Prediction of Slip Velocity at the Interface of Open-Cell Metal Foam Using 3D Printed Foams
Abstract
:1. Introduction
2. Materials and Methods
2.1. Buckingham Pi theorem and Dimensionless Group
2.2. Preparation of 3D Printed Foams
2.3. Experimental Setup
3. Results and Discussion
3.1. Pressure Drop Effect
3.2. Inertial Coefficient
3.3. Fluid Behavior and Velocity Profile in Close Loop Wind Tunnel
3.4. Correlation of Slip Velocity for Partially Filled Channel
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CAD | Computed Aided Design |
SLS | Selective Laser Sintering |
CT | Computed Tomography |
PPI | Pore Per Inches |
Us | Slip velocity |
Uinlet | Inlet velocity |
U0 | Original velocity in unloaded wind tunnel |
hf | Foam height |
dl | Ligament diameter |
dp | Pore diameter |
hc | Channel/test section height |
K | Permeability |
ε | Porosity |
ΔP/Δl | Pressure drops per unit length |
µfluid | Fluid viscosity |
ρfluid | Fluid density |
Vvoid | Void volume |
Vtotal | Total volume (full solid) |
f | Inertial coefficient |
References
- Rabbani, P.; Hamzehpour, A.; Ashjaee, M.; Naja, M.; Houshfar, E. Experimental investigation on heat transfer of MgO nano fluid in tubes partially filled with metal foam. Powder Technol. 2019, 354, 734–742. [Google Scholar] [CrossRef]
- Liang, L.; Wu, X.; Ma, N.; Du, J.; Liu, M. The sound absorption properties comparison of metal foams and flexible cellular materials. Mater. Sci. Forum 2018, 933, 357–366. [Google Scholar] [CrossRef]
- Bedarf, P.; Dutto, A.; Zanini, M.; Dillenburger, B. Foam 3D printing for construction: A review of applications, materials, and processes. Autom. Constr. 2021, 130, 103861. [Google Scholar] [CrossRef]
- Mustapha, K.A.; Shikh Anuar, F.; Mohd Sa’at, F.A.Z.; Zini, N.H.M.; Mat Tokit, E.; Satishwara Rao, N.; Hooman, K.; Abdi, I.A. Production of Open-Cell Foam Using Additive Manufacturing Method and Porous Morphology Effects. In International Conference and Exhibition on Sustainable Energy and Advanced Materials; Abdollah, M.F., Amiruddin, H., Eds.; Springer: Singapore, 2022; pp. 13–16. [Google Scholar]
- Linul, E.; Khezrzadeh, O. Axial crashworthiness performance of foam-based composite structures under extreme temperature conditions. Compos. Struct. 2021, 271, 114156. [Google Scholar] [CrossRef]
- Thomas, K.; Kannan, S.; Nazzal, M.; Pervaiz, S.; Karthikeyan, R. A Numerical Simulation of Machining 6061 Syntactic Foams Reinforced with Hollow Al2O3 Shells. Metals 2022, 12, 596. [Google Scholar] [CrossRef]
- Linul, E.; Pietras, D.; Sadowski, T.; Marşavina, L.; Rajak, D.K.; Kovacik, J. Crashworthiness performance of lightweight Composite Metallic Foams at high temperatures. Compos. Part A Appl. Sci. Manuf. 2021, 149, 106516. [Google Scholar] [CrossRef]
- Movahedi, N.; Linul, E. Radial crushing response of ex-situ foam-filled tubes at elevated temperatures. Compos. Struct. 2021, 277, 114634. [Google Scholar] [CrossRef]
- Szlancsik, A.; Norbert Orbulov, I. Compressive properties of metal matrix syntactic foams in uni- and triaxial compression. Mater. Sci. Eng. A 2021, 827, 142081. [Google Scholar] [CrossRef]
- Dileep, B.; Prakash, R.; Bharath, H.S.; Jeyaraj, P.; Doddamani, M. Dynamic behavior of concurrently printed functionally graded closed cell foams. Compos. Struct. 2021, 275, 114449. [Google Scholar] [CrossRef]
- Ahmed, H.E.; Fadhil, O.T.; Salih, W.A. Heat transfer and fl uid fl ow characteristics of tubular channel partially filled with grooved metal foams. Int. Commun. Heat Mass Transf. 2019, 108, 104336. [Google Scholar] [CrossRef]
- Orihuela, M.P.; Shikh Anuar, F.; Ashtiani Abdi, I.; Odabaee, M.; Hooman, K. Thermohydraulics of a metal foam-filled annulus. Int. J. Heat Mass Transf. 2018, 117, 95–106. [Google Scholar] [CrossRef]
- Alvandifar, N.; Amani, E. International Journal of Heat and Mass Transfer Partially metal foam wrapped tube bundle as a novel generation of air cooled heat exchangers. Int. J. Heat Mass Transf. 2018, 118, 171–181. [Google Scholar] [CrossRef]
- Farooq, J.; Chung, J.D.; Mushtaq, M.; Lu, D.; Ramazan, M.; Farooq, U. Influence of slip velocity on the flow of viscous fluid through a porous medium in a permeable tube with a variable bulk flow rate. Results Phys. 2018, 11, 861–868. [Google Scholar] [CrossRef]
- Beavers, G.S.; Joseph, D.D. Boundary conditions at a natural permeable wall. J. Fluid Mech. 1967, 30, 197–207. [Google Scholar] [CrossRef]
- Nield, D.A. The beavers—Joseph boundary condition and related matters: A historical and critical note. Transp. Porous Media 2009, 78, 537–540. [Google Scholar] [CrossRef]
- Nair, K.A.; Sameen, A. Experimental Study of Slip Flow at the Fluid-porous Interface in a Boundary Layer Flow. Procedia IUTAM 2015, 15, 293–299. [Google Scholar] [CrossRef] [Green Version]
- Guo, C.; Li, Y.; Nian, X.; Xu, M.; Liu, H.; Wang, Y. Experimental study on the slip velocity of turbulent flow over and within porous media. Phys. Fluids 2020, 32, 015111. [Google Scholar] [CrossRef]
- McKay, G. The Beavers and Joseph Condition for Velocity Slip at the Surface of a Porous Medium. Contin. Mech. Appl. Geophys. Environ. 2001, 126–139. [Google Scholar] [CrossRef]
- Ochoa-tapia, J.A.; Whitakeri, S. Momentum transfer at the boundary between a porous medium and a homogeneous fluid I. Theoretical development. Int. J. Heat Mass Transfer 1995, 38, 2635–2646. [Google Scholar] [CrossRef]
- Kuznetsov, A.V. Influence of the stress jump condition at the porous-medium/clear-fluid interface on a flow at a porous wall. Int. Commun. Heat Mass Transf. 1997, 24, 401–410. [Google Scholar] [CrossRef]
- Vafai, K.; Kim, S.J. Fluid mechanics of the interface region between a porous medium and a fluid layer-an exact solution. Int. J. Heat Fluid Flow 1990, 11, 254–256. [Google Scholar] [CrossRef]
- Kuznetsov, A.V. Analytical investigation of the fluid flow in the interface region between a porous medium and a clear fluid in channels partially filled with a porous medium. Flow, Turbul. Combust. 1996, 56, 53–67. [Google Scholar] [CrossRef]
- Chandesris, M.; Jamet, D. Boundary conditions at a planar fluid-porous interface for a Poiseuille flow. Int. J. Heat Mass Transf. 2006, 49, 2137–2150. [Google Scholar] [CrossRef] [Green Version]
- Vafai, K.; Kim, S.J. Forced Convection in a Channel Filled With a Porous Medium: An Exact Solution. J. Heat Transf. 1989, 111, 1103–1106. [Google Scholar] [CrossRef]
- Xu, Z.G.; Gong, Q. Numerical investigation on forced convection of tubes partially filled with composite metal foams under local thermal non-equilibrium condition. Int. J. Therm. Sci. 2018, 133, 1–12. [Google Scholar] [CrossRef]
- Kotresha, B.; Gnanasekaran, N. Numerical Simulations of Fluid Flow and Heat Transfer through Aluminum and Copper Metal Foam Heat Exchanger–A Comparative Study. Heat Transf. Eng. 2020, 41, 637–649. [Google Scholar] [CrossRef]
- Yerramalle, V.; Premachandran, B.; Talukdar, P. Numerical investigation of the performance of interface conditions for fluid flow through a partially filled porous channel. Therm. Sci. Eng. Prog. 2020, 20, 100628. [Google Scholar] [CrossRef]
- Xu, H.; Zhao, C.; Vafai, K. Analysis of double slip model for a partially filled porous microchannel—An exact solution. Eur. J. Mech. B/Fluids 2018, 68, 1–9. [Google Scholar] [CrossRef]
- Shikh Anuar, F.; Ashtiani Abdi, I.; Hooman, K. Flow visualization study of partially filled channel with aluminium foam block. Int. J. Heat Mass Transf. 2018, 127, 1197–1211. [Google Scholar] [CrossRef]
- Hajiahmadi, S.; Elyasi, M.; Shakeri, M. Investigation of a new methodology for the prediction of drawing force in deep drawing process with respect to dimensionless analysis. Int. J. Mech. Mater. Eng. 2019, 14, 1–13. [Google Scholar] [CrossRef]
- Alomair, M.; Tasnim, S.H. Experimental measurements of permeability of open foam. In Proceedings of the 5th International Conference of Fluid Flow, Heat and Mass Transfer (FFHMT’18), Niagara Falls, ON, Canada, 7–9 June 2018; p. 186. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Calmidi, V.V.; Mahajan, R.L. Thermophysical properties of high porosity metal foams. Int. J. Heat Mass Transf. 2002, 45, 1017–1031. [Google Scholar] [CrossRef]
- Walker, D.C.; Caley, W.F.; Brochu, M. Selective laser sintering of composite copper-tin powders. J. Mater. Res. 2014, 29, 1997–2005. [Google Scholar] [CrossRef]
- Herdering, A.; Abendroth, M.; Gehre, P.; Hubálková, J.; Aneziris, C.G. Additive manufactured polyamide foams with periodic grid as templates for the production of functional coated carbon-bonded alumina foam filters. Ceram. Int. 2019, 45, 153–159. [Google Scholar] [CrossRef]
- Mauro, S.; Brusca, S.; Lanzafame, R.; Famoso, F.; Galvagno, A.; Messina, M. Small-Scale Open-Circuit Wind Tunnel: Design Criteria, Construction and Calibration. Int. J. Appl. Eng. Res. 2017, 12, 13649–13662. [Google Scholar]
- Lu, W.; Zhang, T.; Yang, M. International Journal of Heat and Mass Transfer Analytical solution of forced convective heat transfer in parallel-plate channel partially filled with metallic foams. Int. J. Heat Mass Transf. 2016, 100, 718–727. [Google Scholar] [CrossRef]
- Bracconi, M.; Ambrosettia, M.; Okaforc, O.; Sansc, V.; Zhangd, X.; Oub, X.; Fonteb, C.P.D.; Fanb, X.; Maestria, M.; Groppia, G.; et al. Investigation of pressure drop in 3D replicated open-cell foams: Coupling CFD with experimental data on additively manufactured foams. Chem. Eng. J. 2019, 377, 120123. [Google Scholar] [CrossRef]
- Shikh Anuar, F.; Ashtiani Abdi, I.; Odabaee, M.; Hooman, K. Experimental study of fluid flow behaviour and pressure drop in channels partially filled with metal foams. Exp. Therm. Fluid Sci. 2018, 99, 117–128. [Google Scholar] [CrossRef]
- Jadhav, P.H.; Gnanasekaran, N.; Perumal, D.A.; Mobedi, M. Performance evaluation of partially filled high porosity metal foam configurations in a pipe. Appl. Therm. Eng. 2021, 194, 117081. [Google Scholar] [CrossRef]
Dimension | Us (ms−1) | Uinlet (ms−1) | U0 (ms−1) | ρfluid (kgm−3) | µfluid (kgm−1s−1) | hc (m) | dl (m) | dp (m) | K (m2) | ΔP/Δl (kgm−2s−2) |
---|---|---|---|---|---|---|---|---|---|---|
Mass, M | 0 | 0 | 0 | 1 | 1 | 0 | 0 | 0 | 0 | 1 |
Length, L | 1 | 1 | 1 | −3 | −1 | 1 | 1 | 1 | 2 | −2 |
Time, T | −1 | −1 | −1 | 0 | −1 | 0 | 0 | 0 | 0 | −2 |
π-Group | Parameter |
---|---|
π1 | |
π2 | |
π3 | Rehc |
π4 | |
π5 | |
π6 | |
π7 | |
π8 |
Foam Physical Properties | 3D Printed Foam (Nylon Powder) | ERG Duocel (Metal Foam) | ||
---|---|---|---|---|
Pore Size | 2 scale | 4 scale | 6 scale | 5 PPI |
Ligament diameter, dl (mm) | 2.28 | 4.54 | 6.80 | 1.13 |
Pore diameter, dp (mm) | 11.55 | 23.10 | 34.60 | 5.77 |
Porosity, ε (–) | 0.88–0.9 | 0.88–0.91 | 0.88–0.94 | 0.86 |
Permeability, K × 10−2 (mm2) | 1.12–3.35 | 2.27–6.83 | 3.13–9.39 | 0.16 |
Foam height, hf (mm) | 30, 60, 90 | 20 | ||
Blockage ratio, hf/hc | 0.3, 0.6, 0.9 | 0.2 | ||
Foam length, Lf (mm) | 94.0 | 93.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mustapha, K.A.; Shikh Anuar, F.; Mohd Saat, F.A.-Z. Prediction of Slip Velocity at the Interface of Open-Cell Metal Foam Using 3D Printed Foams. Colloids Interfaces 2022, 6, 80. https://doi.org/10.3390/colloids6040080
Mustapha KA, Shikh Anuar F, Mohd Saat FA-Z. Prediction of Slip Velocity at the Interface of Open-Cell Metal Foam Using 3D Printed Foams. Colloids and Interfaces. 2022; 6(4):80. https://doi.org/10.3390/colloids6040080
Chicago/Turabian StyleMustapha, Khairul Azhar, Fadhilah Shikh Anuar, and Fatimah Al-Zahrah Mohd Saat. 2022. "Prediction of Slip Velocity at the Interface of Open-Cell Metal Foam Using 3D Printed Foams" Colloids and Interfaces 6, no. 4: 80. https://doi.org/10.3390/colloids6040080
APA StyleMustapha, K. A., Shikh Anuar, F., & Mohd Saat, F. A. -Z. (2022). Prediction of Slip Velocity at the Interface of Open-Cell Metal Foam Using 3D Printed Foams. Colloids and Interfaces, 6(4), 80. https://doi.org/10.3390/colloids6040080