Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,104)

Search Parameters:
Keywords = situational awareness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3987 KB  
Article
Low-Latency Autonomous Surveillance in Defense Environments: A Hybrid RTSP-WebRTC Architecture with YOLOv11
by Juan José Castro-Castaño, William Efrén Chirán-Alpala, Guillermo Alfonso Giraldo-Martínez, José David Ortega-Pabón, Edison Camilo Rodríguez-Amézquita, Diego Ferney Gallego-Franco and Yeison Alberto Garcés-Gómez
Computers 2026, 15(1), 62; https://doi.org/10.3390/computers15010062 (registering DOI) - 16 Jan 2026
Abstract
This article presents the Intelligent Monitoring System (IMS), an AI-assisted, low-latency surveillance platform designed for defense environments. The study addresses the need for real-time autonomous situational awareness by integrating high-speed video transmission with advanced computer vision analytics in constrained network settings. The IMS [...] Read more.
This article presents the Intelligent Monitoring System (IMS), an AI-assisted, low-latency surveillance platform designed for defense environments. The study addresses the need for real-time autonomous situational awareness by integrating high-speed video transmission with advanced computer vision analytics in constrained network settings. The IMS employs a hybrid transmission architecture based on RTSP for ingestion and WHEP/WebRTC for distribution, orchestrated via MediaMTX, with the objective of achieving end-to-end latencies below one second. The methodology includes a comparative evaluation of video streaming protocols (JPEG-over-WebSocket, HLS, WebRTC, etc.) and AI frameworks, alongside the modular architectural design and prolonged experimental validation. The detection module integrates YOLOv11 models fine-tuned on the VisDrone dataset to optimize performance for small objects, aerial views, and dense scenes. Experimental results, obtained through over 300 h of operational tests using IP cameras and aerial platforms, confirmed the stability and performance of the chosen architecture, maintaining latencies close to 500 ms. The YOLOv11 family was adopted as the primary detection framework, providing an effective trade-off between accuracy and inference performance in real-time scenarios. The YOLOv11n model was trained and validated on a Tesla T4 GPU, and YOLOv11m will be validated on the target platform in subsequent experiments. The findings demonstrate the technical viability and operational relevance of the IMS as a core component for autonomous surveillance systems in defense, satisfying strict requirements for speed, stability, and robust detection of vehicles and pedestrians. Full article
Show Figures

Figure 1

14 pages, 1868 KB  
Article
Stand Properties Relate to the Accuracy of Remote Sensing of Ips typographus L. Damage in Heterogeneous Managed Hemiboreal Forest Landscapes: A Case Study
by Agnis Šmits, Jordane Champion, Ilze Bargā, Linda Gulbe-Viļuma, Līva Legzdiņa, Elza Gricjus and Roberts Matisons
Forests 2026, 17(1), 121; https://doi.org/10.3390/f17010121 - 15 Jan 2026
Abstract
Under the intensifying water shortages in the vegetation season, early identification of Ips typographus L. damage is crucial for preventing wide outbreaks, which undermine the economic potential of commercial stands of Norway spruce (Picea abies Karst.) across Europe. For this purpose, remote [...] Read more.
Under the intensifying water shortages in the vegetation season, early identification of Ips typographus L. damage is crucial for preventing wide outbreaks, which undermine the economic potential of commercial stands of Norway spruce (Picea abies Karst.) across Europe. For this purpose, remote sensing based on satellite images is considered one of the most efficient methods, particularly in homogenous and wide forested landscapes. However, under highly heterogeneous seminatural managed forest landscapes in lowland Central and Northern Europe, as illustrated by the eastern Baltic region and Latvia in particular, the efficiency of such an approach can lack the desired accuracy. Hence, the identification of smaller damage patches by I. typographus, which can act as a source of wider outbreaks, can be overlooked, and situational awareness can be further aggravated by infrastructure artefacts. In this study, the accuracy of satellite imaging for the identification of I. typographus damage was evaluated, focusing on the occurrence of false positives and particularly false negatives obtained from the comparison with UAV imaging. Across the studied landscapes, correct or partially correct identification of damage patches larger than 30 m2 occurred in 73% of cases. Still, the satellite image analysis of the highly heterogeneous landscape resulted in quite a common occurrence of false negatives (up to one-third of cases), which were related to stand and patch properties. The high rate of false negatives, however, is crucial for the prevention of outbreaks, as the sources of outbreaks can be underestimated, burdening prompt and hence effective implication of countermeasures. Accordingly, elaborating an analysis of satellite images by incorporating stand inventory data could improve the efficiency of early detection systems, especially when coupled with UAV reconnaissance of heterogeneous landscapes, as in the eastern Baltic region. Full article
Show Figures

Figure 1

21 pages, 785 KB  
Article
Carbon Farming in Türkiye: Challenges, Opportunities and Implementation Mechanism
by Abdüssamet Aydın, Fatma Köroğlu, Evan Alexander Thomas, Carlo Salvinelli, Elif Pınar Polat and Kasırga Yıldırak
Sustainability 2026, 18(2), 891; https://doi.org/10.3390/su18020891 - 15 Jan 2026
Abstract
Carbon farming represents a strategic approach to enhancing agricultural sustainability while reducing greenhouse gas (GHG) emissions. In Türkiye, agriculture accounted for approximately 14.9% of national GHG emissions in 2023, dominated by methane (CH4) and nitrous oxide (N2O). By increasing [...] Read more.
Carbon farming represents a strategic approach to enhancing agricultural sustainability while reducing greenhouse gas (GHG) emissions. In Türkiye, agriculture accounted for approximately 14.9% of national GHG emissions in 2023, dominated by methane (CH4) and nitrous oxide (N2O). By increasing carbon storage in soils and vegetation, carbon farming can improve soil health, water retention, and climate resilience, thereby contributing to mitigation efforts and sustainable rural development. This study reviews and synthesizes international and national evidence on carbon farming mechanisms, practices, payment models, and adoption enablers and barriers, situating these insights within Türkiye’s agroecological and institutional context. The analysis draws on a systematic review of peer-reviewed literature, institutional reports, and policy documents published between 2015 and 2025. The findings indicate substantial mitigation potential from soil-based practices and livestock- and manure-related measures, yet limited uptake due to low awareness, capacity constraints, financial and administrative barriers, and regulatory gaps, highlighting the need for region-specific approaches. To support implementation and scaling, the study proposes a policy-oriented, regionally differentiated and digitally enabled MRV framework and an associated implementation pathway designed to reduce transaction costs, enhance farmer participation, and enable integration with emerging carbon market mechanisms. Full article
Show Figures

Figure 1

21 pages, 10154 KB  
Article
Sea Ice Concentration Retrieval in the Arctic and Antarctic Using FY-3E GNSS-R Data
by Tingyu Xie, Cong Yin, Weihua Bai, Dongmei Song, Feixiong Huang, Junming Xia, Xiaochun Zhai, Yueqiang Sun, Qifei Du and Bin Wang
Remote Sens. 2026, 18(2), 285; https://doi.org/10.3390/rs18020285 - 15 Jan 2026
Abstract
Recognizing the critical role of polar Sea Ice Concentration (SIC) in climate feedback mechanisms, this study presents the first comprehensive investigation of China’s Fengyun-3E(FY-3E) GNOS-II Global Navigation Satellite System Reflectometry (GNSS-R) for bipolar SIC retrieval. Specifically, reflected signals from multiple Global Navigation Satellite [...] Read more.
Recognizing the critical role of polar Sea Ice Concentration (SIC) in climate feedback mechanisms, this study presents the first comprehensive investigation of China’s Fengyun-3E(FY-3E) GNOS-II Global Navigation Satellite System Reflectometry (GNSS-R) for bipolar SIC retrieval. Specifically, reflected signals from multiple Global Navigation Satellite Systems (GNSS) are utilized to extract characteristic parameters from Delay Doppler Maps (DDMs). By integrating regional partitioning and dynamic thresholding for sea ice detection, a Random Forest Regression (RFR) model incorporating a rolling-window training strategy is developed to estimate SIC. The retrieved SIC products are generated at the native GNSS-R observation resolution of approximately 1 × 6 km, with each SIC estimate corresponding to an individual GNSS-R observation time. Owing to the limited daily spatial coverage of GNSS-R measurements, the retrieved SIC results are further aggregated into monthly composites for spatial distribution analysis. The model is trained and validated across both polar regions, including targeted ice–water boundary zones. Retrieved SIC estimates are compared with reference data from the OSI SAF Special Sensor Microwave Imager Sounder (SSMIS), demonstrating strong agreement. Based on an extensive dataset, the average correlation coefficient (R) reaches 0.9450 in the Arctic and 0.9602 in the Antarctic for the testing set, with corresponding Root Mean Squared Error (RMSE) of 0.1262 and 0.0818, respectively. Even in the more challenging ice–water transition zones, RMSE values remain within acceptable ranges, reaching 0.1486 in the Arctic and 0.1404 in the Antarctic. This study demonstrates the feasibility and accuracy of GNSS-R-based SIC retrieval, offering a robust and effective approach for cryospheric monitoring at high latitudes in both polar regions. Full article
Show Figures

Figure 1

17 pages, 285 KB  
Article
Exploring the Use of AI-Based Patient Simulations to Support Cultural Competence Development in Nursing Students: A Mixed-Methods Study
by Małgorzata Lesińska-Sawicka and Bartłomiej Michalak
Educ. Sci. 2026, 16(1), 126; https://doi.org/10.3390/educsci16010126 - 14 Jan 2026
Abstract
(1) Background: Developing cultural competence and reflective communication skills remains a challenge in nursing education. Traditional teaching methods often provide limited opportunities for safe practice of culturally sensitive interactions in emotionally complex situations. Artificial intelligence (AI)–based patient simulations may offer a scalable approach [...] Read more.
(1) Background: Developing cultural competence and reflective communication skills remains a challenge in nursing education. Traditional teaching methods often provide limited opportunities for safe practice of culturally sensitive interactions in emotionally complex situations. Artificial intelligence (AI)–based patient simulations may offer a scalable approach to experiential and reflective learning. (2) Aim: This study explored the educational potential of AI-based patient simulations in supporting nursing students’ self-assessed cultural competence, reflective awareness, and communication confidence. (3) Methods: A convergent mixed-methods pre–post study was conducted among 24 s-cycle nursing students. Participants engaged in individual AI-based patient simulations with simulated patients representing diverse cultural contexts. Quantitative data were collected using an exploratory cultural competence self-assessment scale administered before and after the simulation. Qualitative data included post-simulation reflection forms and AI-student interaction transcripts, analysed using inductive thematic analysis. (4) Results: A statistically significant increase in overall self-assessed cultural competence was observed (Wilcoxon signed-rank test: Z = 4.05, p < 0.001, r = 0.59), with the greatest improvements in communication adaptability and perceived communication sufficiency. Qualitative findings indicated an emotional shift from uncertainty to engagement, heightened awareness of cultural complexity, reflective reassessment of assumptions, and high perceived educational value of AI simulations. (5) Conclusions: AI-based patient simulations represent a promising pedagogical tool for fostering reflective and communication-oriented learning in culturally complex nursing contexts. Their primary value lies in supporting experiential learning, emotional engagement, and the development of cultural humility, suggesting their potential role as a complementary educational strategy in advanced nursing education. Full article
19 pages, 3070 KB  
Article
Evaluating the Feasibility of Emission-Aware Routing in Urban Bus Systems: A Case Study in Osnabrück
by Rebecca Kose, Sina-Marie Anker, Mathias Heiker and Sandra Rosenberger
Appl. Sci. 2026, 16(2), 822; https://doi.org/10.3390/app16020822 - 13 Jan 2026
Abstract
This study quantifies energy consumption and tank-to-wheel (TTW) emissions of urban buses under varying traffic conditions and passenger loads in Osnabrück, Germany, to support emission-aware route assessment in sustainable mobility applications. Exemplary bus trajectories were modeled on a representative 6.17 km route of [...] Read more.
This study quantifies energy consumption and tank-to-wheel (TTW) emissions of urban buses under varying traffic conditions and passenger loads in Osnabrück, Germany, to support emission-aware route assessment in sustainable mobility applications. Exemplary bus trajectories were modeled on a representative 6.17 km route of line M5 (18 m articulated bus; diesel and battery-electric) within a 22.31 km2 traffic net using the Simulation of Urban MObility (SUMO) software, and were calibrated with traffic sensor data. To assess the influence of trajectories in different traffic situations, three different 90 min scenarios were compared (morning peak, noon, night). Trajectory-based energy consumption and greenhouse gas emissions were compared by using the SUMO-implemented emission models HBEFA and PHEMlight, as well as data from the literature. Both diesel and electric buses showed variations in energy consumption depending on the traffic conditions, with generally lower energy consumption for electric propulsion. Temporal differences in the TTW emissions of the diesel bus were modest, with slightly higher morning values, while spatial analysis showed PM peaks in pedestrian zones, NOx peaks during acceleration phases, and CO2 increases after stops and in low-speed areas. The results provide spatially resolved TTW factors for integration into routing applications, excluding upstream and non-exhaust processes in line with the defined system boundary. Full article
(This article belongs to the Section Transportation and Future Mobility)
Show Figures

Figure 1

22 pages, 363 KB  
Review
Human Factors, Competencies, and System Interaction in Remotely Piloted Aircraft Systems
by John Murray and Graham Wild
Aerospace 2026, 13(1), 85; https://doi.org/10.3390/aerospace13010085 - 13 Jan 2026
Viewed by 48
Abstract
Research into Remotely Piloted Aircraft Systems (RPASs) has expanded rapidly, yet the competencies, knowledge, skills, and other attributes (KSaOs) required of RPAS pilots remain comparatively underexamined. This review consolidates existing studies addressing human performance, subject matter expertise, training practices, and accident causation to [...] Read more.
Research into Remotely Piloted Aircraft Systems (RPASs) has expanded rapidly, yet the competencies, knowledge, skills, and other attributes (KSaOs) required of RPAS pilots remain comparatively underexamined. This review consolidates existing studies addressing human performance, subject matter expertise, training practices, and accident causation to provide a comprehensive account of the KSaOs underpinning safe civilian and commercial drone operations. Prior research demonstrates that early work drew heavily on military contexts, which may not generalize to contemporary civilian operations characterized by smaller platforms, single-pilot tasks, and diverse industry applications. Studies employing subject matter experts highlight cognitive demands in areas such as situational awareness, workload management, planning, fatigue recognition, perceptual acuity, and decision-making. Accident analyses, predominantly using the human factors accident classification system and related taxonomies, show that skill errors and preconditions for unsafe acts are the most frequent contributors to RPAS occurrences, with limited evidence of higher-level latent organizational factors in civilian contexts. Emerging research emphasizes that RPAS pilots increasingly perform data-collection tasks integral to professional workflows, requiring competencies beyond aircraft handling alone. The review identifies significant gaps in training specificity, selection processes, and taxonomy suitability, indicating opportunities for future research to refine RPAS competency frameworks and support improved operational safety. Full article
(This article belongs to the Special Issue Human Factors and Performance in Aviation Safety)
Show Figures

Graphical abstract

18 pages, 1241 KB  
Article
Performance Evaluation of Cooperative Driving Automation Services Enabled by Edge Roadside Units
by Un-Seon Jung and Cheol Mun
Sensors 2026, 26(2), 504; https://doi.org/10.3390/s26020504 - 12 Jan 2026
Viewed by 112
Abstract
Research on Cooperative Driving Automation (CDA) has advanced to overcome the limited perception range of onboard sensors and the difficulty of inferring surrounding vehicles’ intentions by leveraging vehicle-to-everything (V2X) communications. This paper models how an autonomous vehicle receives cooperative sensing and cooperative maneuvering [...] Read more.
Research on Cooperative Driving Automation (CDA) has advanced to overcome the limited perception range of onboard sensors and the difficulty of inferring surrounding vehicles’ intentions by leveraging vehicle-to-everything (V2X) communications. This paper models how an autonomous vehicle receives cooperative sensing and cooperative maneuvering information generated at an edge roadside unit (edge RSU) that integrates roadside units (RSUs) with multi-access edge computing (MEC), and how the vehicle fuses this information with its onboard situational awareness and path-planning modules. We then analyze the performance gains of edge RSU-enabled services across diverse traffic environments. In a highway-merging scenario, simulations show that employing the edge RSU’s sensor sharing service (SSS) reduces collision risk relative to onboard-only baselines. For unsignalized intersections and roundabouts, we further propose a guidance-driven Hybrid Pairing Optimization (HPO) scheme in which the edge RSU aggregates CAV intents/trajectories, resolves spatiotemporal conflicts via lightweight pairing and time window allocation, and broadcasts maneuver guidance through MSCM. Unlike a first-come, first-served (FCFS) policy that serializes passage, HPO injects edge guidance as soft constraints while preserving arrival order fairness, enabling safe concurrent passage opportunities when feasible. Across intersections and roundabouts, HPO improves average speed by up to 192% and traffic throughput by up to 209% compared with FCFS under identical demand in our simulations. Full article
(This article belongs to the Special Issue Cooperative Perception and Control for Autonomous Vehicles)
Show Figures

Figure 1

25 pages, 5648 KB  
Article
Advanced Sensor Tasking Strategies for Space Object Cataloging
by Alessandro Mignocchi, Sebastian Samuele Rizzuto, Alessia De Riz and Marco Felice Montaruli
Aerospace 2026, 13(1), 81; https://doi.org/10.3390/aerospace13010081 - 12 Jan 2026
Viewed by 145
Abstract
Space Surveillance and Tracking (SST) plays a crucial role in ensuring space safety. To this end, accurate and numerous observational resources are needed to build and maintain a catalog of space objects. In particular, it is essential to develop optimal observation strategies to [...] Read more.
Space Surveillance and Tracking (SST) plays a crucial role in ensuring space safety. To this end, accurate and numerous observational resources are needed to build and maintain a catalog of space objects. In particular, it is essential to develop optimal observation strategies to maximize both the number and the quality of detections obtained from a sensor network. This represents a key step in the assessment of the network through simulations. This work presents the integrated development of sensor tasking strategies for optical systems and a track-to-track correlation pipeline within SΞNSIT, a software environment designed to simulate sensor network configurations and evaluate cataloging performance. For high-altitude low Earth orbit (HLEO) targets, which are fast-moving and widely distributed, tasking strategies emphasize systematic scans of the Earth’s shadow boundary to exploit favorable phase angles and improve observational accuracy, while medium- and geostationary-Earth orbits (MEO–GEO) rely on equatorial-plane scans. The correlation pipeline employs Two-Body Integrals, uncertainty propagation, and a χ2-test with the Squared Mahalanobis Distance to associate tracks and perform initial orbit determination of newly detected objects. Results indicate that the integrated approach significantly enhances detection coverage, leading to greater catalog build-up efficiency and improved SST performance. Consequently, it facilitates the cataloging of numerous uncataloged objects within a reduced timeframe. Full article
(This article belongs to the Special Issue Advances in Space Surveillance and Tracking)
Show Figures

Figure 1

27 pages, 1843 KB  
Article
AI-Driven Modeling of Near-Mid-Air Collisions Using Machine Learning and Natural Language Processing Techniques
by Dothang Truong
Aerospace 2026, 13(1), 80; https://doi.org/10.3390/aerospace13010080 - 12 Jan 2026
Viewed by 71
Abstract
As global airspace operations grow increasingly complex, the risk of near-mid-air collisions (NMACs) poses a persistent and critical challenge to aviation safety. Traditional collision-avoidance systems, while effective in many scenarios, are limited by rule-based logic and reliance on transponder data, particularly in environments [...] Read more.
As global airspace operations grow increasingly complex, the risk of near-mid-air collisions (NMACs) poses a persistent and critical challenge to aviation safety. Traditional collision-avoidance systems, while effective in many scenarios, are limited by rule-based logic and reliance on transponder data, particularly in environments featuring diverse aircraft types, unmanned aerial systems (UAS), and evolving urban air mobility platforms. This paper introduces a novel, integrative machine learning framework designed to analyze NMAC incidents using the rich, contextual information contained within the NASA Aviation Safety Reporting System (ASRS) database. The methodology is structured around three pillars: (1) natural language processing (NLP) techniques are applied to extract latent topics and semantic features from pilot and crew incident narratives; (2) cluster analysis is conducted on both textual and structured incident features to empirically define distinct typologies of NMAC events; and (3) supervised machine learning models are developed to predict pilot decision outcomes (evasive action vs. no action) based on integrated data sources. The analysis reveals seven operationally coherent topics that reflect communication demands, pattern geometry, visibility challenges, airspace transitions, and advisory-driven interactions. A four-cluster solution further distinguishes incident contexts ranging from tower-directed approaches to general aviation pattern and cruise operations. The Random Forest model produces the strongest predictive performance, with topic-based indicators, miss distance, altitude, and operating rule emerging as influential features. The results show that narrative semantics provide measurable signals of coordination load and acquisition difficulty, and that integrating text with structured variables enhances the prediction of maneuvering decisions in NMAC situations. These findings highlight opportunities to strengthen radio practice, manage pattern spacing, improve mixed equipage awareness, and refine alerting in short-range airport area encounters. Full article
(This article belongs to the Section Air Traffic and Transportation)
Show Figures

Figure 1

19 pages, 282 KB  
Article
Techno-Digital Vulnerability and Intelligence Failures
by Ehud Eiran
Soc. Sci. 2026, 15(1), 37; https://doi.org/10.3390/socsci15010037 - 11 Jan 2026
Viewed by 144
Abstract
Scholars and practitioners of international relations and security studies view technological capabilities in general, and digital ones in particular, as crucial to enhancing state power. Among other things, digital technologies sharpen intelligence, thus reducing the likelihood of strategic surprise by improving situational awareness [...] Read more.
Scholars and practitioners of international relations and security studies view technological capabilities in general, and digital ones in particular, as crucial to enhancing state power. Among other things, digital technologies sharpen intelligence, thus reducing the likelihood of strategic surprise by improving situational awareness and strengthening deterrence. Yet the empirical record of the early twenty-first century presents a paradox: states with highly advanced digital infrastructures remain vulnerable to unexpected strategic shocks, including intelligence failures. This article develops a conceptual framework, techno-digital vulnerability, that explains why digital superiority can paradoxically increase susceptibility to strategic surprise. Drawing on international relations theory, this article identifies four interrelated mechanisms: illusions of informational completeness; structural dependence on digital systems; hypervisibility of digitally open societies; and the systematic undervaluation of low-tech adversaries. The argument is illustrated through the case of Israel’s failure to foresee the Hamas attack of 7 October 2023. The article concludes by outlining the implications for digitally advanced democracies and for the study of strategic surprise in IR. Full article
(This article belongs to the Special Issue Technology, Digital Media and Politics)
20 pages, 4633 KB  
Article
Teleoperation System for Service Robots Using a Virtual Reality Headset and 3D Pose Estimation
by Tiago Ribeiro, Eduardo Fernandes, António Ribeiro, Carolina Lopes, Fernando Ribeiro and Gil Lopes
Sensors 2026, 26(2), 471; https://doi.org/10.3390/s26020471 - 10 Jan 2026
Viewed by 212
Abstract
This paper presents an immersive teleoperation framework for service robots that combines real-time 3D human pose estimation with a Virtual Reality (VR) interface to support intuitive, natural robot control. The operator is tracked using MediaPipe for 2D landmark detection and an Intel RealSense [...] Read more.
This paper presents an immersive teleoperation framework for service robots that combines real-time 3D human pose estimation with a Virtual Reality (VR) interface to support intuitive, natural robot control. The operator is tracked using MediaPipe for 2D landmark detection and an Intel RealSense D455 RGB-D (Red-Green-Blue plus Depth) camera for depth acquisition, enabling 3D reconstruction of key joints. Joint angles are computed using efficient vector operations and mapped to the kinematic constraints of an anthropomorphic arm on the CHARMIE service robot. A VR-based telepresence interface provides stereoscopic video and head-motion-based view control to improve situational awareness during manipulation tasks. Experiments in real-world object grasping demonstrate reliable arm teleoperation and effective telepresence; however, vision-only estimation remains limited for axial rotations (e.g., elbow and wrist yaw), particularly under occlusions and unfavorable viewpoints. The proposed system provides a practical pathway toward low-cost, sensor-driven, immersive human–robot interaction for service robotics in dynamic environments. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

20 pages, 4911 KB  
Article
Autonomous Real-Time Regional Risk Monitoring for Unmanned Swarm Systems
by Tianruo Cao, Yuxizi Zheng, Lijun Liu and Yongqi Pan
Mathematics 2026, 14(2), 259; https://doi.org/10.3390/math14020259 - 9 Jan 2026
Viewed by 117
Abstract
Existing State-of-the-Art (SOTA) methods for situational awareness typically rely on high-bandwidth transmission of raw data or computationally intensive models, which are often impractical for resource-constrained edge devices in unstable communication environments. To address these limitations, this paper introduces a comprehensive framework for Regional [...] Read more.
Existing State-of-the-Art (SOTA) methods for situational awareness typically rely on high-bandwidth transmission of raw data or computationally intensive models, which are often impractical for resource-constrained edge devices in unstable communication environments. To address these limitations, this paper introduces a comprehensive framework for Regional Risk Monitoring utilizing unmanned swarm systems. We propose an innovative knowledge distillation approach (SIKD) that leverages both soft label dark knowledge and inter-layer relationships, enabling compressed models to run in real time on edge nodes while maintaining high accuracy. Furthermore, recognition results are fused using Bayesian inference to dynamically update the regional risk level. Experimental results demonstrate the feasibility of the proposed framework. Quantitatively, the proposed SIKD algorithm reduces the model parameters by 52.34% and computational complexity to 44.21% of the original model, achieving a 3× inference speedup on edge CPUs. Furthermore, it outperforms state-of-the-art baseline methods (e.g., DKD and IRG) in terms of convergence speed and classification accuracy, ensuring robust real-time risk monitoring. Full article
Show Figures

Figure 1

21 pages, 4706 KB  
Article
Near-Real-Time Integration of Multi-Source Seismic Data
by José Melgarejo-Hernández, Paula García-Tapia-Mateo, Juan Morales-García and Jose-Norberto Mazón
Sensors 2026, 26(2), 451; https://doi.org/10.3390/s26020451 - 9 Jan 2026
Viewed by 101
Abstract
The reliable and continuous acquisition of seismic data from multiple open sources is essential for real-time monitoring, hazard assessment, and early-warning systems. However, the heterogeneity among existing data providers such as the United States Geological Survey, the European-Mediterranean Seismological Centre, and the Spanish [...] Read more.
The reliable and continuous acquisition of seismic data from multiple open sources is essential for real-time monitoring, hazard assessment, and early-warning systems. However, the heterogeneity among existing data providers such as the United States Geological Survey, the European-Mediterranean Seismological Centre, and the Spanish National Geographic Institute creates significant challenges due to differences in formats, update frequencies, and access methods. To overcome these limitations, this paper presents a modular and automated framework for the scheduled near-real-time ingestion of global seismic data using open APIs and semi-structured web data. The system, implemented using a Docker-based architecture, automatically retrieves, harmonizes, and stores seismic information from heterogeneous sources at regular intervals using a cron-based scheduler. Data are standardized into a unified schema, validated to remove duplicates, and persisted in a relational database for downstream analytics and visualization. The proposed framework adheres to the FAIR data principles by ensuring that all seismic events are uniquely identifiable, source-traceable, and stored in interoperable formats. Its lightweight and containerized design enables deployment as a microservice within emerging data spaces and open environmental data infrastructures. Experimental validation was conducted using a two-phase evaluation. This evaluation consisted of a high-frequency 24 h stress test and a subsequent seven-day continuous deployment under steady-state conditions. The system maintained stable operation with 100% availability across all sources, successfully integrating 4533 newly published seismic events during the seven-day period and identifying 595 duplicated detections across providers. These results demonstrate that the framework provides a robust foundation for the automated integration of multi-source seismic catalogs. This integration supports the construction of more comprehensive and globally accessible earthquake datasets for research and near-real-time applications. By enabling automated and interoperable integration of seismic information from diverse providers, this approach supports the construction of more comprehensive and globally accessible earthquake catalogs, strengthening data-driven research and situational awareness across regions and institutions worldwide. Full article
(This article belongs to the Special Issue Advances in Seismic Sensing and Monitoring)
Show Figures

Figure 1

20 pages, 6622 KB  
Article
Sensor Fusion-Based Machine Learning Algorithms for Meteorological Conditions Nowcasting in Port Scenarios
by Marwan Haruna, Francesco Kotopulos De Angelis, Kaleb Gebremicheal Gebremeskel, Alexandr Tardo and Paolo Pagano
Sensors 2026, 26(2), 448; https://doi.org/10.3390/s26020448 - 9 Jan 2026
Viewed by 104
Abstract
Modern port operations face increasing challenges from rapidly changing weather and environmental conditions, requiring accurate short-term forecasting to support safe and efficient maritime activities. This study presents a sensor fusion-based machine learning framework for real-time multi-target nowcasting of wind gust speed, sustained wind [...] Read more.
Modern port operations face increasing challenges from rapidly changing weather and environmental conditions, requiring accurate short-term forecasting to support safe and efficient maritime activities. This study presents a sensor fusion-based machine learning framework for real-time multi-target nowcasting of wind gust speed, sustained wind speed, and wind direction using heterogeneous data collected at the Port of Livorno from February to November 2025. Using an IoT architecture compliant with the oneM2M standard and deployed at the Port of Livorno, CNIT integrated heterogeneous data from environmental sensors (meteorological stations, anemometers) and vessel-mounted LiDAR systems through feature-level fusion to enhance situational awareness, with gust speed treated as the primary safety-critical variable due to its substantial impact on berthing and crane operations. In addition, a comparative performance analysis of Random Forest, XGBoost, LSTM, Temporal Convolutional Network, Ensemble Neural Network, Transformer models, and a Kalman filter was performed. The results show that XGBoost consistently achieved the highest accuracy across all targets, with near-perfect performance in both single-split testing (R2 ≈ 0.999) and five-fold cross-validation (mean R2 = 0.9976). Ensemble models exhibited greater robustness than deep learning approaches. The proposed multi-target fusion framework demonstrates strong potential for real-time deployment in Maritime Autonomous Surface Ship (MASS) systems and port decision-support platforms, enabling safer manoeuvring and operational continuity under rapidly varying environmental conditions. Full article
(This article belongs to the Special Issue Signal Processing and Machine Learning for Sensor Systems)
Show Figures

Figure 1

Back to TopTop