Total Productive Maintenance and Industry 4.0: A Literature-Based Path Toward a Proposed Standardized Framework
Abstract
1. Introduction
- Firstly, to map scientific production on digital TPM by identifying trends, studies, publication sources, and dominant themes;
- Secondly, to structure the conceptual and technological contributions in order to propose the foundations of a standard for the implementation of TPM in the era of Industry 4.0.
2. Theoretical Background
2.1. Total Productive Maintenance
2.2. Industry 4.0
3. Research Methodology
3.1. Identification of Research and Selection of Studies
- Not written in English;
- Not classified as journal articles or conference proceedings.
- Review papers, posters, white papers, or technical reports;
- Studies not related to manufacturing contexts;
- Documents mentioning TPM/I4.0 only in the keywords or abstract, without further elaboration in the main text.
3.2. Quality Assessment and Data Extraction
3.3. Research Questions
4. Results
4.1. Bibliometric Analysis
4.1.1. Q1. What Are the Spatio-Temporal Trends in TPM Research in the Era of I4.0?
4.1.2. Q2. What Are the Most Influential Works and Publication Sources in the Field of Digital TPM?
4.1.3. Q3. What Are the Dominant and Emerging Research Themes Related to Digital TPM?
4.2. Systematic Analysis
4.2.1. Q4. What Are the Main Technological Enablers of Digital TPM?
4.2.2. Q5. How Does Industry 4.0 Transform the Traditional Foundations of TPM?
4.2.3. Q6. What Are the Challenges and Opportunities Associated with the Implementation of Digital TPM?
4.2.4. Q7. How Can Enterprises Successfully Integrate Digital TPM?
4.2.5. Q8. How Can a Standardized Framework for Digital TPM Be Developed, Based on Existing Research and Industrial Needs?
5. Towards a Standardized Framework for Digital TPM Implementation
5.1. Technological Choices and Integration Logic
5.2. Methodological Deployment Stages
5.3. Organizational Readiness and Workforce Involvement
5.4. Performance Evaluation Using Standardized Metrics
6. Conclusions and Perspectives
Author Contributions
Funding
Conflicts of Interest
References
- Ahuja, I.P.S.; Khamba, J.S. Total Productive Maintenance: Literature Review and Directions. Int. J. Qual. Reliab. Manag. 2008, 25, 709–756. [Google Scholar] [CrossRef]
- Gackowiec, P. General Overview of Maintenance Strategies—Concepts and Approaches. Multidiscip. Asp. Prod. Eng. 2019, 2, 126–139. [Google Scholar] [CrossRef]
- Silvestri, L.; Forcina, A.; Introna, V.; Santolamazza, A.; Cesarotti, V. Maintenance Transformation through Industry 4.0 Technologies: A Systematic Literature Review. Comput. Ind. 2020, 123, 103335. [Google Scholar] [CrossRef]
- Eddarhri, M.; Adib, J.; Hain, M.; Marzak, A. Towards Predictive Maintenance: The Case of the Aeronautical Industry. Procedia Comput. Sci. 2022, 203, 769–774. [Google Scholar] [CrossRef]
- Geary, R.; Cosgrove, J. Manufacturing Reliability and Cost Improvements through Data Analytics: An Industry Case Study. Procedia Comput. Sci. 2023, 217, 395–402. [Google Scholar] [CrossRef]
- Tortorella, G.L.; Fogliatto, F.S.; Cauchick-Miguel, P.A.; Kurnia, S.; Jurburg, D. Integration of Industry 4.0 Technologies into Total Productive Maintenance Practices. Int. J. Prod. Econ. 2021, 240, 108224. [Google Scholar] [CrossRef]
- Meindl, B.; Mendonça, J. Mapping Industry 4.0 Technologies: From Cyber-Physical Systems to Artificial Intelligence. arXiv 2021, arXiv:2111.14168. [Google Scholar]
- Rødseth, H.; Schjølberg, P.; Marhaug, A. Deep Digital Maintenance. Adv. Manuf. 2017, 5, 299–310. [Google Scholar] [CrossRef]
- Tortorella, G.L.; Saurin, T.A.; Fogliatto, F.S.; Mendoza, D.T.; Moyano-Fuentes, J.; Gaiardelli, P.; Seyedghorban, Z.; Vassolo, R.; Vergara, A.F.M.C.; Sunder, V.M.; et al. Digitalization of Maintenance: Exploratory Study on the Adoption of Industry 4.0 Technologies and Total Productive Maintenance Practices. Prod. Plan. Control 2024, 35, 352–372. [Google Scholar] [CrossRef]
- Nakajima, S. Introduction to TPM: Total Productive Maintenance; Productivity Press: Cambridge, MA, USA, 1988. [Google Scholar]
- Ahuja, I.P.S.; Khamba, J.S. Justification of Total Productive Maintenance Initiatives in Indian Manufacturing Industry for Achieving Core Competitiveness. J. Manuf. Technol. Manag. 2008, 19, 645–669. [Google Scholar] [CrossRef]
- Jain, A.; Bhatti, R.; Singh, H. Total Productive Maintenance (TPM) Implementation Practice: A Literature Review and Directions. Int. J. Lean Six Sigma 2014, 5, 293–323. [Google Scholar] [CrossRef]
- Agustiady, T.K.; Cudney, E.A. Total Productive Maintenance: Strategies and Implementation Guide; CRC Press: Boca Raton, FL, USA, 2023. [Google Scholar]
- San, S. A Systematic Literature Review of Total Productive Maintenance on Industries. Performa 2021, 20, 97. [Google Scholar] [CrossRef]
- Reis, M.D.O.D.; Godina, R.; Pimentel, C.; Silva, F.J.G.; Matias, J.C.O. A TPM Strategy Implementation in an Automotive Production Line through Loss Reduction. Procedia Manuf. 2019, 38, 908–915. [Google Scholar] [CrossRef]
- Singh, J.; Singh, H. Justification of TPM Pillars for Enhancing the Performance of Manufacturing Industry of Northern India. Int. J. Product. Perform. Manag. 2019, 69, 109–133. [Google Scholar] [CrossRef]
- Hanged, W.S.; Kumar, S. TPM—A Key Strategy for Productivity Improvement in Medium Scale Industry. Int. J. Emerg. Technol. Adv. Eng. 2013, 3, 485–492. [Google Scholar]
- Parikh, Y.; Mahamuni, P. Total Productive Maintenance: Need & Framework. Int. J. Innov. Res. Adv. Eng. 2015, 2, 126–130. [Google Scholar]
- Sharma, A.K. Manufacturing Performance and Evolution of TPM. Int. J. Eng. Sci. Technol. 2012, 4, 854–866. [Google Scholar]
- Tortorella, G.L.; Fettermann, D. Implementation of Industry 4.0 and Lean Production in Brazilian Manufacturing Companies. Int. J. Prod. Res. 2018, 56, 2975–2987. [Google Scholar] [CrossRef]
- Serpanos, D.; Wolf, M. Industrial Internet of Things. In Internet-of-Things (IoT) Systems; Springer International Publishing: Cham, Switzerland, 2018; pp. 37–54. [Google Scholar]
- Prinz, C.; Kreimeier, D.; Kuhlenkötter, B. Implementation of a Learning Environment for an Industrie 4.0 Assistance System to Improve the Overall Equipment Effectiveness. Procedia Manuf. 2017, 9, 159–166. [Google Scholar] [CrossRef]
- Chang, T.-W.; Cho, E.; Jun, J.-H.; Ahn, H. Implementation of Smart Factory for SME: Focusing on Data Acquisition and Monitoring. ICIC Express Lett. Part B Appl. 2019, 10, 551–558. [Google Scholar]
- Wang, T.-Y.; Pan, H.-C. Improving the OEE and UPH Data Quality by Automated Data Collection for the Semiconductor Assembly Industry. Expert Syst. Appl. 2011, 38, 5764–5773. [Google Scholar] [CrossRef]
- Toro, C.; Wang, W.; Akhtar, H. Implementing Industry 4.0; Springer International Publishing: Cham, Switzerland, 2021. [Google Scholar]
- Bonada, F.; Echeverria, L.; Domingo, X.; Anzaldi, G. AI for Improving the Overall Equipment Efficiency in Manufacturing Industry. In New Trends in the Use of Artificial Intelligence for the Industry 4.0; Romeral Martínez, L., Osornio Rios, R.A., Delgado Prieto, M., Eds.; IntechOpen: London, UK, 2020. [Google Scholar]
- Fuller, A.; Fan, Z.; Day, C.; Barlow, C. Digital Twin: Enabling Technologies, Challenges and Open Research. IEEE Access 2020, 8, 108952–108971. [Google Scholar] [CrossRef]
- Chia, B.C.L.; Yuen, K.Y.; Woon, K.S. Digital Twin for Overall Equipment Effectiveness in Intelligent Production Planning. In Proceedings of the 12th Conference on Learning Factories (CLF 2022), Singapore, 11–13 April 2022. [Google Scholar]
- Rosales, J.; Deshpande, S.; Anand, S. IIoT Based Augmented Reality for Factory Data Collection and Visualization. Procedia Manuf. 2021, 53, 618–627. [Google Scholar] [CrossRef]
- Bellalouna, F. Digitization of Industrial Engineering Processes Using the Augmented Reality Technology: Industrial Case Studies. Procedia CIRP 2021, 100, 554–559. [Google Scholar] [CrossRef]
- Di Bona, G.; Cesarotti, V.; Arcese, G.; Gallo, T. Implementation of Industry 4.0 Technology: New Opportunities and Challenges for Maintenance Strategy. Procedia Comput. Sci. 2021, 180, 424–429. [Google Scholar] [CrossRef]
- Rahman, M.; Chakrabartty, S. GPS-free synchronized pseudo-random number generators for internet-of-things. Front. Comput. Sci. 2023, 5, 1157629. [Google Scholar] [CrossRef]
- Abdel-Aty, T.A.; Negri, E. Conceptualizing the Digital Thread for Smart Manufacturing: A Systematic Literature Review. J. Intell. Manuf. 2024, 35, 3629–3653. [Google Scholar] [CrossRef]
- Goswami, M.; Daultani, Y. Make-in-India and Industry 4.0: Technology Readiness of Select Firms, Barriers and Socio-Technical Implications. TQM J. 2022, 34, 1485–1505. [Google Scholar] [CrossRef]
- Scott, T.; Walsh, A.; Anderson, B.; O’Connor, A.; Tassey, G. High-Tech Infrastructure and Economic Growth: The Materials Genome Initiative. Sci. Public Policy 2021, 48, 649–661. [Google Scholar] [CrossRef]
- Georgescu, A.; Tudose, M.B.; Avasilcăi, S. Digital Innovation Hubs: SMEs’ Facilitators for Digital Innovation Projects, Marketing Communication Strategies and Business Internationalization. In Marketing and Smart Technologies: Proceedings of ICMarkTech 2022; Springer Nature: Singapore, 2023; Volume 2, pp. 307–330. [Google Scholar]
- Carrasco, E.R.; Williams, S. Emerging Economies after the Global Financial Crisis: The Case of Brazil. Nw. J. Int’l L. Bus. 2012, 33, 81. [Google Scholar]
- Maimbo, S.M.; Faye, I.; Triki, T. Financing Africa: Through the Crisis and Beyond; World Bank Publications: Washington, DC, USA, 2011. [Google Scholar]
- Xhala, N.C. Challenges and Lessons Learnt in the Financing of Public Infrastructure in South Africa, Czech and Slovak Republics: A Comparative Study. Ph.D. Thesis, University of the Free State, Bloemfontein, South Africa, 2017. [Google Scholar]
- Estache, A. Emerging Infrastructure Policy Issues in Developing Countries: A Survey of the Recent Economic Literature; World Bank Publications: Washington, DC, USA, 2004; Volume 3442. [Google Scholar]
- Poór, P.; Basl, J.; Zenisek, D. Predictive Maintenance 4.0 as Next Evolution Step in Industrial Maintenance Development. In Proceedings of the 2019 International Research Conference on Smart Computing and Systems Engineering (SCSE), Colombo, Sri Lanka, 28 March 2019; pp. 245–253. [Google Scholar]
- Mohan, T.R.; Roselyn, J.P.; Uthra, R.A.; Devaraj, D.; Umachandran, K. Intelligent Machine Learning Based Total Productive Maintenance Approach for Achieving Zero Downtime in Industrial Machinery. Comput. Ind. Eng. 2021, 157, 107267. [Google Scholar] [CrossRef]
- Amruthnath, N.; Gupta, T. Fault Class Prediction in Unsupervised Learning Using Model-Based Clustering Approach. In Proceedings of the 2018 International Conference on Information and Computer Technologies (ICICT), DeKalb, IL, USA, 23–25 March 2018; pp. 5–12. [Google Scholar]
- Koenig, F.; Found, P.A.; Kumar, M. Innovative Airport 4.0 Condition-Based Maintenance System for Baggage Handling DCV Systems. Int. J. Product. Perform. Manag. 2019, 68, 561–577. [Google Scholar] [CrossRef]
- Hardt, F.; Kotyrba, M.; Volna, E.; Jarusek, R. Innovative Approach to Preventive Maintenance of Production Equipment Based on a Modified TPM Methodology for Industry 4.0. Appl. Sci. 2021, 11, 6953. [Google Scholar] [CrossRef]
- Tripathi, V.; Chattopadhyaya, S.; Bhadauria, A.; Sharma, S.; Li, C.; Pimenov, D.Y.; Giasin, K.; Singh, S.; Gautam, G.D. An Agile System to Enhance Productivity through a Modified Value Stream Mapping Approach in Industry 4.0: A Novel Approach. Sustainability 2021, 13, 11997. [Google Scholar] [CrossRef]
- Zarreh, A.; Wan, H.; Lee, Y.; Saygin, C.; Al Janahi, R. Cybersecurity Concerns for Total Productive Maintenance in Smart Manufacturing Systems. Procedia Manuf. 2019, 38, 532–539. [Google Scholar] [CrossRef]
- Klimecka-Tatar, D.; Ingaldi, M. Digitization of Processes in Manufacturing SMEs—Value Stream Mapping and OEE Analysis. Procedia Comput. Sci. 2022, 200, 660–668. [Google Scholar] [CrossRef]
- Tortorella, G.; Saurin, T.A.; Fogliatto, F.S.; Tlapa, D.; Moyano-Fuentes, J.; Gaiardelli, P.; Seyedghorban, Z.; Vassolo, R.; Mac Cawley, A.F.; Sunder, M.V.; et al. The Impact of Industry 4.0 on the Relationship between TPM and Maintenance Performance. J. Manuf. Technol. Manag. 2022, 33, 489–520. [Google Scholar] [CrossRef]
- Mouhib, Z.; Naciri, L.; Gallab, M.; Merzouk, S.; Soulhi, A.; Bhiri, B.E.L.; Dinardo, M. TPM and TQM: What Connections and How They Are Changing Through Industry 4.0 Technologies? In Smart Mobility and Industrial Technologies: The Quality of Life in Sustainable Cities; International Conference on Advanced Technologies for Humanity; Springer Nature: Cham, Switzerland, 2022; pp. 125–134. [Google Scholar]
- Lucantoni, L.; Antomarioni, S.; Ciarapica, F.E.; Bevilacqua, M. A Data-Driven Framework for Supporting the Total Productive Maintenance Strategy. Expert Syst. Appl. 2025, 268, 126283. [Google Scholar] [CrossRef]
- Aranda-Gonzales, K.; Sanchez-Gutierrez, A.; Saenz-Moron, M. Increase in Operational Availability in Agricultural Fertilizer Production: A TPM Approach with Internet of Things (IoT). In Proceedings of the LACCEI International Multi-Conference for Engineering, Education and Technology, San Jose, Costa Rica, 17–19 July 2024. [Google Scholar]
- Mendes, D.; Gaspar, P.D.; Charrua-Santos, F.; Navas, H. Integrating TPM and Industry 4.0 to Increase the Availability of Industrial Assets: A Case Study on a Conveyor Belt. Processes 2023, 11, 1956. [Google Scholar] [CrossRef]
- Mohan, R.; Roselyn, J.P.; Uthra, R.A. LSTM Based Artificial Intelligence Predictive Maintenance Technique for Availability Rate and OEE Improvement in a TPM Implementing Plant through Industry 4.0 Transformation. J. Qual. Maint. Eng. 2023, 29, 763–798. [Google Scholar] [CrossRef]
- Mendes, D.; Gaspar, P.D.; Charrua-Santos, F.; Navas, H. Enhanced Real-Time Maintenance Management Model—A Step toward Industry 4.0 through Lean: Conveyor Belt Operation Case Study. Electronics 2023, 12, 3872. [Google Scholar] [CrossRef]
- Tripathi, V.; Chattopadhyaya, S.; Mukhopadhyay, A.K.; Sharma, S.; Li, C.; Singh, S.; Hussan, W.U.; Salah, B.; Saleem, W.; Mohamed, A. A Sustainable Productive Method for Enhancing Operational Excellence in Shop Floor Management for Industry 4.0 Using Hybrid Integration of Lean and Smart Manufacturing: An Ingenious Case Study. Sustainability 2022, 14, 7452. [Google Scholar] [CrossRef]
- Torre, N.; Leo, C.; Bonamigo, A. Lean 4.0: An analytical approach for hydraulic system maintenance in a production line of a steel-making plant. Int. J. Ind. Eng. Manag. 2023, 14, 186–199. [Google Scholar] [CrossRef]
- Roosefert Mohan, T.; Preetha Roselyn, J.; Annie Uthra, R. LSTM Based Predictive Maintenance Approach for Zero Breakdown in Foundry Line Through Industry 4.0. In Recent Advances in Intelligent Manufacturing: Select Proceedings of ICAME 2022; International Conference on Advancement in Manufacturing Engineering; Springer Nature: Singapore, 2022; pp. 29–51. [Google Scholar]
- Gosavi, A.; Gosavi, A. A Simulation-Based Digital Twin for Data-Driven Maintenance Scheduling of Risk-Prone Production Lines via Actor Critics. Flex. Serv. Manuf. J. 2024, 1–30. [Google Scholar] [CrossRef]
- Venâncio, A.L.A.C.; de Freitas Rocha Loures, E.; Deschamps, F.; dos Santos Justus, A.; Lumikoski, A.F.; Brezinski, G.L. Technology Prioritization Framework to Adapt Maintenance Legacy Systems for Industry 4.0 Requirement: An Interoperability Approach. Production 2022, 32, e20210035. [Google Scholar] [CrossRef]
- Samadhiya, A.; Agrawal, R.; Luthra, S.; Kumar, A.; Garza-Reyes, J.A.; Srivastava, D.K. Total Productive Maintenance and Industry 4.0 in a Sustainability Context: Exploring the Mediating Effect of Circular Economy. Int. J. Logist. Manag. 2023, 34, 818–846. [Google Scholar] [CrossRef]
- Braglia, M.; Castellano, D.; Frosolini, M.; Marrazzini, L.; Padellini, L. An Ensemble-Learning Model for Failure Rate Prediction. Procedia Manuf. 2020, 42, 41–48. [Google Scholar] [CrossRef]
- Antomarioni, S.; Lucantoni, L.; Ciarapica, F.E.; Bevilacqua, M. A Preliminary Implementation of Data-Driven TPM: A Real Case Study. In 16th WCEAM Proceedings; World Congress on Engineering Asset Management; Springer International Publishing: Cham, Switzerland, 2022; pp. 14–22. [Google Scholar]
- Encapera, A.; Gosavi, A.; Murray, S.L. Total Productive Maintenance of Make-to-Stock Production-Inventory Systems via Artificial-Intelligence-Based iSMART. Int. J. Syst. Sci. Oper. Logist. 2021, 8, 154–166. [Google Scholar] [CrossRef]
- Pannu, N.; Chawla, A.; Tewari, P.C. Computerized Maintenance Management System for Thermal Power Plant, Hisar. J. Phys. Conf. Ser. 2019, 1240, 012012. [Google Scholar] [CrossRef]
- Wszołek, G.; Czop, P.; Słoniewski, J.; Dogrusoz, H. Vibration Monitoring of CNC Machinery Using MEMS Sensors. J. Vibroeng. 2020, 22, 735–750. [Google Scholar] [CrossRef]
- Lucantoni, L.; Antomarioni, S.; Ciarapica, F.E.; Bevilacqua, M. A Rule-Based Machine Learning Methodology for the Proactive Improvement of OEE: A Real Case Study. Int. J. Qual. Reliab. Manag. 2023, 41, 1356–1376. [Google Scholar] [CrossRef]
- Okokpujie, I.P.; Tartibu, L.K.; Omietimi, B.H. Improving the Maintainability and Reliability in Nigerian Industry 4.0: Its Challenges and the Way Forward from the Manufacturing Sector. Int. J. Sustain. Dev. Plan. 2023, 18, 2489. [Google Scholar] [CrossRef]
- Grajzova, L.; Janik, S.; Cambal, M.; Mlkva, M. Analysis of the Current Application of AR in the Context of TPM in Slovakia Organizations. Ann. DAAAM Proc. 2021, 32. [Google Scholar] [CrossRef]
- Medyński, D.; Bonarski, P.; Motyka, P.; Wysoczański, A.; Gnitecka, R.; Kolbusz, K.; Dąbrowska, M.; Burduk, A.; Pawelec, Z.; Machado, J. Digital Standardization of Lean Manufacturing Tools According to Industry 4.0 Concept. Appl. Sci. 2023, 13, 6259. [Google Scholar] [CrossRef]
- Encapera, A.; Gosavi, A. A New Reinforcement Learning Algorithm with Fixed Exploration for Semi-Markov Control in Preventive Maintenance. In Proceedings of the ASME 2017 12th International Manufacturing Science and Engineering Conference, Los Angeles, CA, USA, 4–8 June 2017; ASME: New York, NY, USA, 2017; Volume 50749, p. V003T04A061. [Google Scholar]
- Tortorella, G.L.; Silva, E.; Vargas, D. An Empirical Analysis of Total Quality Management and Total Productive Maintenance in Industry 4.0. In Proceedings of the International Conference on Industrial Engineering and Operations Management (IEOM), Johannesburg, South Africa, 29 October–1 November 2018; pp. 742–753. [Google Scholar]
- Rakyta, M.; Bubenik, P.; Binasova, V.; Gabajova, G.; Staffenova, K. The Change in Maintenance Strategy on the Efficiency and Quality of the Production System. Electronics 2024, 13, 3449. [Google Scholar] [CrossRef]
- Mendes, D.; Gaspar, P.D.; Charrua-Santos, F.; Navas, H. Synergies between lean and Industry 4.0 for enhanced maintenance management in sustainable operations: A model proposal. Processes 2023, 11, 2691. [Google Scholar] [CrossRef]
- Samadhiya, A.; Agrawal, R.; Garza-Reyes, J.A. Integrating industry 4.0 and total productive maintenance for global sustainability. TQM J. 2024, 36, 24–50. [Google Scholar] [CrossRef]
Title | Authors | Year | Citations | Ref. |
---|---|---|---|---|
Integration of Industry 4.0 technologies into Total Productive Maintenance practices | Tortorella, G.; Fogliatto, F.S.; Cauchick-Miguel, P.A.; Kurnia, S.; Jurburg, D. | 2021 | 193 | [6] |
Predictive Maintenance 4.0 as next evolution step in industrial maintenance development | Poor, P.; Basl, J.; Zenisek, D. | 2019 | 114 | [41] |
Intelligent machine learning based total productive maintenance approach for achieving zero downtime in industrial machinery | Roosefert Mohan, T.; Preetha Roselyn, J.; Annie Uthra, R.; Devaraj, D.; Umachandran, K. | 2021 | 106 | [42] |
Fault class prediction in unsupervised learning using model-based clustering approach | Amruthnath, N.; Gupta, T. | 2018 | 88 | [43] |
Innovative airport 4.0 condition-based maintenance system for baggage handling DCV systems | Koenig, F.; Found, P.A.; Kumar, M. | 2019 | 86 | [44] |
Innovative Approach to Preventive Maintenance of Production Equipment Based on a Modified TPM Methodology for Industry 4.0 | Hardt, F.; Kotyrba, M.; Volna, E.; Jarusek, R. | 2021 | 82 | [45] |
An Agile System to Enhance Productivity through a Modified Value Stream Mapping Approach in Industry 4.0: A Novel Approach | Tripathi, V.; Chattopadhyaya, S.; Bhadauria, A.; Sharma, S.; Li, C.; Pimenov, D.Y.; Giasin, K.; Singh, S.; Gautam, G.D. | 2021 | 58 | [46] |
Cybersecurity Concerns for Total Productive Maintenance in Smart Manufacturing Systems | Zarreh, A.; Wan, H.; Lee, Y.; Saygin, C.; Janahi, R.A. | 2019 | 57 | [47] |
Digitization of processes in manufacturing SMEs—value stream mapping and OEE analysis | Klimecka-Tatar, D.; Ingaldi, M. | 2022 | 53 | [48] |
The impact of Industry 4.0 on the relationship between TPM and maintenance performance | Tortorella, G.; Saurin, T.A.; Fogliatto, F.S.; Tlapa, D.; Moyano-Fuentes, J.; Gaiardelli, P.; Seyedghorban, Z.; Vassolo, R.; Mac Cawley, A.F.; Sunder, M.V.; Sreedharan, V.R.; Sena, S.A.; Forstner, F.F. | 2022 | 45 | [49] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Published by MDPI on behalf of the International Institute of Knowledge Innovation and Invention. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mouhib, Z.; Gallab, M.; Merzouk, S.; Soulhi, A.; Di Nardo, M. Total Productive Maintenance and Industry 4.0: A Literature-Based Path Toward a Proposed Standardized Framework. Appl. Syst. Innov. 2025, 8, 98. https://doi.org/10.3390/asi8040098
Mouhib Z, Gallab M, Merzouk S, Soulhi A, Di Nardo M. Total Productive Maintenance and Industry 4.0: A Literature-Based Path Toward a Proposed Standardized Framework. Applied System Innovation. 2025; 8(4):98. https://doi.org/10.3390/asi8040098
Chicago/Turabian StyleMouhib, Zineb, Maryam Gallab, Safae Merzouk, Aziz Soulhi, and Mario Di Nardo. 2025. "Total Productive Maintenance and Industry 4.0: A Literature-Based Path Toward a Proposed Standardized Framework" Applied System Innovation 8, no. 4: 98. https://doi.org/10.3390/asi8040098
APA StyleMouhib, Z., Gallab, M., Merzouk, S., Soulhi, A., & Di Nardo, M. (2025). Total Productive Maintenance and Industry 4.0: A Literature-Based Path Toward a Proposed Standardized Framework. Applied System Innovation, 8(4), 98. https://doi.org/10.3390/asi8040098