Influence of Different Dosages of Rice Husk Particles on Thermal, Physical, Mechanical and Rheological Properties of Polypropylene-Based Composites
Abstract
1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of the Composition
2.3. Measurements
2.3.1. Infrared Spectroscopy
2.3.2. Differential Scanning Calorimetry
2.3.3. Extraction
2.3.4. Scanning Microscope
2.3.5. Synchronous Thermal Analysis
2.3.6. Determination of Physical and Mechanical Properties
2.3.7. Determination of Melt Flow Index
2.3.8. Thermo-Oxidative Aging
2.3.9. Rheological Properties
2.3.10. Determination of Water Absorption
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Huo, J.; Peng, C. Depletion of Natural Resources and Environmental Quality: Prospects of Energy Use, Energy Imports, and Economic Growth Hindrances. Resour. Policy 2023, 86, 104049. [Google Scholar] [CrossRef]
- Koul, B.; Yakoob, M.; Shah, M.P. Agricultural Waste Management Strategies for Environmental Sustainability. Environ. Res. 2022, 206, 112285. [Google Scholar] [CrossRef] [PubMed]
- Väisänen, T.; Das, O.; Tomppo, L. A Review on New Bio-Based Constituents for Natural Fiber-Polymer Composites. J. Clean. Prod. 2017, 149, 582–596. [Google Scholar] [CrossRef]
- Pickering, K.L.; Efendy, M.G.A.; Le, T.M. A Review of Recent Developments in Natural Fibre Composites and Their Mechanical Performance. Compos. Part A Appl. Sci. Manuf. 2016, 83, 98–112. [Google Scholar] [CrossRef]
- Russo, P.; Pagliarulo, V.; Bianco, V.; Simeoli, G.; Cimino, F.; Ferraro, P. Characterization of ‘Green’ Composite Laminates after Flexural Tests by Speckle Interferometry. Opt. Eng. 2020, 59, 102416. [Google Scholar] [CrossRef]
- Suppakarn, N.; Jarukumjorn, K. Mechanical Properties and Flammability of Sisal/PP Composites: Effect of Flame Retardant Type and Content. Compos. Part B Eng. 2009, 40, 613–618. [Google Scholar] [CrossRef]
- Leão, R.M.; Luz, S.M.; Araujo, J.A.; Novack, K. Surface Treatment of Coconut Fiber and Its Application in Composite Materials for Reinforcement of Polypropylene. J. Nat. Fibers 2015, 12, 574–586. [Google Scholar] [CrossRef]
- Ichazo, M.N.; Albano, C.; González, J.; Perera, R.; Candal, M. Polypropylene/Wood Flour Composites: Treatments and Properties. Compos. Struct. 2001, 54, 207–214. [Google Scholar] [CrossRef]
- Arefieva, O.D.; Sedinkina, E.S.; Zemnukhova, L.A.; Smitskih, K.V. Ecological and Economic Assessment of the Integrated Rice Husk Processing Scheme. Vestn. Far East Branch Russ. Acad. Sci. 2020, 6, 91–98. [Google Scholar]
- Sadritdinov, A.R.; Zakharova, E.M.; Psyanchin, A.A.; Khusnullin, A.G.; Zakharov, V.P. Influence of the Processing Method on the Heat Resistance of the Secondary Block Copolymer of Propylene and Ethylene Filled with Rice Hulls. Perspekt. Mater. 2021, 11, 32–38. [Google Scholar] [CrossRef]
- Shukla, S.S.; Chava, R.; Appari, S.; A, B.; Kuncharam, B.V.R. Sustainable Use of Rice Husk for the Cleaner Production of Value-Added Products. J. Environ. Chem. Eng. 2022, 10, 106899. [Google Scholar] [CrossRef]
- Halip, J.A.; Lee, S.H.; Tahir, P.M.; Chuan, L.T.; Selimin, M.A.; Saffian, H.A. A Review: Chemical Treatments of Rice Husk for Polymer Composites. Biointerface Res. Appl. Chem. 2021, 11, 12425–12433. [Google Scholar] [CrossRef]
- Mansaray, K.G.; Ghaly, A.E. Physical and Thermochemical Properties of Rice Husk. Energy Sources 1997, 19, 989–1004. [Google Scholar] [CrossRef]
- Wu, J.; Elliston, A.; Le Gall, G.; Colquhoun, I.J.; Collins, S.R.A.; Wood, I.P.; Dicks, J.; Roberts, I.N.; Waldron, K.W. Optimising Conditions for Bioethanol Production from Rice Husk and Rice Straw: Effects of Pre-Treatment on Liquor Composition and Fermentation Inhibitors. Biotechnol. Biofuels 2018, 11, 62. [Google Scholar] [CrossRef] [PubMed]
- Bisht, N.; Gope, P.C. Wear Characteristics of Silica-Reinforced Rice Husk-Epoxy Hybrid Bio-Composite. In Advances in Materials Engineering and Manufacturing Processes; Springer: Berlin/Heidelberg, Germany, 2020; pp. 51–57. [Google Scholar]
- Anamika; Ahmad, S.A.R.; Jatawa, S.; Selvi, V.A.; Tiwari, A. Value-Added Products of Rice Husk in Various Disciplines. Int. J. Res. Appl. Sci. Eng. Technol. 2022, 10, 594–608. [Google Scholar] [CrossRef]
- Cherezova, E.; Karaseva, Y.; Nakyp, A.; Nuriev, A.; Islambekuly, B.; Akylbekov, N. Influence of Partially Carboxylated Powdered Lignocellulose from Oat Straw on Technological and Strength Properties of Water-Swelling Rubber. Polymers 2024, 16, 282. [Google Scholar] [CrossRef]
- Olonisakin, K.; Fan, M.; Xin-Xiang, Z.; Ran, L.; Lin, W.; Zhang, W.; Wenbin, Y. Key Improvements in Interfacial Adhesion and Dispersion of Fibers/Fillers in Polymer Matrix Composites; Focus on PLA Matrix Composites. Compos. Interfaces 2022, 29, 1071–1120. [Google Scholar] [CrossRef]
- Korčušková, M.; Petruš, J.; Lepcio, P.; Kučera, F.; Jančář, J. Novel Approaches for Functionalization of Polypropylene by Maleimides. Polymer 2022, 238, 124398. [Google Scholar] [CrossRef]
- Hao, W.; Wang, M.; Zhou, F.; Luo, H.; Xie, X.; Luo, F.; Cha, R. A Review on Nanocellulose as a Lightweight Filler of Polyolefin Composites. Carbohydr. Polym. 2020, 243, 116466. [Google Scholar] [CrossRef]
- Volfson, S.I.; Fayzullin, I.Z.; Musin, I.N.; Fayzullin, A.Z.; Grachev, A.N.; Pushkin, S.A. The Physicomechanical and Rheological Characteristics of Wood–Polymer Composites Based on Thermally and Mechanically Modified Filler. Int. Polym. Sci. Technol. 2017, 44, 49–54. [Google Scholar] [CrossRef]
- Fayzullin, I.Z.; Musin, I.N.; Volfson, S.I.; Nikiforov, A.A. Glass-Filled Wood-Polymer Composites Based on Polypropylene. Key Eng. Mater. 2019, 816, 197–201. [Google Scholar] [CrossRef]
- Shkuro, A.; Chernysheva, A.; Krivonogov, P.; Artemov, A. Studying the Modificability of Wood-Polymer Composites by UV Radiation. Bull. Univ. Technol. 2019, 22, 84–87. [Google Scholar]
- Shpejzman, V.V.; Yakushev, P.N.; Smolyanskij, A.S. Method for Radiation-Chemical Modification of Wood-Polymer Composites. RU2707936C1, 2 December 2019. [Google Scholar]
- Cherezova, E.N.; Karaseva, Y.S.; Nakyp, A.M. Evaluation of the Durability of Limited Swelling Rubber Filled with Modified Powdered Cellulose from Cotton Waste. Polym. Sci. Ser. D 2023, 16, 681–686. [Google Scholar] [CrossRef]
- Gorbachev, A.V.; Fayzullin, I.Z.; Wolfson, S.I.; Kanarsky, A.V.; Zakharov, I.V.; Kazakov, Y.M. Composite Material Based on Polyolefins and Modified Vegetable Fillers. Plast. Massy 2023, 1, 48–52. [Google Scholar] [CrossRef]
- Fayzullin, I.; Gorbachev, A.; Volfson, S.; Serikbayev, Y.; Nakyp, A.; Akylbekov, N. Composite Material Based on Polypropylene and Modified Natural Fillers. Polymers 2024, 16, 1703. [Google Scholar] [CrossRef] [PubMed]
- Golubchikova, K.; Fayzullin, I.; Volfson, S. Light-Diffusing Composite Material Based on Polystyrene and Hollow Glass Microspheres. J. Thermoplast. Compos. Mater. 2021, 34, 1692–1700. [Google Scholar] [CrossRef]
- Faruk, O.; Bledzki, A.K.; Fink, H.-P.; Sain, M. Biocomposites Reinforced with Natural Fibers: 2000–2010. Prog. Polym. Sci. 2012, 37, 1552–1596. [Google Scholar] [CrossRef]
- Morales, M.; Atencio Martinez, C.; Maranon, A.; Hernandez, C.; Michaud, V.; Porras, A. Development and Characterization of Rice Husk and Recycled Polypropylene Composite Filaments for 3D Printing. Polymers 2021, 13, 1067. [Google Scholar] [CrossRef]
- Roy, S.B.; Shit, S.C.; Sengupta, R.A.; Shukla, P.R. A Review on Bio-Composites: Fabrication, Properties and Applications. Int. J. Innov. Res. Sci. Eng. Technol. 2014, 03, 16814–16824. [Google Scholar] [CrossRef]
- Suhot, M.A.; Hassan, M.Z.; Aziz, S.A.; Md Daud, M.Y. Recent Progress of Rice Husk Reinforced Polymer Composites: A Review. Polymers 2021, 13, 2391. [Google Scholar] [CrossRef]
- Arjmandi, R.; Hassan, A.; Majeed, K.; Zakaria, Z. Rice Husk Filled Polymer Composites. Int. J. Polym. Sci. 2015, 2015, 501471. [Google Scholar] [CrossRef]
- Laftah, W.A.; Wan Abdul Rahman, W.A. Rice Waste–Based Polymer Composites for Packaging Applications: A Review. Polym. Polym. Compos. 2021, 29, S1621–S1629. [Google Scholar] [CrossRef]
- Raghu, N.; Kale, A.; Chauhan, S.; Aggarwal, P.K. Rice Husk Reinforced Polypropylene Composites: Mechanical, Morphological and Thermal Properties. J. Indian Acad. Wood Sci. 2018, 15, 96–104. [Google Scholar] [CrossRef]
- Aridi, N.A.M.; Sapuan, S.M.; Zainudin, E.S.; AL-Oqla, F.M. Mechanical and Morphological Properties of Injection-Molded Rice Husk Polypropylene Composites. Int. J. Polym. Anal. Charact. 2016, 21, 305–313. [Google Scholar] [CrossRef]
- Razavi, N.M.; Jafarzadeh, D.F.; Ouroumiehei, A.A.; Ershad, L.A. Mechanical Properties and Water Absorption Behaviour of Chopped Rice Husk Filled Polypropylene Composites. Iran. Polym. J. 2006, 15, 757–766. [Google Scholar]
- Hidalgo-Salazar, M.A.; Salinas, E. Mechanical, Thermal, Viscoelastic Performance and Product Application of PP- Rice Husk Colombian Biocomposites. Compos. Part B Eng. 2019, 176, 107135. [Google Scholar] [CrossRef]
- Yang, H.-S.; Kim, H.-J.; Son, J.; Park, H.-J.; Lee, B.-J.; Hwang, T.-S. Rice-Husk Flour Filled Polypropylene Composites; Mechanical and Morphological Study. Compos. Struct. 2004, 63, 305–312. [Google Scholar] [CrossRef]
- Khalil, R.; Chryss, A.G.; Jollands, M.; Bhattacharya, S. Effect of Coupling Agents on the Crystallinity and Viscoelastic Properties of Composites of Rice Hull Ash-Filled Polypropylene. J. Mater. Sci. 2007, 42, 10219–10227. [Google Scholar] [CrossRef]
- Ndiaye, D.; Verney, V.; Askanian, H.; Commereuc, S.; Tidjani, A. Morphology, Thermal Behavior and Dynamic Rheological Properties of Wood Polypropylene Composites. Mater. Sci. Appl. 2013, 04, 730–738. [Google Scholar] [CrossRef]
- Santoso, T.B.; Aryanti, F.I.; Sitanggang, T.D.A. Characterization of Mechanical, Thermal, and Physical Properties of Polypropylene Composites with Rice Husk Filler Using Coupling Agent Maleic Anhydride. J. Teknol. Kim. Unimal 2023, 12, 216–230. [Google Scholar] [CrossRef]
- Rashiddy Wong, F.; Al-Biruni Mohd Adnan, U.I. Mechanical Properties of Rice Husk-Recycled Polypropylene Composite. J. Mech. Eng. 2023, 12, 45–61. [Google Scholar] [CrossRef]
- Choi, J.Y.; Jeon, J.H.; Lyu, J.H.; Park, J.; Kim, G.Y.; Chey, S.Y.; Quan, Y.-J.; Bhandari, B.; Prusty, B.G.; Ahn, S.-H. Current Applications and Development of Composite Manufacturing Processes for Future Mobility. Int. J. Precis. Eng. Manuf. Technol. 2023, 10, 269–291. [Google Scholar] [CrossRef]
- Meegan, J. Some of the Challenges Faced by the Composites Industry in Its Bid to Become More Sustainable. RSC Sustain. 2023, 1, 1737–1742. [Google Scholar] [CrossRef]
- Lokesh, K.S.; Ramachandra, C.G.; Mayya, D.S. Challenges Faced in Processing of Composites. In Structural Composite Materials; Springer: Berlin/Heidelberg, Germany, 2024; pp. 277–290. [Google Scholar]
- GOST 11645-2021; Plastics. Methods for Determination of the Melt Flow Rate of Thermoplastics. Interstate Council for Standardization, Metrology and Certification (ISC): Minsk, Belarus, 2021.
- GOST 11262-2017 (ISO 527-2:2012, MOD); Plastics. Tensile Testing Method for Molding and Extrusion Plastics. (Modified Adoption of ISO 527-2:2012). Interstate Council for Standardization, Metrology and Certification (ISC): Minsk, Belarus, 2012.
- GOST 9550-81; Plastics. Methods for Determination of Elastic Modulus in Tension, Compression and Bending. Interstate Council for Standardization, Metrology and Certification (ISC): Minsk, Belarus, 1981.
- GOST 19109-2017 (ISO 180:2000, MOD); Plastics. Determination of Izod Impact Strength. (Modified Adoption of ISO 180:2000). Interstate Council for Standardization, Metrology and Certification (ISC): Minsk, Belarus, 2017.
- GOST 15088-2014 (ISO 306:2004, MOD); Plastics. Method for Determination of Vicat Softening Temperature for Thermoplastics. (Modified Adoption of ISO 306:2004). Interstate Council for Standardization, Metrology and Certification (ISC): Minsk, Belarus, 2014.
- GOST 12021-2017 (ISO 75-2:2013); Plastics and Ebonite. Method for Determination of Deflection Temperature Under Load. Interstate Council for Standardization, Metrology and Certification (ISC): Minsk, Belarus, 2017.
- Volfson, S.I.; Musin, I.N. Theoretical Foundations of Polymer Processing; Kazan State Technological University: Kazan, Russian, 2005. [Google Scholar]
- Bolland, J.L.; Gee, G. Kinetic Studies in the Chemistry of Rubber and Related Materials. III. Thermochemistry and Mechanisms of Olefin Oxidation. Trans. Faraday Soc. 1946, 42, 244. [Google Scholar] [CrossRef]
- Gijsman, P.; Fiorio, R. Long Term Thermo-Oxidative Degradation and Stabilization of Polypropylene (PP) and the Implications for Its Recyclability. Polym. Degrad. Stab. 2023, 208, 110260. [Google Scholar] [CrossRef]
- Nasir, A.; Yasin, T.; Islam, A. Thermo-oxidative Degradation Behavior of Recycled Polypropylene. J. Appl. Polym. Sci. 2011, 119, 3315–3320. [Google Scholar] [CrossRef]
- Godovsky, Y.K. Thermophysical Methods for Studying Polymers; Springer: Berlin/Heidelberg, Germany, 1992. [Google Scholar]
- Piorkowska, E. Crystallization in Polymer Composites and Nanocomposites. In Handbook of Polymer Crystallization; Wiley: Hoboken, NJ, USA, 2013; pp. 379–398. [Google Scholar]
- Ignatov, I.; Mosin, O. Composition and Structural Properties of Fullerene Analogous Mineral Shungite. Mathematical Model of Interaction of Shungite with Water Molecules. Available online: https://cyberleninka.ru/article/n/sostav-i-strukturnye-svoystva-prirodnogo-fullerensoderzhaschego-minerala-shungita-matematicheskaya-model-vzaimodeystviya-shungita-s (accessed on 30 April 2014).
- Rosa, S.M.L.; Santos, E.F.; Ferreira, C.A.; Nachtigall, S.M.B. Studies on the Properties of Rice-Husk-Filled-PP Composites: Effect of Maleated PP. Mater. Res. 2009, 12, 333–338. [Google Scholar] [CrossRef]
- Shirvanimoghaddam, K.; Balaji, K.V.; Yadav, R.; Zabihi, O.; Ahmadi, M.; Adetunji, P.; Naebe, M. Balancing the Toughness and Strength in Polypropylene Composites. Compos. Part B Eng. 2021, 223, 109121. [Google Scholar] [CrossRef]
- Chen, X.; Li, Z.; Qiu, B.; Shi, J. Prediction and Evolution of Core-Shell Morphology and Their Effect on Mechanical Properties of PP Blends. J. Reinf. Plast. Compos. 2023, 44, 7–8. [Google Scholar] [CrossRef]
- Nandiyanto, A.B.D.; Hofifah, S.N.; Girsang, G.C.S.; Putri, S.R.; Budiman, B.A.; Triawan, F.; Al-Obaidi, A.S.M. The Effects of Rice Husk Particles Size as A Reinforcement Component on Resin-Based Brake Pad Performance: From Literature Review on the Use of Agricultural Waste as A Reinforcement Material, Chemical Polymerization Reaction of Epoxy Resin, to Experiments. Automot. Exp. 2021, 4, 68–82. [Google Scholar] [CrossRef]
- Fayzullin, I.Z.; Musin, I.N.; Wolfson, S.I. Effect of Filler Particle Size on the Properties of Wood-Polymer Composites. Bull. Kazan Technol. Univ. 2013, 16, 106–109. [Google Scholar]
- Ahn, G.C.; Jang, S.S.; Kwak, H.J.; Lee, S.R.; Oh, Y.K.; Park, K.K. Characteristics of Rice Hulls, Sawdust, Wood Shavings and Mixture of Sawdust and Wood Shavings, and Their Usefulness According to the Pen Location for Hanwoo Cattle. Asian-Australas. J. Anim. Sci. 2016, 29, 599–605. [Google Scholar] [CrossRef] [PubMed]
- Deng, H.; Reynolds, C.T.; Cabrera, N.O.; Barkoula, N.-M.; Alcock, B.; Peijs, T. The Water Absorption Behaviour of All-Polypropylene Composites and Its Effect on Mechanical Properties. Compos. Part B Eng. 2010, 41, 268–275. [Google Scholar] [CrossRef]
- Wang, L.; Guo, Y.; Chen, Y.; Chen, T.; Zhu, S.; Zhang, T.; Liu, S. Enhanced Mechanical and Water Absorption Properties of Rice Husk-Derived Nano-SiO2 Reinforced PHBV Composites. Polymers 2018, 10, 1022. [Google Scholar] [CrossRef]
- GOST R 59555-2021; National Standard of Russian Federation. Profile Products from Wood-Polymer Composite. Technical Specifications. Interstate Council for Standardization, Metrology and Certification (ISC): Minsk, Belarus, 2021.
- GB/T 24508-2020; Wood-Plastic Composite Flooring. Standard Category: B70 (Artificial Board). Standardization Administration of China (SAC): Beijing, China, 2020.
No | Rice Husk, % by Weight. | Polypropylene, % by Weight. | Irganox 1010, % by Weight |
---|---|---|---|
1 | Control sample | 99.9 | 0.1 |
2 | 10% | 89.9 | 0.1 |
3 | 20% | 79.9 | 0.1 |
4 | 30% | 69.9 | 0.1 |
5 | 40% | 59.9 | 0.1 |
6 | 50% | 49.9 | 0.1 |
7 | 60% | 39.9 | 0.1 |
Sample | , J/g | , % | |
---|---|---|---|
Control sample | 101.2 | 1 | 68.8 |
10% | 84.17 | 0.9 | 63.6 |
20% | 74.48 | 0.8 | 63.4 |
30% | 62.68 | 0.7 | 60.9 |
40% | 53.16 | 0.6 | 60.3 |
50% | 41.30 | 0.5 | 56.2 |
60% | 30.00 | 0.4 | 51.0 |
Indicator, Unit | Control Sample | 10% | 20% | 30% | 40% | 50% | 60% |
---|---|---|---|---|---|---|---|
Residual percentage after extraction, wt.% | 1.75 | 10.28 | 21.57 | 30.86 | 41.08 | 51.90 | 60.70 |
Indicator, Unit | Control Sample | 10% | 20% | 30% | 40% | 50% | 60% |
---|---|---|---|---|---|---|---|
The ratio of the area covered by microcracks to the total area of the image | 0.17% | 0.59% | 0.89% | 1.54% | 2.73% | 3.10% | 3.22% |
Sample | Minimum Newtonian Viscosity at a Shear Rate of 1.30 s−1, [Pa⋅s] | ||
---|---|---|---|
180 °C | 190 °C | 200 °C | |
Control sample | 650 | 545 | 400 |
10% | 695 | 620 | 460 |
20% | 880 | 725 | 625 |
30% | 1180 | 845 | 720 |
40% | 1310 | 900 | 850 |
50% | 2200 | 1520 | 1300 |
60% | 3090 | 2140 | 1750 |
Indicator, Unit | Standard Values Per GOST R 59555-2021 [68] * | Standard—GB/T 24508-2020 [69] ** | Obtained Value at 50 wt% | Obtained Value at 60 wt% |
---|---|---|---|---|
Density, g/cm3 | 1 | — | 1.14 | 1.19 |
Flexural strength, MPa | >30 | >20 | 33.7 | 31.3 |
Tensile strength MPa | >12 | — | 18 | 17.5 |
Water absorption 24 h, % | <2 | <2 | 0.6 | 2.2 |
Shore hardness, arbitrary units | >70 | >58 | 75 | 76 |
Elastic modulus MPa | — | >1800 | 2910 | 3360 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fayzullin, I.; Gorbachev, A.; Volfson, S.; Zhakypova, G.; Uderbayev, S.; Nakyp, A.; Akylbekov, N. Influence of Different Dosages of Rice Husk Particles on Thermal, Physical, Mechanical and Rheological Properties of Polypropylene-Based Composites. J. Compos. Sci. 2025, 9, 443. https://doi.org/10.3390/jcs9080443
Fayzullin I, Gorbachev A, Volfson S, Zhakypova G, Uderbayev S, Nakyp A, Akylbekov N. Influence of Different Dosages of Rice Husk Particles on Thermal, Physical, Mechanical and Rheological Properties of Polypropylene-Based Composites. Journal of Composites Science. 2025; 9(8):443. https://doi.org/10.3390/jcs9080443
Chicago/Turabian StyleFayzullin, Ilnur, Aleksandr Gorbachev, Svetoslav Volfson, Gulnur Zhakypova, Saken Uderbayev, Abdirakym Nakyp, and Nurgali Akylbekov. 2025. "Influence of Different Dosages of Rice Husk Particles on Thermal, Physical, Mechanical and Rheological Properties of Polypropylene-Based Composites" Journal of Composites Science 9, no. 8: 443. https://doi.org/10.3390/jcs9080443
APA StyleFayzullin, I., Gorbachev, A., Volfson, S., Zhakypova, G., Uderbayev, S., Nakyp, A., & Akylbekov, N. (2025). Influence of Different Dosages of Rice Husk Particles on Thermal, Physical, Mechanical and Rheological Properties of Polypropylene-Based Composites. Journal of Composites Science, 9(8), 443. https://doi.org/10.3390/jcs9080443