Interfacial Dynamics of Adsorption Layers as Supports for Biomedical Research and Diagnostics
Abstract
:1. Introduction
2. Dynamic Surface Tension and Dilational Surface Visco-Elasticity Methods as Tools for Diagnosis and Therapy Control in Medicine
2.1. History of Tensiometry Studies in Medical Research
2.2. The Standard State of Tensiometry Data for Human Liquids
2.3. Dilational Surface Visco-Elasticity Data for Human Liquids
3. Artificial Tears for Dry Eye Syndrome
- (1)
- The outermost lipid layer produced by the meibomian glands is located in the eyelids and composed of both polar and non-polar lipids,
- (2)
- A middle aqueous layer produced by the lacrimal glands,
- (3)
- The epithelium-covering mucoid layer, which helps to anchor the aqueous part of the tear film on the ocular surface.
- (1)
- Viscosity-enhancing agents are used to increase the tear film thickness and the retention of artificial tears at the ocular surface [42], preventing the loss of water, since they act as water-retaining agents;
- (2)
- Electrolytes are able to maintain the osmotic balance of the ocular surface by providing essential ions for the maintenance of the corneal epithelial cells [43];
- (3)
- Osmoprotectants are utilized to prevent ocular surface cell apoptosis induced by DTS.
- (4)
- Regarding oily agents and surfactants, the presence of lipids and proteins in the lipid layer plays a critical role in the surface tension of the tear film and humectation of the ocular surface. Any alterations in the lipid layer lead to an increase in tear evaporation [44]. Consequently, oily agents, in the form of liposomes and nanodroplets, are used in the formulations of tear substitutes to replenish this layer [45].
- (a)
- At the lowest surface pressures a disordered liquid phase is observed, due to a weak lateral packing of the molecules;
- (b)
- By increasing the surface pressure, the coexistence of the two liquid phases is expected, with a decrease in elasticity;
- (c)
- A further increase in elasticity then occurs due to an enhanced lateral packing of the molecules.
4. Effects of Serum Proteins on Interfacial Properties of Ophthalmic Silicon Oils
5. Native and Synthetic Pulmonary Surfactants for Neonatal Respiratory Distress Syndrome
5.1. Native Pulmonary Surfactants
5.2. Dynamic Surface Properties of Pulmonary Surfactants
5.3. Synthetic Pulmonary Surfactnts
6. Interfacial Aspects of Digestion
6.1. Mechanism of Lipid Digestion
6.2. Mimicking In Vitro Digestion
6.3. Interfacial Dynamics of Digestive Oil–Water Interface
6.4. Bile Salt Effect on Lipase Activity
6.5. Effects of Lipase Inhibitors as Antiobesity Drugs
7. Fullerene Derivatives for Special Tumor Therapy
8. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Boccato, C.; Cerutti, S.; Veinkan, J. Medical Devices: Improving Health Care Through a Multidisciplinary Approach; Springer Nature: Cham, Switzerland, 2022; ISBN 978-3-030-85652-6. [Google Scholar]
- Kazakov, V.N.; Sinyachenko, O.V.; Fainerman, V.B.; Pison, U.; Miller, R. Dynamic Surface Tension of Biological Liquids in Medicine. In Studies in Interface Science; Möbius, D., Miller, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2000; Volume 8, ISBN 9780080530598. [Google Scholar]
- Nepita, I. The Effect of Serum Proteins on Dynamic Interfacial Properties of Silicone Oils in Vitrectomized Eyes. Master Thesis, University of Genova, Liguria, Italy, 2017. [Google Scholar]
- Liggieri, L.; Miller, R. Editorial Overview: Hot Topic: COVID-19: Colloid and Interface Aspects of COVID-19. Curr. Opin. Colloid Interface Sci. 2021, 56, 101525. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Calle, M.; Parra-Ortiz, E.; Cruz, A.; Olmeda, B.; Pérez-Gil, J. Towards the Molecular Mechanism of Pulmonary Surfactant Protein SP-B: At the Crossroad of Membrane Permeability and Interfacial Lipid Transfer. J. Mol. Biol. 2021, 433, 166749. [Google Scholar] [CrossRef] [PubMed]
- Del Castillo-Santaella, T.; Hernández-Morante, J.J.; Suárez-Olmos, J.; Maldonado-Valderrama, J.; Peña-García, J.; Martínez-Cortés, C.; Pérez-Sánchez, H. Identification of the thistle milk component Silibinin(A) and Glutathione-disulphide as potential inhibitors of the pancreatic lipase: Potential implications on weight loss. J. Funct. Foods 2021, 83, 104479. [Google Scholar] [CrossRef]
- Noskov, B.; Isakov, N.; Gochev, G.; Loglio, G.; Miller, R. Interaction of fullerene C60 with bovine serum albumin at the water—Air interface. Colloids Surf. A Physicochem. Eng. Asp. 2021, 631, 127702. [Google Scholar] [CrossRef]
- Miller, R.; Fainerman, V.; Makievski, A.; Krägel, J.; Grigoriev, D.; Kazakov, V.; Sinyachenko, O. Dynamics of protein and mixed protein/surfactant adsorption layers at the water/fluid interface. Adv. Colloid Interface Sci. 2000, 86, 39–82. [Google Scholar] [CrossRef]
- Polányi, M. Investigation of the Physical and Chemical Changes of the Blood Serum during Starvation. Biochem. Z. 1911, 34, 205. [Google Scholar]
- Künzel, O. Untersuchung der Oberflächenspannung im normalen und pathologischen Liquor cerebrospinalis. Deut. Zeitsch. Nervenheilkd. 1936, 139, 265–277. [Google Scholar] [CrossRef]
- Boda, D.; Eck, E.; Boda, K. Measurement of surface tension in biological fluids by a pulsating capillary technique. J. Périnat. Med. 1997, 25, 146–152. [Google Scholar] [CrossRef]
- Manalo, E.; Merritt, T.A.; Kheiter, A.; Amirkhanian, J.; Cochrane, C. Comparative Effects of Some Serum Components and Proteolytic Products of Fibrinogen on Surface Tension-Lowering Abilities of Beractant and a Synthetic Peptide Containing Surfactant KL4. Pediatr. Res. 1996, 39, 947–952. [Google Scholar] [CrossRef] [Green Version]
- Hrncír, E.; Rosina, J. Surface tension of blood. Physiol. Res. 1997, 46, 319–321. [Google Scholar]
- Brydon, H.L.; Hayward, R.; Harkness, W.; Bayston, R. Physical properties of cerebrospinal fluid of relevance to shunt function. 2: The effect of protein upon CSF viscosity. Br. J. Neurosurg. 1995, 9, 645–651. [Google Scholar] [CrossRef] [PubMed]
- Joura, E.A.; Kainz, C.; Joura, E.M.; Böhm, R.; Gruber, W.; Gitsch, G. Comparison of surface tension with determination of the L/S ratio in amniotic fluid for prediction of fetal lung maturity. Z. Geburtshilfe Neonatol. 1995, 199, 78–80. [Google Scholar] [PubMed]
- Efentakis, M.; Dressman, J.B. Gastric juice as a dissolution medium: Surface tension and pH. Eur. J. Drug Metab. Pharmacokinet. 1998, 23, 97–102. [Google Scholar] [CrossRef] [PubMed]
- Fell, J.; Mohammad, H. The wetting of powders by bile salt solutions and gastric juice. Int. J. Pharm. 1995, 125, 327–330. [Google Scholar] [CrossRef]
- Sinyachenko, O.V.; Kazakov, V.N.; Müller, H.; Fainerman, V.B.; Miller, R.; Joos, P.; Yermolayeva, M.V. Dynamic surface tension of synovial liquid in rheumatoid arthritis. Ter. Arch. 1998, 1, 46–49. [Google Scholar]
- Adamczyk, E.; Arnebrant, T.; Glantz, P.-O. Time-dependent interfacial tension of whole saliva and saliva-bacteria mixes. Acta Odontol. Scand. 1997, 55, 384–389. [Google Scholar] [CrossRef] [PubMed]
- Kazakov, V.N.; Udod, A.A.; Zynkovich, I.I.; Fainerman, V.B.; Miller, R. Dynamic surface tension of saliva: Application in medical diagnostics. Colloids Surf. B 2009, 74, 457–461. [Google Scholar] [CrossRef]
- Rossetti, D.; Ravera, F.; Liggieri, L. Effect of tea polyphenols on the dilational rheology of Human WholeSaliva (HWS): Part 1, HWS characterization. Colloids Surf. B 2013, 110, 466–473. [Google Scholar] [CrossRef]
- Pison, U.; Herold, R.; Schürch, S. The pulmonary surfactant system: Biological functions, components, physicochemical properties and alterations during lung disease. Colloids Surf. A Physicochem. Eng. Asp. 1996, 114, 165–184. [Google Scholar] [CrossRef]
- Moeller, A.; Kielbasa, B. Exhaled Breath Condensate and Other Markers in Exhaled Air, Paediatric Pulmonary Function Testing. Prog Respir Res. 2005, 33, 190–202. [Google Scholar] [CrossRef]
- Wüstneck, R.; Perez-Gil, J.; Cruz, A.; Fainerman, V.; Pison, U. Interfacial properties of pulmonary surfactant layers. Adv. Colloid Interface Sci. 2005, 117, 33–58. [Google Scholar] [CrossRef] [PubMed]
- Lalchev, Z.; Todorov, R.; Exerowa, D. Thin liquid films as a model to study surfactant layers on the alveolar surface. Curr. Opin. Colloid Interface Sci. 2008, 13, 183–193. [Google Scholar] [CrossRef]
- Todorov, R.; Exerowa, D.; Platikanov, D.; Bianco, F.; Razzetti, R. Evaluation of therapeutic pulmonary surfactants by thin liquid film methods. Adv. Colloid Interface Sci. 2015, 222, 709–715. [Google Scholar] [CrossRef]
- Nikolova, A.; Exerowa, D. Foam Bilayers from Amniotic Fluid: Formation and Phase State. Langmuir 1996, 12, 1846–1850. [Google Scholar] [CrossRef]
- Kazakov, V.; Barkalova, E.; Levchenko, L.; Klimenko, T.; Fainerman, V.; Miller, R. Dilation rheology as medical diagnostics of human biological liquids. Colloids Surfaces A Physicochem. Eng. Asp. 2011, 391, 190–194. [Google Scholar] [CrossRef]
- Zaitsev, S.Y. Dynamic Surface Tension Measurements for Animal Blood Analysis and Correlations with Related Biochemical Parameters. Colloids Interfaces 2018, 2, 5. [Google Scholar] [CrossRef] [Green Version]
- Kazakov, V.; Fainerman, V.; Kondratenko, P.; Elin, A.; Sinyachenko, O.; Miller, R. Dilational rheology of serum albumin and blood serum solutions as studied by oscillating drop tensiometry. Colloids Surfaces B Biointerfaces 2008, 62, 77–82. [Google Scholar] [CrossRef]
- Kazakov, V.N.; Knyazevich, V.M.; Sinyachenko, O.V.; Fainerman, V.B.; Miller, R. Interfacial Rheology of Biological Liquids: Application in Medical Diagnostics and Treatment Monitoring. In Interfacial Rheology; Progress in Colloid and Interface Science; Miller, R., Liggieri, L., Eds.; Brill Publ.: Leiden, The Netherlands, 2009; Volume 1, pp. 519–566. ISBN 978-90-04-17586-0. [Google Scholar]
- Bykov, A.; Loglio, G.; Miller, R.; Milyaeva, O.; Michailov, A.; Noskov, B. Dynamic properties and relaxation processes in surface layer of pulmonary surfactant solutions. Colloids Surf. A Physicochem. Eng. Asp. 2019, 573, 14–21. [Google Scholar] [CrossRef]
- Labetoulle, M.; Benitez-Del-Castillo, J.M.; Barabino, S.; Vanrell, R.H.; Daull, P.; Garrigue, J.-S.; Rolando, M. Artificial Tears: Biological Role of Their Ingredients in the Management of Dry Eye Disease. Int. J. Mol. Sci. 2022, 23, 2434. [Google Scholar] [CrossRef]
- Stapleton, F.; Alves, M.; Bunya, V.Y.; Jalbert, I.; Lekhanont, K.; Malet, F.; Na, K.-S.; Schaumberg, D.; Uchino, M.; Vehof, J.; et al. TFOS DEWS II epidemiology report. Ocul. Surf. 2017, 15, 334–365. [Google Scholar] [CrossRef]
- Moshirfar, M.; Pierson, K.; Hanamaikai, K.; Santiago-Caban, L.; Muthappan, V.; Passi, S.F. Artificial tears potpourri: A literature review. Clin. Ophthalmol. 2014, 8, 1419–1433. [Google Scholar] [PubMed] [Green Version]
- Tiffany, J. The normal tear film. Dev. Ophthalmol. 2008, 41, 1–20. [Google Scholar] [PubMed]
- Himebaugh, N.L.; Begley, C.G.; Bradley, A.; Wilkinson, J.A. Blinking and Tear Break-Up During Four Visual Tasks. Optom. Vis. Sci. 2009, 86, E106–E114. [Google Scholar] [CrossRef] [PubMed]
- Huang, T.; Wang, Y.; Liu, Z.; Wang, T.; Chen, J. Investigation of Tear Film Change After Recovery from Acute Conjunctivitis. Cornea 2007, 26, 778–781. [Google Scholar] [CrossRef] [PubMed]
- Arshinoff, S.A.; Hofmann, I.; Nae, H. Role of rheology in tears and artificial tears. J. Cataract Refract. Surg. 2021, 47, 655–661. [Google Scholar] [CrossRef]
- Kathuria, A.; Shamloo, K.; Jhanji, V.; Sharma, A. Categorization of Marketed Artificial Tear Formulations Based on Their Ingredients: A Rational Approach for Their Use. J. Clin. Med. 2021, 10, 1289. [Google Scholar] [CrossRef]
- Barabino, S.; Benitez-Del-Castillo, J.M.; Fuchsluger, T.; Labetoulle, M.; Malachkova, N.; Meloni, M.; Utheim, T.P.; Rolando, M. Dry eye disease treatment: The role of tear substitutes, their future, and an updated classification. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 8642–8652. [Google Scholar]
- Jones, L.; Downie, L.E.; Korb, D.; Benitez-Del-Castillo, J.M.; Dana, R.; Deng, S.X.; Dong, P.N.; Geerling, G.; Hida, R.Y.; Liu, Y.; et al. TFOS DEWS II Management and Therapy Report. Ocul. Surf. 2017, 15, 575–628. [Google Scholar] [CrossRef]
- Bachman, W.G.; Wilson, G. Essential ions for maintenance of the corneal epithelial surface. Investig. Ophthalmol. Vis. Sci. 1985, 26, 1484–1488. [Google Scholar]
- Craig, J.P.; Nichols, K.K.; Akpek, E.K.; Caffery, B.; Dua, H.S.; Joo, C.-K.; Liu, Z.; Nelson, J.D.; Nichols, J.J.; Tsubota, K.; et al. TFOS DEWS II Definition and Classification Report. Ocul. Surf. 2017, 15, 276–283. [Google Scholar] [CrossRef]
- López-Cano, J.J.; González-Cela-Casamayor, M.A.; Andrés-Guerrero, V.; Herrero-Vanrell, R.; Molina-Martínez, I.T. Liposomes as vehicles for topical ophthalmic drug delivery and ocular surface protection. Expert Opin. Drug Deliv. 2021, 18, 819–847. [Google Scholar] [CrossRef] [PubMed]
- Rubio, R.; Guzmán, E.; Ortega, F.; Liggieri, L. Monolayers of Cholesterol and Cholesteryl Stearate at the Water/Vapor Interface: A Physico-Chemical Study of Components of the Meibum Layer. Colloids Interfaces 2021, 5, 30. [Google Scholar] [CrossRef]
- Doughty, M.J. Further Assessment of Gender- and Blink Pattern-Related Differences in the Spontaneous Eyeblink Activity in Primary Gaze in Young Adult Humans. Optom. Vis. Sci. 2002, 79, 439–447. [Google Scholar] [CrossRef] [PubMed]
- Birdi, K.S. Lipid and Biopolymer Monolayers at Liquid Interfaces; Plenum Press: New York, NY, USA, 1989. [Google Scholar]
- Agarwal, P.; Craig, J.; Rupenthal, I. Formulation Considerations for the Management of Dry Eye Disease. Pharmaceutics 2021, 13, 207. [Google Scholar] [CrossRef] [PubMed]
- Pucker, A.D.; Haworth, K.M. The Presence and Significance of Polar Meibum and Tear Lipids. Ocul. Surf. 2015, 13, 26–42. [Google Scholar] [CrossRef] [PubMed]
- Daull, P.; Amrane, M.; Ismail, D.; Georgiev, G.; Cwiklik, L.; Baudouin, C.; Leonardi, A.; Garhofer, G.; Garrigue, J.-S. Cationic Emulsion-Based Artificial Tears as a Mimic of Functional Healthy Tear Film for Restoration of Ocular Surface Homeostasis in Dry Eye Disease. J. Ocul. Pharmacol. Ther. 2020, 36, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Georgiev, G.A.; Yokoi, N.; Nencheva, Y.; Peev, N.; Daull, P. Surface Chemistry Interactions of Cationorm with Films by Human Meibum and Tear Film Compounds. Int. J. Mol. Sci. 2017, 18, 1558. [Google Scholar] [CrossRef] [Green Version]
- Santini, E.; Liggieri, L.; Sacca, L.; Clausse, D.; Ravera, F. Interfacial rheology of Span 80 adsorbed layers at paraffin oil–water interface and correlation with the corresponding emulsion properties. Colloids Surf. A Physicochem. Eng. Asp. 2007, 309, 270–279. [Google Scholar] [CrossRef]
- Romano, M.R.; Ferrara, M.; Nepita, I.; D’Amato Tothova, J.; Giacometti Schieroni, A.; Reami, D.; Repetto, R. Biocompatibility of intraocular liquid tamponade agents: An update. Eye 2021, 35, 2699–2713. [Google Scholar] [CrossRef]
- Soman, N.; Banerjee, R. Artificial vitreous replacements. Bio Med. Mater. Eng. 2003, 13, 59–74. [Google Scholar]
- Bartov, E.; Pennarola, F.; Savion, N.; Naveh, N.; Treister, G. A quantitative in vitro model for silicone oil emulsification. Role of blood constituents. Retina 1992, 12, S23–S27. [Google Scholar] [CrossRef] [PubMed]
- Heidenkummer, H.-P.; Kampik, A.; Thierfelder, S. Emulsification of silicone oils with specific physicochemical characteristics. Graefe’s Arch. Clin. Exp. Ophthalmol. 1991, 229, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Savion, N.; Alhalel, A.; Treister, G.; Bartov, E. Role of blood components in ocular silicone oil emulsification. Studies on an in vitro model. Investig. Ophthalmol. Vis. Sci. 1996, 37, 2694–2699. [Google Scholar]
- Ravera, F.; Dziza, K.; Santini, E.; Cristofolini, L.; Liggieri, L. Emulsification and emulsion stability: The role of the interfacial properties. Adv. Colloid Interface Sci. 2021, 288, 102344. [Google Scholar] [CrossRef] [PubMed]
- Ivanov, I.B.; Kralchevsky, P.A. Stability of emulsions under equilibrium and dynamic conditions. Colloids Surfaces A Physicochem. Eng. Asp. 1997, 128, 155–175. [Google Scholar] [CrossRef]
- Liggieri, L.; Miller, R. Relaxation of surfactants adsorption layers at liquid interfaces. Curr. Opin. Colloid Interface Sci. 2010, 15, 256–263. [Google Scholar] [CrossRef]
- Barca, F.; Caporossi, T.; Rizzo, S. Silicone Oil: Different Physical Proprieties and Clinical Applications. BioMed. Res. Int. 2014, 2014, 502143. [Google Scholar] [CrossRef] [PubMed]
- Hyde, A.; Phan, C.; Ingram, G. Determining liquid–liquid interfacial tension from a submerged meniscus. Colloids Surfaces A Physicochem. Eng. Asp. 2014, 459, 267–273. [Google Scholar] [CrossRef]
- Nakamura, K.; Refojo, M.F.; Crabtree, D.V. Factors contributing to the emulsification of intraocular silicone and fluorosilicone oils. Investig. Ophthalmol. Vis. Sci. 1990, 31, 647–656. [Google Scholar]
- Nepita, I.; Repetto, R.; Pralits, J.O.; Romano, M.R.; Ravera, F.; Santini, E.; Liggieri, L. The Role of Endogenous Proteins on the Emulsification of Silicone Oils Used in Vitreoretinal Surgery. BioMed. Res. Int. 2020, 2020, 2915010. [Google Scholar] [CrossRef]
- Loglio, G.; Pandolfini, P.; Miller, R.; Makievski, A.V.; Ravera, F.; Ferrari, M.; Liggieri, L. Drop and bubble shape analysis as tool for dilational rheology studies of interfacial layers. In Novel Methods to Study Interfacial Layers; Möbius, D., Miller, R., Eds.; Elsevier Science: Amsterdam, The Netherlands, 2001; pp. 439–484. [Google Scholar]
- Nayef, L.M.; Khan, M.F.; Brook, M.A. Low molecular weight silicones particularly facilitate human serum albumin denaturation. Colloids Surfaces B Biointerfaces 2015, 128, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Januschowski, K.; Irigoyen, C.; Pastor, J.C.; Srivastava, G.K.; Romano, M.R.; Heimann, H.; Stalmans, P.; Van Keer, K.; Boden, K.; Szurman, P.; et al. Retinal Toxicity of Medical Devices Used during Vitreoretinal Surgery: A Critical Overview. Ophthalmologica 2018, 240, 236–243. [Google Scholar] [CrossRef]
- Dresp, J.H.; Menz, D.-H. Preparation and processing of vitreoretinal instrumentation and equipment as a risk factor for silicone oil emulsification. Retina 2004, 24, 110–115. [Google Scholar] [CrossRef] [PubMed]
- Autilio, C.; Pérez-Gil, J. Understanding the principle biophysics concepts of pulmonary surfactant in health and disease. Arch. Dis. Child. Fetal Neonatal Ed. 2018, 104, F443–F451. [Google Scholar] [CrossRef] [PubMed]
- Raghavendran, K.; Willson, D.; Notter, R.H. Surfactant therapy of ALI and ARDS. Crit. Care Clin. 2011, 27, 525–559. [Google Scholar] [CrossRef] [Green Version]
- Zuo, Y.Y.; Veldhuizen, R.A.W.; Neumann, A.W.; Petersen, N.O.; Possmayer, F. Current perspectives in pulmonary surfactant—Inhibition, enhancement and evaluation. Biochim. Biophys. Acta 2008, 1778, 1947–1977. [Google Scholar] [CrossRef] [Green Version]
- Schram, V.; Hall, S.B. Thermodynamic Effects of the Hydrophobic Surfactant Proteins on the Early Adsorption of Pulmonary Surfactant. Biophys. J. 2001, 81, 1536–1546. [Google Scholar] [CrossRef] [Green Version]
- Banerjee, R.; Bellare, J.R. Scoring of surface parameters of physiological relevance to surfactant therapy in respiratory distress syndrome. J. Appl. Physiol. 2001, 90, 1447–1454. [Google Scholar] [CrossRef]
- Loney, R.W.; Anyan, W.R.; Biswas, S.C.; Rananavare, S.B.; Hall, S.B. The Accelerated Late Adsorption of Pulmonary Surfactant. Langmuir 2011, 27, 4857–4866. [Google Scholar] [CrossRef]
- Johansson, J.; Curstedt, T. Synthetic surfactants with SP-B and SP-C analogues to enable worldwide treatment of neonatal respiratory distress syndrome and other lung diseases. J. Intern. Med. 2019, 285, 165–186. [Google Scholar] [CrossRef] [Green Version]
- Walther, F.J.; Gordon, L.M.; Waring, A.J. Advances in synthetic lung surfactant protein technology. Expert Rev. Respir. Med. 2019, 13, 499–501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mendelsohn, R.; Mao, G.; Flach, C.R. Infrared reflection–absorption spectroscopy: Principles and applications to lipid–protein interaction in Langmuir films. Biochim. Biophys. Acta Biomembr. 2010, 1798, 788–800. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zuo, Y.Y.; Keating, E.; Zhao, L.; Tadayyon, S.M.; Veldhuizen, R.A.; Petersen, N.O.; Possmayer, F. Atomic Force Microscopy Studies of Functional and Dysfunctional Pulmonary Surfactant Films. I. Micro- and Nanostructures of Functional Pulmonary Surfactant Films and the Effect of SP-A. Biophys. J. 2008, 94, 3549–3564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keating, E.; Zuo, Y.Y.; Tadayyon, S.M.; Petersen, N.O.; Possmayer, F.; Veldhuizen, R.A. A modified squeeze-out mechanism for generating high surface pressures with pulmonary surfactant. Biochim. Biophys. Acta BBA Biomembr. 2012, 1818, 1225–1234. [Google Scholar] [CrossRef] [Green Version]
- Ravera, F.; Miller, R.; Zuo, Y.Y.; Noskov, B.A.; Bykov, A.G.; Kovalchuk, V.I.; Loglio, G.; Javadi, A.; Liggieri, L. Methods and models to investigate the physico-chemical functionality of pulmonary surfactant. COCIS 2021, 55, 101467. [Google Scholar]
- Valle, R.P.; Wu, T.; Zuo, Y.Y. Biophysical influence of airborne carbon nanomaterials on natural pulmonary surfactant. ACS Nano 2015, 9, 5413–5421. [Google Scholar] [CrossRef] [Green Version]
- Kondej, D.; Sosnowski, T.R. Interfacial rheology for the assessment of potential health effects of inhaled carbon nanomaterials at variable breathing conditions. Sci. Rep. 2020, 10, 14044. [Google Scholar] [CrossRef]
- Choi, Y.-S.; Chung, S.-H.; Bae, C.-W. A Combination of Short and Simple Surfactant Protein B and C Analogues as a New Synthetic Surfactant: In Vitro and Animal Experiments. Yonsei Med. J. 2017, 58, 823–828. [Google Scholar] [CrossRef]
- Bykov, A.; Loglio, G.; Ravera, F.; Liggieri, L.; Miller, R.; Noskov, B. Dilational surface elasticity of spread monolayers of pulmonary lipids in a broad range of surface pressure. Colloids Surf. A Physicochem. Eng. Asp. 2018, 541, 137–144. [Google Scholar] [CrossRef]
- Bykov, A.; Milyaeva, O.; Isakov, N.; Michailov, A.; Loglio, G.; Miller, R.; Noskov, B. Dynamic properties of adsorption layers of pulmonary surfactants. Influence of matter exchange with bulk phase. Colloids Surf. A Physicochem. Eng. Asp. 2021, 611, 125851. [Google Scholar] [CrossRef]
- Bykov, A.; Guzmán, E.; Rubio, R.G.; Krycki, M.; Milyaeva, O.; Noskov, B. Influence of temperature on dynamic surface properties of spread DPPC monolayers in a broad range of surface pressures. Chem. Phys. Lipids 2019, 225, 104812. [Google Scholar] [CrossRef] [PubMed]
- Liekkinen, J.; Enkavi, G.; Javanainen, M.; Olmeda, B.; Pérez-Gil, J.; Vattulainen, I. Pulmonary Surfactant Lipid Reorganization Induced by the Adsorption of the Oligomeric Surfactant Protein B Complex. J. Mol. Biol. 2020, 432, 3251–3268. [Google Scholar] [CrossRef] [PubMed]
- Sweet, D.G.; Turner, M.A.; Straňák, Z.; Plavka, R.; Clarke, P.; Stenson, B.J.; Singer, D.; Goelz, R.; Fabbri, L.; Varoli, G.; et al. A first-in-human clinical study of a new SP-B and SP-C enriched synthetic surfactant (CHF5633) in preterm babies with respiratory distress syndrome. Arch. Dis. Child. Fetal Neonatal Ed. 2017, 102, F497–F503. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zasadzinski, J.A.; Stenger, P.C.; Shieh, I.; Dhar, P. Overcoming rapid inactivation of lung surfactant: Analogies between competitive adsorption and colloid stability. Biochim. Biophys. Acta BBA Biomembr. 2010, 1798, 801–828. [Google Scholar] [CrossRef] [Green Version]
- Czyzewski, A.M.; McCaig, L.M.; Dohm, M.; Broering, L.A.; Yao, L.-J.; Brown, N.J.; Didwania, M.K.; Lin, J.S.; Lewis, J.F.; Veldhuizen, R.; et al. Effective in vivo treatment of acute lung injury with helical, amphipathic peptoid mimics of pulmonary surfactant proteins. Sci. Rep. 2018, 8, 6795. [Google Scholar] [CrossRef] [Green Version]
- Brown, N.J.; Lin, J.S.; Barron, A.E. Helical side chain chemistry of a peptoid-based SP-C analogue: Balancing structural rigidity and biomimicry. Biopolym. 2019, 110, e23277. [Google Scholar] [CrossRef]
- Fan, E.; Beitler, J.R.; Brochard, L.; Calfee, C.S.; Ferguson, N.D.; Slutsky, A.S.; Brodie, D. COVID-19-associated acute respiratory distress syndrome: Is a different approach to management warranted? Lancet Respir. Med. 2020, 8, 816–821. [Google Scholar] [CrossRef]
- Herman, L.; De Smedt, S.C.; Raemdonck, K. Pulmonary surfactant as a versatile biomaterial to fight COVID-19. J. Control. Release 2022, 342, 170–188. [Google Scholar] [CrossRef]
- Veldhuizen, R.A.W.; Zuo, Y.Y.; Petersen, N.O.; Lewis, J.F.; Possmayer, F. The COVID-19 pandemic: A target for surfactant therapy? Expert Rev. Respir. Med. 2020, 15, 597–608. [Google Scholar] [CrossRef]
- Baer, B.; Souza, L.M.P.; Pimentel, A.S.; Veldhuizen, R.A. New insights into exogenous surfactant as a carrier of pulmonary therapeutics. Biochem. Pharmacol. 2019, 164, 64–73. [Google Scholar] [CrossRef]
- Walther, F.J.; Gupta, M.; Lipp, M.M.; Chan, H.; Krzewick, J.; Gordon, L.M.; Waring, A. Aerosol delivery of dry powder synthetic lung surfactant to surfactant-deficient rabbits and preterm lambs on non-invasive respiratory support. Gates Open Res. 2019, 3, 6. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Svendsen, A. Lipase protein engineering. Biochim. Biophys. Acta BBA Protein Struct. Mol. Enzymol. 2000, 1543, 223–238. [Google Scholar] [CrossRef] [PubMed]
- Freedman, B.; Butterfield, R.O.; Pryde, E.H. Transesterification kinetics of soybean oil 1. J. Am. Oil Chem. Soc. 1986, 63, 1375–1380. [Google Scholar] [CrossRef]
- Aloulou, A.; Rahier, R.; Arhab, Y.; Noiriel, A.; Abousalham, A. Phospholipases: An Overview. Methods Mol. Biol. 2018, 1835, 69–105. [Google Scholar] [CrossRef] [PubMed]
- Lengsfeld, H.; Beaumier-Gallon, G.; Chahinian, H.; De Caro, A.; Verger, R.; Laugier, R.; Carrière, F. Physiology of Gastrointestinal Lipolysis and Therapeutical Use of Lipases and Digestive Lipase Inhibitors. In Lipases and Phospholipases in Drug Development: From Biochemistry to Molecular Pharmacology; Wiley: Hoboken, NJ, USA, 2004; pp. 195–229. [Google Scholar] [CrossRef]
- Carey, M.C.; Small, D.M. The characteristics of mixed micellar solutions with particular reference to bile. Am. J. Med. 1970, 49, 590–608. [Google Scholar] [CrossRef] [PubMed]
- Golding, M.; Wooster, T.J.; Day, L.; Xu, M.; Lundin, L.; Keogh, J.; Clifton, P. Impact of gastric structuring on the lipolysis of emulsified lipids. Soft Matter 2011, 7, 3513–3523. [Google Scholar] [CrossRef]
- Marze, S. Bioavailability of Nutrients and Micronutrients: Advances in Modeling and In Vitro Approaches. Annu. Rev. Food Sci. Technol. 2017, 8, 35–55. [Google Scholar] [CrossRef]
- Maldonado-Valderrama, J.; Torcello-Gómez, A.; del Castillo-Santaella, T.; Holgado-Terriza, J.A.; Cabrerizo-Vílchez, M.A. Subphase exchange experiments with the pendant drop technique. Adv. Colloid Interface Sci. 2015, 222, 488–501. [Google Scholar] [CrossRef]
- Maldonado-Valderrama, J.; Terriza, J.A.H.; Torcello-Gómez, A.; Cabrerizo-Vílchez, M.A. In vitro digestion of interfacial protein structures. Soft Matter 2013, 9, 1043–1053. [Google Scholar] [CrossRef]
- Javadi, A.; Dowlati, S.; Shourni, S.; Miller, R.; Kraume, M.; Kopka, K.; Eckert, K. Experimental techniques to study protein–surfactant interactions: New insights into competitive adsorptions via drop subphase and interface exchange. Adv. Colloid Interface Sci. 2022, 301, 102601. [Google Scholar] [CrossRef]
- Reis, P.; Holmberg, K.; Watzke, H.; Leser, M.; Miller, R. Lipases at interfaces: A review. Adv. Colloid Interface Sci. 2009, 147–148, 237–250. [Google Scholar] [CrossRef] [PubMed]
- Reis, P.M.; Raab, T.W.; Chuat, J.Y.; Leser, M.E.; Miller, R.; Watzke, H.J.; Holmberg, K. Influence of Surfactants on Lipase Fat Digestion in a Model Gastro-intestinal System. Food Biophys. 2008, 3, 370–381. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reis, P.; Holmberg, K.; Miller, R.; Krägel, J.; Grigoriev, D.O.; Leser, M.E.; Watzke, H.J. Competition between Lipases and Monoglycerides at Interfaces. Langmuir 2008, 24, 7400–7407. [Google Scholar] [CrossRef]
- Reis, P.; Malmsten, M.; Nydén, M.; Folmer, B.; Holmberg, K. Interactions between Lipases and Amphiphiles at Interfaces. J. Surfactants Deterg. 2019, 22, 1047–1058. [Google Scholar] [CrossRef]
- Javadi, A.; Dowlati, S.; Miller, R.; Schneck, E.; Eckert, K.; Kraume, M. Dynamics of Competitive Adsorption of Lipase and Ionic Surfactants at the Water–Air Interface. Langmuir 2020, 36, 12010–12022. [Google Scholar] [CrossRef]
- Torcello-Gómez, A.; Maldonado-Valderrama, J.; Reyes, A.B.J.; Foster, T. Interactions between Pluronics (F127 and F68) and Bile Salts (NaTDC) in the Aqueous Phase and the Interface of Oil-in-Water Emulsions. Langmuir 2013, 29, 2520–2529. [Google Scholar] [CrossRef]
- Bellesi, F.A.; Ruiz-Henestrosa, V.M.P.; Pilosof, A.M. Behavior of protein interfacial films upon bile salts addition. Food Hydrocoll. 2014, 36, 115–122. [Google Scholar] [CrossRef]
- Maldonado-Valderrama, J.; Muros-Cobos, J.; Holgado-Terriza, J.; Cabrerizo-Vílchez, M. Bile salts at the air–water interface: Adsorption and desorption. Colloids Surfaces B Biointerfaces 2014, 120, 176–183. [Google Scholar] [CrossRef]
- Roh, C.; Jung, U. Screening of Crude Plant Extracts with Anti-Obesity Activity. Int. J. Mol. Sci. 2012, 13, 1710–1719. [Google Scholar] [CrossRef] [Green Version]
- Bénarouche, A.; Point, V.; Carrière, F.; Cavalier, J.-F. Using the reversible inhibition of gastric lipase by Orlistat for investigating simultaneously lipase adsorption and substrate hydrolysis at the lipid–water interface. Biochimie 2014, 101, 221–231. [Google Scholar] [CrossRef]
- del Castillo-Santaella, T.; Maldonado-Valderrama, J.; Cabrerizo-Vílchez, M.; Rivadeneira-Ruiz, C.; Rondón-Rodriguez, D.; Gálvez-Ruiz, M.J. Natural Inhibitors of Lipase: Examining Lipolysis in a Single Droplet. J. Agric. Food Chem. 2015, 63, 10333–10340. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Da Ros, T. Twenty Years of Promises: Fullerene in Medicinal Chemistry. In Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes; Cataldo, F., De Ros, T., Eds.; Springer Science + Business Media B.V.: Berlin/Heidelberg, Germany, 2008; p. 1. ISBN 978-1-4020-6845-4. [Google Scholar]
- Mroz, P.; Tegos, G.P.; Gali, H.; Wharton, T.; Sarna, T.; Hamblin, M.R. Fullerenes as Photosensitizers in Photodynamic Therapy. In Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes; Cataldo, F., De Ros, T., Eds.; Springer Science + Business Media B.V.: Berlin/Heidelberg, Germany, 2008; p. 79. ISBN 978-1-4020-6845-4. [Google Scholar]
- Prylutska, S.V.; Grynyuk, I.I.; Matyshevska, O.P.; Golub, A.A.; Burlaka, A.P.; Prylutskyy, Y.I.; Ritter, U.; Scharff, P. Effects of Photoexcited Fullerene C60-Composites in Normal and Transformed Cells. In Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes; Cataldo, F., De Ros, T., Eds.; Springer Science + Business Media B.V.: Berlin/Heidelberg, Germany, 2008; p. 123. ISBN 978-1-4020-6845-4. [Google Scholar]
- Levi-Polyachenko, N.H.; David, L.; Carroll, D.L.; Stewart, J.H. Applications of Carbon-Based Nanomaterials for Drug Delivery in Oncology. In Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes; Cataldo, F., De Ros, T., Eds.; Springer Science + Business Media B.V.: Berlin/Heidelberg, Germany, 2008; p. 223. ISBN 978-1-4020-6845-4. [Google Scholar]
- Jiang, G.; Yin, F.; Duan, J.; Li, G. Synthesis and properties of novel water-soluble fullerene–glycinederivatives as new materials for cancer therapy. J. Mater. Sci. Mater. Med. 2015, 26, 24. [Google Scholar] [CrossRef] [PubMed]
- Serebryakov, E.B.; Semenov, K.N.; Stepanyuk, I.V.; Charykov, N.A.; Mescheryakov, A.N.; Zhukov, A.N.; Chaplygin, A.V.; Murin, I.V. Physico-chemical properties of the C70-L-lysine aqueous solutions. J. Mol. Liq. 2018, 256, 507–518. [Google Scholar] [CrossRef]
- Noskov, B.A.; Timoshen, K.A.; Akentiev, A.V.; Charykov, N.A.; Loglio, G.; Miller, R.; Semenov, K.N. Dynamic surface properties of C60-arginine and C60-l-lysine aqueous solutions. Colloids Surf. A Physicochem. Eng. Asp. 2017, 529, 1–6. [Google Scholar] [CrossRef]
- Noskov, B.A.; Timoshen, K.A.; Akentiev, A.V.; Chirkov, N.S.; Dubovsky, I.M.; Lebedev, V.T.; Lin, S.-Y.; Loglio, G.; Miller, R.; Sedov, V.P.; et al. Dynamic Surface Properties of Fullerenol Solutions. Langmuir 2019, 35, 3773–3779. [Google Scholar] [CrossRef]
- Akentiev, A.V.; Gorniaia, S.B.; Isakov, N.A.; Lebedev, V.T.; Milyaeva, O.Y.; Sedov, V.P.; Semenov, K.N.; Timoshen, K.A.; Noskov, B.A. Surface properties of fullerenol C60(OH)20 solutions. J. Mol. Liq. 2020, 306, 112904. [Google Scholar] [CrossRef]
- Noskov, B.A.; Timoshen, K.A.; Bykov, A.G. Langmuir layers of fullerene C60 and its mixtures with amphiphilic polymers. J. Mol. Liq. 2020, 320, 114440. [Google Scholar] [CrossRef]
- Wong, H.; Fatt, I.; Radke, C. Deposition and Thinning of the Human Tear Film. J. Colloid Interface Sci. 1996, 184, 44–51. [Google Scholar] [CrossRef]
- Possmayer, F. A Proposed Nomenclature for Pulmonary Surfactant-associated Proteins. Am. Rev. Respir. Dis. 1988, 138, 990–998. [Google Scholar] [CrossRef]
- Schürch, S.; Bachofen, H.; Goerke, J.; Green, F. Surface properties of rat pulmonary surfactant studied with the captive bubble method: Adsorption, hysteresis, stability. Biochim. Biophys. Acta BBA Biomembr. 1992, 1103, 127–136. [Google Scholar] [CrossRef]
- Prokop, R.M.; Neumann, A.W. Measurement of the interfacial properties of lung surfactant. Curr. Opin. Colloid Interface Sci. 1996, 1, 677–681. [Google Scholar] [CrossRef]
- Zaborowska, M.; Dziubak, D.; Fontaine, P.; Matyszewska, D. Influence of lipophilicity of anthracyclines on the interactions with cholesterol in the model cell membranes—Langmuir monolayer and SEIRAS studies. Colloids Surfaces B Biointerfaces 2022, 211, 112297. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Gil, J. A recipe for a good clinical pulmonary surfactant. Biomed. J. 2022, 45, 615–628. [Google Scholar] [CrossRef] [PubMed]
- Dobrowolska, K.; Odziomek, M.; Ulatowski, K.; Kędziora, W.; Soszyńska, K.; Sobieszuk, P.; Sosnowski, T.R. Interactions between O2 Nanobubbles and the Pulmonary Surfactant in the Presence of Inhalation Medicines. Materials 2022, 15, 6353. [Google Scholar] [CrossRef] [PubMed]
- Du, K.; Sun, L.; Luo, Z.; Cao, Y.; Sun, Q.; Zhang, K.; Faizy, A.; Piomelli, D.; Lu, X.; Shan, J.; et al. Reduced DMPC and PMPC in lung surfactant promote SARS-CoV-2 infection in obesity. Metabolism 2022, 131, 155181. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Santini, E.; Nepita, I.; Bykov, A.G.; Ravera, F.; Liggieri, L.; Dowlati, S.; Javadi, A.; Miller, R.; Loglio, G. Interfacial Dynamics of Adsorption Layers as Supports for Biomedical Research and Diagnostics. Colloids Interfaces 2022, 6, 81. https://doi.org/10.3390/colloids6040081
Santini E, Nepita I, Bykov AG, Ravera F, Liggieri L, Dowlati S, Javadi A, Miller R, Loglio G. Interfacial Dynamics of Adsorption Layers as Supports for Biomedical Research and Diagnostics. Colloids and Interfaces. 2022; 6(4):81. https://doi.org/10.3390/colloids6040081
Chicago/Turabian StyleSantini, Eva, Irene Nepita, Alexey G. Bykov, Francesca Ravera, Libero Liggieri, Saeid Dowlati, Aliyar Javadi, Reinhard Miller, and Giuseppe Loglio. 2022. "Interfacial Dynamics of Adsorption Layers as Supports for Biomedical Research and Diagnostics" Colloids and Interfaces 6, no. 4: 81. https://doi.org/10.3390/colloids6040081
APA StyleSantini, E., Nepita, I., Bykov, A. G., Ravera, F., Liggieri, L., Dowlati, S., Javadi, A., Miller, R., & Loglio, G. (2022). Interfacial Dynamics of Adsorption Layers as Supports for Biomedical Research and Diagnostics. Colloids and Interfaces, 6(4), 81. https://doi.org/10.3390/colloids6040081