Next Issue
Volume 9, September
Previous Issue
Volume 9, March

High-Throughput, Volume 9, Issue 2 (June 2020) – 8 articles

Cover Story (view full-size image): The increasing interest in metagenomics is enhancing our knowledge regarding the composition and role of the microbiota in human physiology and pathology. Indeed, microbes have been reported to play a role in several diseases, including infertility. In particular, the male seminal microbiota has been suggested as an important factor able to influence couple’s health and pregnancy outcomes, as well as offspring health. Nevertheless, few studies have been carried out to date to deeper investigate semen microbiome origins and functions, and its correlations with the partner’s reproductive tract microbiome. Here, we report the state of the art regarding the male reproductive system microbiome and its alterations in infertility. View this paper.
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Article
Intra-Laboratory Evaluation of Luminescence Based High-Throughput Serum Bactericidal Assay (L-SBA) to Determine Bactericidal Activity of Human Sera against Shigella
High-Throughput 2020, 9(2), 14; https://doi.org/10.3390/ht9020014 - 08 Jun 2020
Cited by 9 | Viewed by 1521
Abstract
Despite the huge decrease in deaths caused by Shigella worldwide in recent decades, shigellosis still causes over 200,000 deaths every year. No vaccine is currently available, and the morbidity of the disease coupled with the rise of antimicrobial resistance renders the introduction of [...] Read more.
Despite the huge decrease in deaths caused by Shigella worldwide in recent decades, shigellosis still causes over 200,000 deaths every year. No vaccine is currently available, and the morbidity of the disease coupled with the rise of antimicrobial resistance renders the introduction of an effective vaccine extremely urgent. Although a clear immune correlate of protection against shigellosis has not yet been established, the demonstration of the bactericidal activity of antibodies induced upon vaccination may provide one means of the functionality of antibodies induced in protecting against Shigella. The method of choice to evaluate the complement-mediated functional activity of vaccine-induced antibodies is the Serum Bactericidal Assay (SBA). Here we present the development and intra-laboratory characterization of a high-throughput luminescence-based SBA (L-SBA) method, based on the detection of ATP as a proxy of surviving bacteria, to evaluate the complement-mediated killing of human sera. We demonstrated the high specificity of the assay against a homologous strain without any heterologous aspecificity detected against species-related and non-species-related strains. We assessed the linearity, repeatability and reproducibility of L-SBA on human sera. This work will guide the bactericidal activity assessment of clinical sera raised against S. sonnei. The method has the potential of being applicable with similar performances to determine the bactericidal activity of any non-clinical and clinical sera that rely on complement-mediated killing. Full article
Show Figures

Figure 1

Communication
Genetic Counseling and NGS Screening for Recessive LGMD2A Families
High-Throughput 2020, 9(2), 13; https://doi.org/10.3390/ht9020013 - 10 May 2020
Cited by 1 | Viewed by 1429
Abstract
Genetic counseling applied to limb–girdle muscular dystrophies (LGMDs) can be very challenging due to their clinical and genetic heterogeneity and the availability of different molecular assays. Genetic counseling should therefore be addressed to select the most suitable approach to increase the diagnostic rate [...] Read more.
Genetic counseling applied to limb–girdle muscular dystrophies (LGMDs) can be very challenging due to their clinical and genetic heterogeneity and the availability of different molecular assays. Genetic counseling should therefore be addressed to select the most suitable approach to increase the diagnostic rate and provide an accurate estimation of recurrence risk. This is particularly true for families with a positive history for recessive LGMD, in which the presence of a known pathogenetic mutation segregating within the family may not be enough to exclude the risk of having affected children without exploring the genetic background of phenotypically unaffected partners. In this work, we presented a family with a positive history for LGMD2A (OMIM #253600, also known as calpainopathy) characterized by compound heterozygosity for two CAPN3 mutations. The genetic specialist suggested the segregation analysis of both mutations within the family as a first-level analysis. Sequentially, next-generation sequencing (NGS) analysis was performed in the partners of healthy carriers to provide an accurate recurrence/reproductive risk estimation considering the genetic background of the couple. Finally, this work highlighted the importance of providing a genetic counseling/testing service even in unaffected individuals with a carrier partner. This approach can support genetic counselors in estimating the reproductive/recurrence risk and eventually, suggesting prenatal testing, early diagnosis or other medical surveillance strategies. Full article
Show Figures

Figure 1

Review
Microbiota and Human Reproduction: The Case of Female Infertility
High-Throughput 2020, 9(2), 12; https://doi.org/10.3390/ht9020012 - 03 May 2020
Cited by 14 | Viewed by 3352
Abstract
During the last decade, the availability of next-generation sequencing-based approaches has revealed the presence of microbial communities in almost all the human body, including the reproductive tract. As for other body sites, this resident microbiota has been involved in the maintenance of a [...] Read more.
During the last decade, the availability of next-generation sequencing-based approaches has revealed the presence of microbial communities in almost all the human body, including the reproductive tract. As for other body sites, this resident microbiota has been involved in the maintenance of a healthy status. As a consequence, alterations due to internal or external factors may lead to microbial dysbiosis and to the development of pathologies. Female reproductive microbiota has also been suggested to affect infertility, and it may play a key role in the success of assisted reproductive technologies, such as embryo implantation and pregnancy care. While the vaginal microbiota is well described, the uterine microbiota is underexplored. This could be due to technical issues, as the uterus is a low biomass environment. Here, we review the state of the art regarding the role of the female reproductive system microbiota in women’s health and human reproduction, highlighting its contribution to infertility. Full article
(This article belongs to the Special Issue Human Microbiome and Diseases: Implications for Novel Therapies)
Show Figures

Graphical abstract

Article
Chimeric Virus Made from crTMV RNA and the Coat Protein of Potato Leafroll Virus is Targeted to the Nucleolus and Can Infect Nicotiana benthamiana Mechanically
High-Throughput 2020, 9(2), 11; https://doi.org/10.3390/ht9020011 - 26 Apr 2020
Viewed by 1289
Abstract
A genetically engineered chimeric virus crTMV-CP-PLRV composed of the crucifer-infecting tobacco mosaic virus (crTMV) RNA and the potato leafroll virus (PLRV) coat protein (CP) was obtained by agroinfiltration of Nicotiana benthamiana with the binary vector pCambia-crTMV-CPPLRV. The significant levels of the chimeric [...] Read more.
A genetically engineered chimeric virus crTMV-CP-PLRV composed of the crucifer-infecting tobacco mosaic virus (crTMV) RNA and the potato leafroll virus (PLRV) coat protein (CP) was obtained by agroinfiltration of Nicotiana benthamiana with the binary vector pCambia-crTMV-CPPLRV. The significant levels of the chimeric virus enabled direct visualization of crTMV-CP-PLRV in the cell and to investigate the mechanism of the pathogenesis. Localization of the crTMV-CP-PLRV in plant cells was examined by immunoblot techniques, as well as light, and transmission electron microscopy. The chimera can transfer between vascular and nonvascular tissues. The chimeric virus inoculum is capable to infect N. benthamiana mechanically. The distinguishing feature of the chimeric virus, the RNA virus with the positive genome, was found to localize in the nucleolus. We also investigated the role of the N-terminal sequence of the PLRV P3 coat protein in the cellular localization of the virus. We believe that the gene of the PLRV CP can be substituted with genes from other challenging-to-study plant pathogens to produce other useful recombinant viruses. Full article
Show Figures

Figure 1

Review
Microbiota and Human Reproduction: The Case of Male Infertility
High-Throughput 2020, 9(2), 10; https://doi.org/10.3390/ht9020010 - 13 Apr 2020
Cited by 17 | Viewed by 2629
Abstract
The increasing interest in metagenomics is enhancing our knowledge regarding the composition and role of the microbiota in human physiology and pathology. Indeed, microbes have been reported to play a role in several diseases, including infertility. In particular, the male seminal microbiota has [...] Read more.
The increasing interest in metagenomics is enhancing our knowledge regarding the composition and role of the microbiota in human physiology and pathology. Indeed, microbes have been reported to play a role in several diseases, including infertility. In particular, the male seminal microbiota has been suggested as an important factor able to influence couple’s health and pregnancy outcomes, as well as offspring health. Nevertheless, few studies have been carried out to date to deeper investigate semen microbiome origins and functions, and its correlations with the partner’s reproductive tract microbiome. Here, we report the state of the art regarding the male reproductive system microbiome and its alterations in infertility. Full article
(This article belongs to the Special Issue Human Microbiome and Diseases: Implications for Novel Therapies)
Show Figures

Graphical abstract

Article
A Simple, Label-Free, and High-Throughput Method to Evaluate the Epigallocatechin-3-Gallate Impact in Plasma Molecular Profile
High-Throughput 2020, 9(2), 9; https://doi.org/10.3390/ht9020009 - 09 Apr 2020
Cited by 3 | Viewed by 1331
Abstract
Epigallocatechin-3-gallate (EGCG), the major catechin present in green tea, presents diverse appealing biological activities, such as antioxidative, anti-inflammatory, antimicrobial, and antiviral activities, among others. The present work evaluated the impact in the molecular profile of human plasma from daily consumption of 225 mg [...] Read more.
Epigallocatechin-3-gallate (EGCG), the major catechin present in green tea, presents diverse appealing biological activities, such as antioxidative, anti-inflammatory, antimicrobial, and antiviral activities, among others. The present work evaluated the impact in the molecular profile of human plasma from daily consumption of 225 mg of EGCG for 90 days. Plasma from peripheral blood was collected from 30 healthy human volunteers and analyzed by high-throughput Fourier transform infrared spectroscopy. To capture the biochemical information while minimizing the interference of physical phenomena, several combinations of spectra pre-processing methods were evaluated by principal component analysis. The pre-processing method that led to the best class separation, that is, between the plasma spectral data collected at the beginning and after the 90 days, was a combination of atmospheric correction with a second derivative spectra. A hierarchical cluster analysis of second derivative spectra also highlighted the fact that plasma acquired before EGCG consumption presented a distinct molecular profile after the 90 days of EGCG consumption. It was also possible by partial least squares regression discriminant analysis to correctly predict all unlabeled plasma samples (not used for model construction) at both timeframes. We observed that the similarity in composition among the plasma samples was higher in samples collected after EGCG consumption when compared with the samples taken prior to EGCG consumption. Diverse negative peaks of the normalized second derivative spectra, associated with lipid and protein regions, were significantly affected (p < 0.001) by EGCG consumption, according to the impact of EGCG consumption on the patients’ blood, low density and high density lipoproteins ratio. In conclusion, a single bolus dose of 225 mg of EGCG, ingested throughout a period of 90 days, drastically affected plasma molecular composition in all participants, which raises awareness regarding prolonged human exposure to EGCG. Because the analysis was conducted in a high-throughput, label-free, and economic analysis, it could be applied to high-dimension molecular epidemiological studies to further promote the understanding of the effect of bio-compound consumption mode and frequency. Full article
Show Figures

Figure 1

Review
DMETTM Genotyping: Tools for Biomarkers Discovery in the Era of Precision Medicine
High-Throughput 2020, 9(2), 8; https://doi.org/10.3390/ht9020008 - 29 Mar 2020
Cited by 2 | Viewed by 1678
Abstract
The knowledge of genetic variants in genes involved in drug metabolism may be translated into reduction of adverse drug reactions, increase of efficacy, healthcare outcomes improvement and economic benefits. Many high-throughput tools are available for the genotyping of Single Nucleotide Polymorphisms (SNPs) known [...] Read more.
The knowledge of genetic variants in genes involved in drug metabolism may be translated into reduction of adverse drug reactions, increase of efficacy, healthcare outcomes improvement and economic benefits. Many high-throughput tools are available for the genotyping of Single Nucleotide Polymorphisms (SNPs) known to be related to drugs and xenobiotics metabolism. DMETTM platform represents an example of SNPs panel to discover biomarkers correlated to efficacy or toxicity in common and rare diseases. The difficulty in analyzing the mole of information generated by DMETTM platform led to the development and implementation of algorithms and tools for statistical and data mining analysis. These softwares allow efficient handling of the omics data to validate the explorative SNPs identified by DMET assay and to correlate them with drug efficacy, toxicity and/or cancer susceptibility. In this review we present a suite of bioinformatic frameworks for the preprocessing and analysis of DMET-SNPs data. In particular, we introduce a workflow that uses the GenoMetric Query Language, a high-level query language specifically designed for genomics, able to query public datasets (such as ENCODE, TCGA, GENCODE annotation dataset, etc.) as well as to combine them with private datasets (e.g., output from Affymetrix® DMETTM Platform). Full article
Show Figures

Figure 1

Review
Colonization Resistance in the Infant Gut: The Role of B. infantis in Reducing pH and Preventing Pathogen Growth
High-Throughput 2020, 9(2), 7; https://doi.org/10.3390/ht9020007 - 27 Mar 2020
Cited by 11 | Viewed by 3716
Abstract
Over the past century, there has been a steady increase in the stool pH of infants from industrialized countries. Analysis of historical data revealed a strong association between abundance of Bifidobacterium in the gut microbiome of breasted infants and stool pH, suggesting that [...] Read more.
Over the past century, there has been a steady increase in the stool pH of infants from industrialized countries. Analysis of historical data revealed a strong association between abundance of Bifidobacterium in the gut microbiome of breasted infants and stool pH, suggesting that this taxon plays a key role in determining the pH in the gut. Bifidobacterium longum subsp. infantis is uniquely equipped to metabolize human milk oligosaccharides (HMO) from breastmilk into acidic end products, mainly lactate and acetate. The presence of these acidic compounds in the infant gut is linked to a lower stool pH. Conversely, infants lacking B. infantis have a significantly higher stool pH, carry a higher abundance of potential pathogens and mucus-eroding bacteria in their gut microbiomes, and have signs of chronic enteric inflammation. This suggests the presence of B. infantis and low intestinal pH may be critical to maintaining a protective environment in the infant gut. Here, we summarize recent studies demonstrating that feeding B. infantis EVC001 to breastfed infants results in significantly lower fecal pH compared to controls and propose that low pH is one critical factor in preventing the invasion and overgrowth of harmful bacteria in the infant gut, a process known as colonization resistance. Full article
(This article belongs to the Special Issue Human Microbiome and Diseases: Implications for Novel Therapies)
Show Figures

Figure 1

Previous Issue
Next Issue
Back to TopTop