Studies on the Production of a Ground Silicate Composite Based on a Mineral Slag Binder with the Disposal of Industrial Waste
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
- -
- It has been established that, in terms of effective specific activity, gray drill cuttings and the proposed samples of local brown soils belong to the first radiation hazard group (<370 Bq/kg) and can be used in construction without restrictions;
- -
- It was experimentally determined that the introduction of brow sludge and local raw materials in an amount of 15–23% ensures the production of soil silicate concrete with a compressive strength of up to 3.0–3.5 MPa, which meets the requirements for road pavement bases of classes II and III;
- -
- With the help of exploratory and experimental studies, it was established that, regarding the dependence of the consumption of drill cuttings and local raw materials on the strength characteristics of soil silicate concrete, in particular, the strength indicators were maximized when the consumption of drill cuttings was in the range of 20 to 40%.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petrenko, E.S.; Vechkinzova, E.A.; Urazbekov, A.K. Context Analysis and Prospects of Development of the Mining and Metallurgical Industry of Kazakhstan. Ekon. Otnos. 2019, 9, 2661–2676. [Google Scholar] [CrossRef]
- Zharmenov, A.A. (Ed.) Waste: Ways of Minimization and Prevention; National Academy of Sciences of the Republic of Kazakhstan: Almaty, Kazakhstan, 2002; p. 132. [Google Scholar]
- Komarov, M.A.; Aliskerov, V.A.; Kusevich, V.I.; Zavertkin, V.L. Mining and Industrial Waste as an Additional Source of Mineral Raw Materials. Miner. Resour. Russ. Econ. Manag. 2007, 4, 3–9. [Google Scholar]
- Stolboushkin, A.Y.; Berdov, G.I. Resource-Saving Complex Processing of Mineral Technogenic Raw Materials in the Production of Building Materials. Izv. Vuzov. Constr. 2011, 1, 46–53. [Google Scholar]
- Berdov, G.I.; Mashkin, N.A. Promising Directions for Improving the Compositions and Technology of Building Materials Based on Mineral Binders. Izv. Vuzov. Constr. 2015, 4, 45–56. [Google Scholar]
- Evgeniev, I.E.; Karimov, B.B. Highways in the Environment; Transdornauka: Moscow, Russia, 1997; pp. 88–122. [Google Scholar]
- Amran, M.; Fediuk, R.; Murali, G.; Vatin, N.; Karelina, M.; Ozbakkaloglu, T.; Krishna, R.S.; Kumar, S.A.; Kumar, D.S.; Mishar, J. Rice Husk Ash-Based Concrete Composites: A Critical Review of Their Properties and Applications. Crystals 2021, 11, 168. [Google Scholar] [CrossRef]
- Andreev, E.E.; Tikhonov, O.N. Crushing, Grinding and Preparation of Raw Materials: Textbook; Publishing House of SPGGU: St. Petersburg, Russia, 2007; pp. 156–182. [Google Scholar]
- Donayev, A.; Kolesnikov, A.; Shapalov, S.; Sapargaliyeva, B.; Ivakhniyuk, G. Studies of waste from the mining and metallurgical industry, with the determination of its impact on the life of the population. News Natl. Acad. Sci. Repub. Kazakhstan Ser. Geol. Tech. Sci. 2022, 4, 55–68. [Google Scholar] [CrossRef]
- Kulikova, E.Y.; Balovtsev, S.V.; Skopintseva, O.V. Complex estimation of geotechnical risks in mine and underground construction. Sustain. Dev. Mt. Territ. 2023, 15, 7–16. [Google Scholar] [CrossRef]
- Skopintseva, O.V.; Ganova, S.D.; Buzin, A.A.; Fedotova, V.P. Measures to reduce dusting during loading and transportation of solid mineral resources. Gorn. Zhurnal 2019, 12, 76–79. [Google Scholar] [CrossRef]
- Bedov, A.I.; Gabitov, A.I.; Domarova, E.V.; Kolesnikov, A.S. Investigation of the stress-strain state of domical masonry vaults. Constr. Mater. Prod. 2023, 6, 6. [Google Scholar] [CrossRef]
- Kolesnikov, A.S.; Zhanikulov, N.N.; Syrlybekkyzy, S.; Kolesnikova, O.G.; Shal, A.L. Utilization of Waste from the Enrichment of Non-Ferrous Metal Ores as Secondary Mineral Raw Materials in the Production of Cement Clinker. Ecol. Ind. Russ. 2023, 27, 19–23. [Google Scholar] [CrossRef]
- Zhanikulov, N.N.; Khudyakova, T.M.; Taimasov, B.T.; Sarsenbayev, B.K.; Dauletiarov, M.S.; Kolesnikov, A.S.; Karshygayev, R.O. Receiving Portland Cement from Technogenic Raw Materials of South Kazakhstan. Eurasian Chem.-Technol. J. 2019, 21, 333–340. [Google Scholar] [CrossRef]
- Ibragimov, R.A.; Shakirzyanov, F.R.; Kayumov, R.A.; Korolev, E.V. Evaluation of the Influence of an Aggressive Environment on the Durability of the Cement Stone. Constr. Mater. Prod. 2024, 7, 4. [Google Scholar] [CrossRef]
- Zhangabay, N.; Suleimenov, U.; Utelbayeva, A.; Buganova, S. Experimental research of the stress-strain state of prestressed cylindrical shells taking into account temperature effects. Case Stud. Constr. Mater. 2022, 18, e01776. [Google Scholar] [CrossRef]
- Taimasov, B.T.; Sarsenbayev, B.K.; Khudyakova, T.M.; Kolesnikov, A.S.; Zhanikulov, N.N. Development and testing of low-energy-intensive technology of receiving sulphate-resistant and road portlandcement. Eurasian Chem.-Technol. J. 2017, 19, 347–355. [Google Scholar] [CrossRef]
- Ji, Y.; Li, E.; Zhu, G.; Wang, R.; Sha, Q. Influence of Solid Waste Material Content on the Properties of Steel Slag-Waste Clay Brick Ceramic Bricks. Coatings 2024, 14, 434. [Google Scholar] [CrossRef]
- Pukharenko, Y.V.; Khrenov, G.M.; Klyuev, S.V.; Khezhev, T.A.; Eshanzada, S.M. Design of Steel Fiber-Reinforced Concrete for Slip Forming. Constr. Mater. Prod. 2024, 7, 2. [Google Scholar] [CrossRef]
- Kim, A.S.; Akberdin, A.A.; Sultangaziev, R.B. Using Basalt Rocks for Agglomeration of Refractory Chromite Ores of Kazakhstan. Metallurgist 2020, 63, 1005–1012. [Google Scholar] [CrossRef]
- Kolesnikov, A.S.; Sergeeva, I.V.; Botabaev, N.E.; Al’zhanova, A.Z.; Ashirbaev, K.A. Chemical and phase transitions in oxidized manganese ore in the presence of carbon. Steel Transl. 2017, 47, 605–609. [Google Scholar] [CrossRef]
- Kulikova, A.A.; Kovaleva, A.M. Use of tailings of enrichment for laying of the developed space of mines. Mining Inf. Anal. Bull. 2021, 2-1, 144–154. [Google Scholar] [CrossRef]
- Fediuk, R. High-strength fibrous concrete of Russian Far East natural materials. IOP Conf. Ser. Mater. Sci. Eng. 2016, 116, 012020. [Google Scholar] [CrossRef]
- Stel’makh, S.A.; Beskopylny, A.N.; Shcherban’, E.M.; Mavzolevskii, D.V.; Drukarenko, S.P.; Chernil’nik, A.A.; Elshaeva, D.M.; Shilov, A.A. Influence of Corn Cob Ash Additive on the Structure and Properties of Cement Concrete. Constr. Mater. Prod. 2024, 7, 2. [Google Scholar] [CrossRef]
- Bulanov, P.E.; Vdovin, E.A.; Stroganov, V.F. Increasing the level of aging stability of bitumes modified by kaolinite. Mag. Civ. Eng. 2023, 8, 12413. [Google Scholar]
- Klyuev, S.V.; Slobodchikova, N.A.; Saidumov, M.S.; Abumuslimov, A.S.; Mezhidov, D.A.; Khezhev, T.A. Application of Ash and Slag Waste from Coal Combustion in the Construction of the Earth Bed of Roads. Constr. Mater. Prod. 2024, 7, 3. [Google Scholar] [CrossRef]
- Al-Kinani, A.M.; Thajeel, J.K.; Al-Umar, M.H.; Fattah, M.Y. Utilizing seismic techniques and dynamic field tests for soil dynamic response prediction in clay soils. Mag. Civ. Eng. 2024, 17, 12504. [Google Scholar]
- Teker Ercan, E.E.; Cwirzen, A.; Habermehl-Cwirzen, K. The Effects of Partial Replacement of Ground Granulated Blast Furnace Slag by Ground Wood Ash on Alkali-Activated Binder Systems. Materials 2023, 16, 5347. [Google Scholar] [CrossRef]
- Volokitina, I.; Bychkov, A.; Volokitin, A.; Kolesnikov, A. Natural Aging of Aluminum Alloy 2024 After Severe Plastic Deformation. Metallogr. Microstruct. Anal. 2023, 12, 564–566. [Google Scholar] [CrossRef]
- Fediuk, R.S.; Lesovik, V.S.; Vavrenyuk, S.V.; Zaiakhanov, M.Y.; Bituyev, A.V.; Klyuev, S.V.; Yu, K.; Lesovik, Y.R.; Bakatov, K.A. Composite cement materials for structures foundation strengthening. Mag. Civ. Eng. 2024, 17, 12701. [Google Scholar]
- Sapargaliyeva, B.; Suleimenov, U.; Abshenov, K.; Utelbayeva, A.; Baibolov, K.; Fediuk, R.; Arinova, D.; Duissenbekov, B.; Seitkhanov, A. Analysis of Stress-Strain State for a Cylindrical Tank Wall Defected Zone. Materials 2022, 15, 5732. [Google Scholar] [CrossRef]
- Yessengaliev, D.; Mukhametkhan, M.; Mukhametkhan, Y.; Zhabalova, G.; Kelamanov, B.; Kolesnikova, O.; Shyngysbayev, B.; Aikozova, L.; Kaskataeva, K.; Kuatbay, Y. Studies of the Possibility of Improving the Quality of Iron Ores and Processing of Technogenic Composite Iron-Containing Waste of Metallurgical Production. J. Compos. Sci. 2023, 7, 501. [Google Scholar] [CrossRef]
- Samuratov, Y.; Kelamanov, B.; Akuov, A.; Zhumagaliyev, Y.; Akhmetova, M. Smelting standard grades of manganese ferroalloys from agglomerated thermo-magnetic manganese concentrates. Metalurgija 2020, 59, 85–88. [Google Scholar]
- Yessenbayev, B.A.; Naukenova, A.S.; Shapalov, S.K.; Ramatullaeva, L.I.; Ivakhniyuk, G.K. Analysis of the impact of bauxite dumps on the environment and public health. MIAB Mining Inf. Anal. Bull. 2024, 3, 55–69. [Google Scholar]
- Kolesnikov, A.S.; Sapargaliyeva, B.O.; Bychkov, A.Y.; Alferyeva, Y.O.; Syrlybekkyzy, S.; Altybaeva, Z.K.; Nurshakhanova, L.K.; Seidaliyeva, L.K.; Suleimenova, B.S.; Zhidebayeva, A.E.; et al. Thermodynamic modeling of the formation of the main minerals of cement clinker and zinc fumes in the processing of toxic technogenic waste of the metallurgical industry. Rasayan J. Chem. 2022, 15, 2181–2187. [Google Scholar]
- Khudyakova, T.M.; Kolesnikova, O.G.; Zhanikulov, N.N.; Ashirbaev, H.A.; Kolesnikova, V.A. Low-Basicity Cement, Problems and Advantages of its Utilization. Refract. Ind. Ceram. 2021, 62, 369–374. [Google Scholar] [CrossRef]
- Naizabekov, A.B.; Latypova, M.A.; Fedorova, T.D.; Mamitova, A.D. Current Trends to Obtain Metals and Alloys with Ultrafine-Grained Structure. Prog. Phys. Met. 2022, 23, 629–657. [Google Scholar]
- Kulikova, E.Y.; Balovtsev, S.V. Risk control system for the construction of urban underground structures. IOP Conf. Ser. Mater. Sci. Eng. 2020, 962, 042020. [Google Scholar] [CrossRef]
- Muratov, B.A.; Shapalov, S.; Syrlybekkyzy, S.; Volokitina, I.; Zhunisbekova, D.; Takibayeva, G.; Nurbaeva, F.; Aubakirova, T.; Nurshakhanova, L.; Koishina, A. Physico-Chemical Study of the Possibility of Utilization of Coal Ash by Processing as Secondary Raw Materials to Obtain a Composite Cement Clinker. J. Compos. Sci. 2023, 7, 234. [Google Scholar] [CrossRef]
- Zhangabay, N.; Giyasov, A.; Bakhbergen, S.; Tursunkululy, T.; Kolesnikov, A. Thermovision study of a residential building under climatic conditions of South Kazakhstan in a cold period. Constr. Mater. Prod. 2024, 7, 1. [Google Scholar] [CrossRef]
- Filin, A.; Kolbina, I.; Seidaliyev, A.; Koibakova, S.; Mankesheva, O. Comparison of the Quality of Gas Equipment at Metallurgical and Coke-Chemical Enterprises and Production Plants. Pol. J. Environ. Stud. 2024, 33, 2999–3008. [Google Scholar] [CrossRef]
- Zhangabay, N.; Giyasov, A.; Ybray, S.; Tursunkululy, T.; Kolesnikov, A. Field thermovision study of externsl enclosure for multi-storey residential building under climatic conditions of Northern Kazakhstan. Constr. Mater. Prod. 2024, 7, 1–21. [Google Scholar] [CrossRef]
- Yessengaliyev, D.; Kelamanov, B.; Sariev, O.; Kuanalin, Y. Research of thermal analysis of nickel ore and mixture with carbon-containing reducing agents by non-isothermal method. Metalurgija 2024, 64, 344–346. [Google Scholar]
- Filin, A.E.; Kurnosov, I.Y.; Kolesnikova, L.A.; Ovchinnikova, T.I. Description of The Methodology for Conducting an Experiment on Dust Deposition of Mining and Metallurgical Production. Ugol 2022, 9, 67–72. [Google Scholar] [CrossRef]
- Razorenov, Y.I.; Yatsenko, E.A.; Goltsman, B.M. Building materials based on manmade waste of the mining industry and solid fuel energy—An environmental trend of the modern time. Gornyi Zhurnal. 2021, 11, 95–98. [Google Scholar] [CrossRef]
- Levitsky, I.A.; Pavlyukevich, Y.G.; Bogdan, E.O.; Kichkaylo, O.V. Production of ceramic gravel by using of galvanic wastewater sludge. Glass Ceram. 2013, 7, 23–27. [Google Scholar]
- Volokitina, I.E.; Volokitin, A.V.; Latypova, M.A.; Chigirinsky, V.V.; Kolesnikov, A.S. Effect of Controlled Rolling on the Structural and Phase Transformations. Prog. Phys. Met. 2023, 24, 132–156. [Google Scholar]
- Ufimtsev, V.M. Structural fired porous fillers based on technogenic raw materials. Constr. Mater. Equip. Technol. XXI Century 2013, 5, 25–29. [Google Scholar]
- Leismann, A. Utilization of hard-coal mining wastes and red mud for the production of expanded clay granulate. Keram. Z. 1999, 51, 26–31. [Google Scholar]
- Sigachev, N.P.; Konovalova, N.A.; Konnov, V.I.; Pankov, P.P.; Efimenko, N.S. Efficiency of using of ash and slag wastes from the Trans-Baikal Territory in the production of road cement soils. Ecol. Ind. Russ. 2015, 19, 24–27. [Google Scholar]
- Ying, P. Granulation and drying of fly-ash considered with the aid of a mathematical model. ZKG Int. Ed. 1984, 37, 72–79. [Google Scholar]
- Mousavi, M.; Bengar, H.A. Investigation of the effect of internal curing as a novel method for improvement of post-fire properties of high-performance concrete. Comput. Concr. 2024, 33, 309–324. [Google Scholar]
- Abdrakhimov, V.Z.; Abdrakhimova, E.S. Use of oil production wastes in expanded clay production. Ecol. Prod. 2012, 8, 52–55. [Google Scholar]
- Andreev, E.E. Crushing, Grinding, and Raw Material Preparation: Textbook; Publishing House of SPGGU: St. Petersburg, Russia, 2007; 439p, pp. 156–182. [Google Scholar]
- GOST 1532-81; Viscometers for Determination of Conditional Viscosity. Technical Specifications. Introduced 1982-01-01; Standards Publishing House: Moscow, Russia, 1981; 12p.
- Lazarev, A.N. Vibrational Spectra and Structure of Silicates; Nauka: Leningrad, Russia, 1968; p. 347. [Google Scholar]
- Vasilenko, T.A.; Saleh-Zhafer, A.Z. Physico-mechanical properties of expanded clay gravel obtained by using of calcium-containing technogenic materials. Mod. Probl. Sci. Educ. 2015, 1, 85. Available online: https://science-education.ru/en/article/view?id=19899 (accessed on 14 February 2025).
- Bolondi, A.; Andreoli, R. Expanded Inorganic Insulating Materials: Production, Characteristics and Application Areas. Termotec. Milano 1987, 41, 55–61. [Google Scholar]
- Knatko, M.V.; Scherbakova, E.V. Use perspectives for recycled raw material resources. Mag. Civ. Eng. 2009, 7, 55–56. [Google Scholar] [CrossRef]
- Tanutrov, I.N.; Sviridova, M.N.; Savenya, A.N. New technology of joint processing of technogenic wastes. News Univ. Non-Ferr. Metall. 2013, 1, 21–26. [Google Scholar]
- Starostina, I.V.; Simonov, M.M.; Pendyurin, E.A.; Besedina, I.N. Assessment of the toxicological properties of expanded clay gravel by using of ferrovanadium production sludge. Mod. Probl. Sci. Educ. 2014, 5. Available online: https://science-education.ru/en/article/view?id=14533 (accessed on 15 February 2025).
- Lebedev, M.S.; Strokova, V.V.; Karatsupa, S.V.; Dmitrieva, T.V. Designing of soil-concretes using the kursk magnetic anomaly technogenic raw and waste-lime-based binder for reinforcing of road pavements subgrades. World Appl. Sci. J. 2014, 30, 970–982. [Google Scholar]
- Gao, Z.; Yuan, B.; Qi, C.; Liu, J.; Zhu, Y.; Wu, S.; Wang, P.; Kong, Y.; Jin, H.; Mu, B. Multi-stage releasing water: The unique decomposition property makes attapulgite function as an unexpected clay mineral-based gas source in intumescent flame retardant. Compos. Part A Appl. Sci. Manuf. 2024, 178, 108014. [Google Scholar] [CrossRef]
- Marsh, A.T.; Velenturf, A.P.; Bernal, S.A. Circular Economy strategies for concrete: Implementation and integration. J. Clean. Prod. 2022, 362, 132486. [Google Scholar] [CrossRef]
- Martínez-García, R.; Jagadesh, P.; Fraile-Fernández, F.J.; Morán-del Pozo, J.M.; Juan-Valdés, A. Influence of design parameters on fresh properties of self-compacting concrete with recycled aggregate—A review. Materials 2020, 13, 5749. [Google Scholar] [CrossRef]
- An, S.; Wang, B.; Chen, W.; Yu, Z.; Fan, C. Preparation of geopolymer based on municipal solid waste incineration fly ash-phosphorus slag and its function for solidification of heavy metals. Waste Manag. 2024, 178, 186–198. [Google Scholar] [CrossRef]
- Ding, Y.; Dai, J.G.; Shi, C.J. Mechanical properties of alkali-activated concrete: A state-of-the-art review. Construct. Build. Mater. 2016, 127, 68–79. [Google Scholar] [CrossRef]
- Klyuev, S.V.; Kashapov, N.F.; Radaykin, O.V.; Sabitov, L.S.; Klyuev, A.V.; Shchekina, N.A. The Reliability Coefficient for Fibre Concrete Material. Constr. Mater. Prod. 2022, 5, 51–58. [Google Scholar] [CrossRef]
- Ameri, F.; Shoaei, P.; Zareei, S.A.; Behforouz, B. Geopolymers vs. alkali-activated materials (AAMs): A comparative study on durability, microstructure, and resistance to elevated temperatures of lightweight mortars. Constr. Build. Mater. 2019, 222, 49–63. [Google Scholar] [CrossRef]
- Provis, J.L. Alkali-activated materials. Cement Concr. Res. 2017, 114, 40–48. [Google Scholar] [CrossRef]
- Collins, F.G.; Sanjayan, J.G. Workability and mechanical properties of alkali activated slag concrete. Cement Concr. Res. 1999, 29, 455–458. [Google Scholar] [CrossRef]
Minerals | Content, % | ||
---|---|---|---|
From | Before | Average | |
Quartz | 47.4 | 58.0 | 53.6 |
Hydromica | 10.3 | 24.5 | 17.2 |
Feldspars | 7.1 | 14.8 | 10.7 |
Kaolinite, montmorillonite | 0.0 | 8.5 | 5.3 |
Carbonates | 0.7 | 10.8 | 4.0 |
Pyrite, marcasite | 1.9 | 4.0 | 2.8 |
Muscovite, biotite, chlorite | 0.0 | 8.1 | 2.2 |
Iron oxides and hydroxides | 0.6 | 1.9 | 1.3 |
Titanium minerals | 0.2 | 1.0 | 0.8 |
organic matter | 0.2 | 1.5 | 0.8 |
Apatite | 0.2 | 0.5 | 0.3 |
Zircon, garnet, topaz, epidote | 0.1 | 2.2 | 0.9 |
No. | Sample Name | Measured Parameters (Minus Natural Background) | ||
---|---|---|---|---|
α-Radiation, disp/(min × cm2) | β-Radiation, disp/(min × cm2) | γ-Radiation, disp/(min × cm2) | ||
1 | Drill cuttings (gray clay) | 48 | 12 | Does not exceed natural background |
2 | Brown clay | Does not exceed natural background | 3 | Does not exceed natural background |
Note: analysis results apply only to tested samples |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Auyesbek, S.; Sarsenbayev, B.; Lesovik, V.; Kolesnikova, O.; Begentayev, M.; Kuldeyev, E.; Kolesnikov, A.; Tulaganov, B.; Sauganova, G.; Zhumayev, Z. Studies on the Production of a Ground Silicate Composite Based on a Mineral Slag Binder with the Disposal of Industrial Waste. J. Compos. Sci. 2025, 9, 225. https://doi.org/10.3390/jcs9050225
Auyesbek S, Sarsenbayev B, Lesovik V, Kolesnikova O, Begentayev M, Kuldeyev E, Kolesnikov A, Tulaganov B, Sauganova G, Zhumayev Z. Studies on the Production of a Ground Silicate Composite Based on a Mineral Slag Binder with the Disposal of Industrial Waste. Journal of Composites Science. 2025; 9(5):225. https://doi.org/10.3390/jcs9050225
Chicago/Turabian StyleAuyesbek, Sultan, Bakhitzhan Sarsenbayev, Valeriy Lesovik, Olga Kolesnikova, Meiram Begentayev, Erzhan Kuldeyev, Alexandr Kolesnikov, Bakhrom Tulaganov, Gaukhar Sauganova, and Zholdybay Zhumayev. 2025. "Studies on the Production of a Ground Silicate Composite Based on a Mineral Slag Binder with the Disposal of Industrial Waste" Journal of Composites Science 9, no. 5: 225. https://doi.org/10.3390/jcs9050225
APA StyleAuyesbek, S., Sarsenbayev, B., Lesovik, V., Kolesnikova, O., Begentayev, M., Kuldeyev, E., Kolesnikov, A., Tulaganov, B., Sauganova, G., & Zhumayev, Z. (2025). Studies on the Production of a Ground Silicate Composite Based on a Mineral Slag Binder with the Disposal of Industrial Waste. Journal of Composites Science, 9(5), 225. https://doi.org/10.3390/jcs9050225