | 22.31 | 0.22 | ||
High | 215.28 | 0.33 | 0.64 | ||
CR = 0.03 | |||||
Social vulnerability | 0.29 | Very low | 62,998.69 | 97.41 | 0.6 |
Low | 508.63 | 0.78 | 0.15 | ||
Moderate | 177.87 | 1.52 | 0.26 | ||
High | 983.73 | 2.27 | 0.42 | ||
CR = 0.03 | |||||
Infrastructural | 0.16 | Very low | 29,377.66 | 45.43 | 0.078 |
vulnerability | Low | 28,688.23 | 41.36 | 0.15 | |
Moderate | 6445.09 | 9.96 | 0.26 | ||
High | 149.32 | 3.23 | 0.5 | ||
CR = 0.007 | CR = 0.005 |
Resulted Map | Classes | Area (ha) | Area (%) |
---|---|---|---|
Forest fire susceptibility | Very low | 24,930.87 | 38.62 |
Low | 23,919.53 | 37.06 | |
Moderate | 14,958.09 | 23.17 | |
High | 729.61 | 1.14 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghorbanzadeh, O.; Blaschke, T.; Gholamnia, K.; Aryal, J. Forest Fire Susceptibility and Risk Mapping Using Social/Infrastructural Vulnerability and Environmental Variables. Fire 2019, 2, 50. https://doi.org/10.3390/fire2030050
Ghorbanzadeh O, Blaschke T, Gholamnia K, Aryal J. Forest Fire Susceptibility and Risk Mapping Using Social/Infrastructural Vulnerability and Environmental Variables. Fire. 2019; 2(3):50. https://doi.org/10.3390/fire2030050
Chicago/Turabian StyleGhorbanzadeh, Omid, Thomas Blaschke, Khalil Gholamnia, and Jagannath Aryal. 2019. "Forest Fire Susceptibility and Risk Mapping Using Social/Infrastructural Vulnerability and Environmental Variables" Fire 2, no. 3: 50. https://doi.org/10.3390/fire2030050
APA StyleGhorbanzadeh, O., Blaschke, T., Gholamnia, K., & Aryal, J. (2019). Forest Fire Susceptibility and Risk Mapping Using Social/Infrastructural Vulnerability and Environmental Variables. Fire, 2(3), 50. https://doi.org/10.3390/fire2030050