Design of a Copolymer-Reinforced Composite Material for Leaf Springs Inside the Elastic Suspension Systems of Light-Duty Trucks
Abstract
:1. Introduction
2. Materials and Methods
Experimental Procedure
3. Results
3.1. Experimental Test Results
3.1.1. Tensile Strength Test Results
3.1.2. Impact Test Results
3.1.3. Hardness Test Results
3.1.4. Natural Frequency Test Results
3.1.5. Damped Frequency Test Results
3.1.6. Logarithmic Test Results
3.1.7. Damping Ration Test Results
3.2. Optimization of the Experimental Results
- Y —response variable;
- β0 —intercept;
- β1, β2, βe —coefficients of the factors x1, x2, xe;
- εf —error term.
- ;
- .
4. Finite Element Analysis of the Composite Material
5. Finite Element Analysis Results
6. Weight Reduction in the Composite Material
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sivasankar, A.; Ramanathan, B. Design and Numerical Investigation of Static and Dynamic Loading Characters of Heterogeneous Model Leaf Spring. Int. J. Mech. Eng. Res. 2015, 5, 143–162. [Google Scholar]
- Triveni, Z.; Babu, B.A. Finite Element Analysis on Leaf Spring Made of Composite Material. Int. J. Adv. Sci. Res. Eng. 2016, 5, 542–552. [Google Scholar]
- Nešić, N.; Simonović, J.; Blagojević, M.; Milojević, S.; Jović, S. Vehicle Suspension System with Integrated Inerter—Extended Analysis. IOP Conf. Ser. Mater. Sci. Eng. 2022, 1271, 012030. [Google Scholar] [CrossRef]
- Noronha, B.; Yesudasan, S.; Chacko, S. Static and Dynamic Analysis of Automotive Leaf Spring: A Comparative Study of Various Materials Using ANSYS. J. Fail. Anal. Preven 2020, 20, 804–818. [Google Scholar] [CrossRef]
- Edan Kader, E.; Adwan, R.; Yousuf Zedan, L. Fabrication of hybrid composite materials leaf spring. J. Mech. Eng. Res. Dev. 2021, 44, 132–140. [Google Scholar]
- Ma, L.; He, J.; Gu, Y.; Zhang, Z.; Yu, Z.; Zhou, A.; Tam, L.-H.; Wu, C. Structure Design of GFRP Composite Leaf Spring: An Experimental and Finite Element Analysis. Polymers 2021, 13, 1193. [Google Scholar] [CrossRef]
- Oztoprak, N.; Gunes, M.; Tanoglu, M.; Aktas, E.; Egilmez, O.; Senocak, C.; Kulac, G. Developing polymer composite-based leaf spring systems for automotive industry. Sci. Eng. Compos. Mater. 2018, 25, 1167–1176. [Google Scholar] [CrossRef]
- Loganathan, T.G.; Kumar, K.V.; Madhu, S. Flexural and fatigue of a composite leaf spring using finite element analysis. Mater. Today Proc. 2020, 22, 1014–1019. [Google Scholar] [CrossRef]
- Varma, N.; Ahuje, R.; Vijayakumar, T.; Kannan, C. Design and analysis of composite mono leaf spring for passenger cars. Mater. Today Proc. 2021, 46, 7090–7098. [Google Scholar] [CrossRef]
- Krall, S.; Zemann, R. Investigation of the Dynamic Behaviour of CFRP Leaf Springs. Procedia Eng. 2015, 100, 646–655. [Google Scholar] [CrossRef]
- Howida, M.; Aly, M.F.; Shokry, A. Numerical and Experimental Characterization of Composite Leaf Spring Subjected to Bending. J. Mech. Eng. Res. Dev. 2020, 43, 371–383. [Google Scholar]
- Adwan, R.; Edan Kader, E.; Yousuf Zedan, L. Experimental analysis of composite materials leaf spring used in automotive. Diyala J. Eng. Sci. 2021, 14, 26–36. [Google Scholar] [CrossRef]
- Kader, E.E.; Abed, A.M.; Asaad, L.M. Structural properties of Epoxy–polysulfide copolymer reinforced with silicon carbide powder. J. Mech. Eng. Res. Develop. 2021, 44, 289–295. [Google Scholar]
- Radojković, M.; Stojanović, B.; Milojević, S.; Marić, D.; Savić, S.; Skulić, A.; Krstić, B. Square Openings as Sources of Stress Concentration in Parts of Machines and Devices. Teh. Vjesn. 2023, 30, 474–480. [Google Scholar] [CrossRef]
- Milojević, S.; Savić, S.; Mitrović, S.; Marić, D.; Krstić, B.; Stojanović, B.; Popović, V. Solving the Problem of Friction and Wear in Auxiliary Devices of Internal Combustion Engines on the Example of Reciprocating Air Compressor for Vehicles. Teh. Vjesn. 2023, 30, 122–130. [Google Scholar] [CrossRef]
- Suhas, J.D.Q.; Hanumanthraya, R.; Vaishak, N.L.; Davanageri, M.B. Investigation on different Compositions of E-Glass/Epoxy Composite and its application in Leaf Spring. IOSR-JMCE 2014, 11, 74–80. [Google Scholar] [CrossRef]
- Zhou, J.; Hu, C.; Wang, Z.; Ren, Z.; Wang, X.; Mao, K. Study on dynamic characteristics of leaf spring system in vibration screen. J. Low Freq. Noise Vib. Act. Control. 2021, 40, 1818–1832. [Google Scholar] [CrossRef]
- Milojević, S.; Glišović, J.; Savić, S.; Bošković, G.; Bukvić, M.; Stojanović, B. Particulate Matter Emission and Air Pollution Reduction by Applying Variable Systems in Tribologically Optimized Diesel Engines for Vehicles in Road Traffic. Atmosphere 2024, 15, 184. [Google Scholar] [CrossRef]
- Edan, E.; Al-Ezzi, A.S. Optimization and analysis of SiC reinforced copolymer blend composite structural springs. Proc. Inst. Mech. Eng. Part E J. Process Mech. Eng. 2023. [Google Scholar] [CrossRef]
- Milojević, S.; Stojanović, B. Determination of tribological properties of aluminum cylinder by application of Taguchi method and ANN-based model. J. Braz. Soc. Mech. Sci. Eng. 2018, 40, 571. [Google Scholar] [CrossRef]
- Krishnaiah, K.; Shahabudeen, P. Applied Design of Experiments and Taguchi Method; PHI Learning Pvt. Ltd.: New Delhi, India, 2012; pp. 22–27. [Google Scholar]
- Mittal, M. Application of Taguchi Method for Optimization of Process Parameters in Improving the Productivity of Corrugation Operation. Int. J. Res. 2015, 2, 537–545. [Google Scholar]
- Milojevic, S.; Pesic, R. Theoretical and experimental analysis of a CNG cylinder rack connection to a bus roof. Int. J. Automot. Technol. 2012, 13, 497–503. [Google Scholar] [CrossRef]
- Borhade, A.P.; Jayant, T.P. Dynamic Analysis of Steel Leaf Spring. Int. Res. J. Eng. Tech. 2014, 3, 306–310. [Google Scholar]
- Elsheltat, S.; Alshara, A.; Elshara, W. Modeling and Finite Element Analysis of Leaf Spring Using Pro-Engineer and ANSYS Softwares. In Proceedings of the First Conference for Engineering Sciences and Technology (CEST-2018), Garaboulli, Libya, 25–27 September 2018. [Google Scholar]
- Kurniawan, P.; Andoko, A.; Sunu, P.W. Leaf spring type simulation with finite element method approach. IOP Conf. Ser. Mater. Sci. Eng. 2021, 1034, 012015. [Google Scholar] [CrossRef]
- Karim, A.A.; Kader, E.E.; Hamod, A.A.; Abdulrahman, A.J. Mechanical properties of a hybrid composite material (epoxy-polysulfide rubber) reinforced with fibres. IOP Conf. Ser. Mater. Sci. Eng. 2018, 433, 012050. [Google Scholar] [CrossRef]
- Khaleel, H.H.; Assaad, A.S.; Noor, H.D.; Nawfel, M.B. Modeling and analysis of leaf spring using finite elements method. Int. J. Mech. Eng. Technol. 2018, 9, 48–56. [Google Scholar]
- Mantilla, D.; Nelson, A.; Oscar, A. Optimal design of leaf springs for vehicle suspensions under cyclic conditions. Ingeniare. Rev. Chil. Ing. 2022, 30, 23–36. [Google Scholar] [CrossRef]
- Gajević, S.; Marković, A.; Milojević, S.; Ašonja, A.; Ivanović, L.; Stojanović, B. Multi-Objective Optimization of Tribological Characteristics for Aluminum Composite Using Taguchi Grey and TOPSIS Approaches. Lubricants 2024, 12, 171. [Google Scholar] [CrossRef]
Property | Epoxy | PS | Alumina |
---|---|---|---|
Color | Light yellow | Black | Ivory |
Density (g/cm3) | 1.1 under 20 °C | 1.4 | 3.89 |
Flexural strength (MPa) | 128–146 | 50 | 379 |
Elastic modulus (GPa) | 3.2–3.5 | 3.7–5 | 375 |
Poisson’s ratio (-) | 0.3 | 0.25 | 0.22 |
Compressive strength (MPa) | 52 | 20–100 | 2600 |
Tensile strength (MPa) | 80–90 | 8.3 | 250 |
Hardness (Shore hardness; D scale) | 73 | 42 | 144 |
Maximal temperature without load (°C) | 108–112 | (−50)–95 | 1750 |
Coefficient of thermal expansion (×10−6/°) | 60–80 | 55–60 | 8.4 |
Specific gravity (-) | 1.35 | 1.35 | 3.7 |
Failure strain (%) | 5–6 | 550 | - |
Sample ID | Epoxy (%) | PS (%) | Alumina (%) |
---|---|---|---|
N1 | 90 | 10 | 0 |
N2 | 80 | 20 | 0 |
N3 | 70 | 30 | 0 |
N4 | 60 | 40 | 0 |
N5 | 50 | 50 | 0 |
N1-AL | 80 | 10 | 10 |
N2-AL | 70 | 20 | 10 |
N3-AL | 60 | 30 | 10 |
N4-AL | 50 | 40 | 10 |
N5-AL | 40 | 50 | 10 |
Sample ID | Maximum Stress (MPa) | Modulus of Rupture (×108 MPa) | Maximum Strain Percentage (%) |
---|---|---|---|
N1 | 85 | 5.66 | 15 |
N2 | 50 | 3.04 | 23 |
N3 | 65 | 1.91 | 33 |
N4 | 53 | 1.23 | 40 |
N5 | 48 | 1.04 | 43 |
N1-AL | 145 | 14.5 | 10 |
N2-AL | 131 | 7.27 | 18 |
N3-AL | 117 | 3.9 | 30 |
N4-AL | 105 | 3.3 | 31 |
N5-AL | 101 | 3.00 | 38 |
ANOVA Results (Natural Frequency) | ANOVA Results (Damped Frequency) | ||||||||||
Source | DF | AdjSS | AdjMS | F-Value | p-Value | Source | DF | AdjSS | AdjMS | F-Value | p-Value |
Epoxy | 4 | 36.310 | 9.0774 | 28.75 | 0.000 | Epoxy | 4 | 17.50 | 4.375 | 9.9 | 0.001 |
PS | 4 | 201.630 | 50.4074 | 159.65 | 0.000 | PS | 4 | 209.3 | 52.32 | 118 | 0.000 |
AL | 4 | 0.354 | 0.0884 | 0.28 | 0.08 | AL | 4 | 0.366 | 0.091 | 0.21 | 0.093 |
Error | 12 | 3.789 | 0.3157 | Error | 12 | 5.305 | 0.442 | ||||
Total | 24 | 36.310 | 9.0774 | 28.75 | 0.000 | Total | 24 | 232.4 | |||
ANOVA Results (Damping Ratio) | ANOVA Results (Logarithmic Decrement) | ||||||||||
Source | DF | AdjSS | AdjMS | F-Value | p-Value | Source | DF | AdjSS | AdjMS | F-Value | p-Value |
Epoxy | 4 | 0.0008 | 0.0002 | 16.0 | 0.00 | Epoxy | 4 | 0.0177 | 0.00443 | 20.58 | 0.000 |
PS | 4 | 0.0039 | 0.0009 | 75.9 | 0.00 | PS | 4 | 0.3443 | 0.08607 | 0.69 | 0.061 |
AL | 4 | 0.0003 | 0.00001 | 0.75 | 0.057 | AL | 4 | 0.0114 | 0.00286 | ||
Error | 12 | 0.00015 | 0.00001 | Error | 12 | 0.0501 | 0.00418 | ||||
Total | 24 | 0.00498 | 0.00112 | Total | 24 | 0.4237 | |||||
ANOVA Results (Impact Strength) | ANOVA Results (Hardness) | ||||||||||
Source | DF | AdjSS | AdjMS | F-Value | p-Value | Source | DF | AdjSS | AdjMS | F-Value | p-Value |
Epoxy | 4 | 6455 | 1613.76 | 24.59 | 0.000 | Epoxy | 4 | 4997 | 1249 | 131 | 0.00 |
PS | 4 | 2346 | 586.66 | 8.94 | 0.001 | PS | 4 | 2155 | 538 | 56 | 0.00 |
AL | 4 | 65.44 | 16.36 | 0.25 | 0.090 | AL | 4 | 17 | 4 | 0.4 | 0.06 |
Error | 12 | 787.52 | 65.63 | Error | 12 | 114 | 9 | ||||
Total | 24 | 9653.96 | 2282.41 | Total | 24 | 7283 | 1800 |
Parameter | Value |
---|---|
Vehicle weight (N) | 1400 kg × 9.81 m/s2 = 13,734 |
Additional four-seat weight (N) | 70 × 4 = 280 |
Total weight (N) | 14,014 |
Applied weight on multi-leaf system spring (N) | 14,014/4 = 3503.5 |
Solid work leaf spring applied load (N) | 4000 |
Total length of main leaf, between eye centers (mm) | 1200 |
Length of each leaf (first/second/third/fourth) (mm) | 1150/1150/700/600 |
Leaf width (mm) | 60 |
Leaf thickness (mm) | 8 |
Model Reference | Properties | Components |
---|---|---|
Name: composite (1) (5) | SolidBody1(Cut-Etrude1)(Leaf1-1) | |
Model type: linear elastic isotropic | SolidBody1(Cut-Etrude1)(Leaf2-1) | |
Failure criterion: Max von Mises stress | SolidBody1(Cut-Etrude1)(Leaf3-2) | |
Yield strength: 9 × 108 Pa | SolidBody1(Cut-Etrude1)(Leaf4-1) | |
Tensile strength: 1.31 × 1010 Pa | SolidBody1(Cut-Extrude1)(box-1) | |
Compressive strength: 1.3 × 1010 Pa | SolidBody1(Cut-Etrude1)(mainleaf-1) | |
Elastic modulus: 7.27 × 108 Pa | ||
Poisson’s ratio: 0.3 | ||
Mass density: 1.429 kg/m3 | ||
Shear modulus: 3.189 × 108 Pa | ||
Damping ratio: 0.075 |
Mode No. | Frequency (rad/s) | Frequency (Hz) | Period (s) |
---|---|---|---|
1 | 2992 | 476.19 | 0.0021 |
2 | 6753.9 | 1074.9 | 0.00093 |
3 | 10,901 | 1735 | 0.000576 |
4 | 12,691 | 2019.9 | 0.000495 |
5 | 17,341 | 2759.8 | 0.000362 |
Material | Density (kg/m3) |
---|---|
N1 | 1.125 |
N2 | 1.15 |
N3 | 1.175 |
N4 | 1.2 |
N5 | 1.225 |
N1-AL | 1.404 |
N2-AL | 1.429 |
N3-AL | 1.454 |
N4-AL | 1.479 |
N5-AL | 1.504 |
Solid Bodies | Volumetric Properties of Steel | Volumetric Properties of Composite Material | Comp. |
---|---|---|---|
Cut-Extrude1 | Mass (kg): 3.44094 | Mass (kg): 0.638584 | Leaf1.SLDPRT |
Volume (m3): 0.00044 | Volume (m3): 0.00044 | ||
Density (kg/m3): 7700 | Density (kg/m3): 1429 | ||
Weight (N): 33.7212 | Weight (N): 6.25813 | ||
Cut-Extrude1 | Mass (kg): 3.21978 | Mass (kg): 0.59754 | Leaf2.SLDPRT |
Volume (m3): 0.00041 | Volume (m3): 0.00041 | ||
Density (kg/m3): 7700 | Density (kg/m3): 1429 | ||
Weight (N): 31.5538 | Weight (N): 5.85589 | ||
Cut-Extrude1 | Mass (kg): 2.67592 | Mass (kg): 0.496608 | Leaf3.SLDPRT |
Volume (m3): 0.00034 | Volume (m3): 0.00034 | ||
Density (kg/m3): 7700 | Density (kg/m3): 1429 | ||
Weight (N): 26.224 | Weight (N): 4.86676 | ||
Cut-Extrude1 | Mass (kg): 2.48378 | Mass (kg): 0.46095 | Leaf4.SLDPRT |
Volume (m3): 0.000322 | Volume (m3): 0.00032 | ||
Density (kg/m3): 7700 | Density (kg/m3): 1429 | ||
Weight (N): 24.341 | Weight (N): 4.51731 | ||
Cut-Extrude1 | Mass (kg): 1.256 | Mass (kg): 0.233094 | Box.SLDPRT |
Volume (m3): 0.00016 | Volume (m3): 0.00016 | ||
Density (kg/m3): 7700 | Density (kg/m3): 1429 | ||
Weight (N): 12.3088 | Weight (N): 2.28432 | ||
Mass (kg): 5.03329 | Mass (kg): 0.934101 | MainLeaf.SLDPRT | |
Volume (m3): 0.00065 | Volume (m3): 0.00065 | ||
Density (kg/m3): 7700 | Density (kg/m3): 1429 | ||
Weight (N): 49.3263 | Weight (N): 9.15419 |
Mode No. | Frequency (Hz) | X Direction | Y Direction | Z Direction |
---|---|---|---|---|
1 | 476.19 | 0.86375 | 5.449 × 10−7 | 5.0924 × 10−6 |
2 | 1074.9 | 1.5279 × 10−5 | 3.984 × 10−7 | 0.2436 × 10−6 |
3 | 1735 | 2.3441 × 10−7 | 0.7351 | 1.0623 × 10−6 |
4 | 2019.9 | 4.4779 × 10−7 | 0.0001906 | 3.8658 × 10−6 |
5 | 2759.8 | 2.6258 × 10−6 | 0.2019 | 9.6323 × 10−6 |
Sum X = 0.86376 | Sum Y = 0.93719 | Sum Z = 0.24362 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kader, E.E.; Abed, A.M.; Radojković, M.; Savić, S.; Milojević, S.; Stojanović, B. Design of a Copolymer-Reinforced Composite Material for Leaf Springs Inside the Elastic Suspension Systems of Light-Duty Trucks. J. Compos. Sci. 2025, 9, 227. https://doi.org/10.3390/jcs9050227
Kader EE, Abed AM, Radojković M, Savić S, Milojević S, Stojanović B. Design of a Copolymer-Reinforced Composite Material for Leaf Springs Inside the Elastic Suspension Systems of Light-Duty Trucks. Journal of Composites Science. 2025; 9(5):227. https://doi.org/10.3390/jcs9050227
Chicago/Turabian StyleKader, Ekhlas Edan, Akram Mahde Abed, Mladen Radojković, Slobodan Savić, Saša Milojević, and Blaža Stojanović. 2025. "Design of a Copolymer-Reinforced Composite Material for Leaf Springs Inside the Elastic Suspension Systems of Light-Duty Trucks" Journal of Composites Science 9, no. 5: 227. https://doi.org/10.3390/jcs9050227
APA StyleKader, E. E., Abed, A. M., Radojković, M., Savić, S., Milojević, S., & Stojanović, B. (2025). Design of a Copolymer-Reinforced Composite Material for Leaf Springs Inside the Elastic Suspension Systems of Light-Duty Trucks. Journal of Composites Science, 9(5), 227. https://doi.org/10.3390/jcs9050227