Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,927)

Search Parameters:
Keywords = situational awareness

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 14213 KiB  
Article
All-Weather Drone Vision: Passive SWIR Imaging in Fog and Rain
by Alexander Bessonov, Aleksei Rozanov, Richard White, Galih Suwito, Ivonne Medina-Salazar, Marat Lutfullin, Dmitrii Gusev and Ilya Shikov
Drones 2025, 9(8), 553; https://doi.org/10.3390/drones9080553 - 7 Aug 2025
Abstract
Short-wave-infrared (SWIR) imaging can extend drone operations into fog and rain, yet the optimum spectral strategy remains unclear. We evaluated a drone-borne quantum-dot SWIR camera inside a climate-controlled tunnel that generated calibrated advection fog, radiation fog, and rain. Images were captured with a [...] Read more.
Short-wave-infrared (SWIR) imaging can extend drone operations into fog and rain, yet the optimum spectral strategy remains unclear. We evaluated a drone-borne quantum-dot SWIR camera inside a climate-controlled tunnel that generated calibrated advection fog, radiation fog, and rain. Images were captured with a broadband 400–1700 nm setting and three sub-band filters, each at four lens apertures (f/1.8–5.6). Entropy, structural-similarity index (SSIM), and peak signal-to-noise ratio (PSNR) were computed for every weather–aperture–filter combination. Broadband SWIR consistently outperformed all filtered configurations. The gain stems from higher photon throughput, which outweighs the modest scattering reduction offered by narrowband selection. Under passive illumination, broadband SWIR therefore represents the most robust single-camera choice for unmanned aerial vehicles (UAVs), enhancing situational awareness and flight safety in fog and rain. Full article
(This article belongs to the Section Drone Design and Development)
Show Figures

Figure 1

35 pages, 1824 KiB  
Article
Visual Flight Rules Stabilised Approach: Identifying Human-Factor Influences on Incidents and Accidents During Stabilised Approach, Landing, and Go-Around Flight Phases for General Aviation
by Riya Deshmukh and Arnab Majumdar
Appl. Sci. 2025, 15(15), 8647; https://doi.org/10.3390/app15158647 - 5 Aug 2025
Viewed by 37
Abstract
According to the Transportation Safety Board of Canada, between 2013 and 2023, 62% of aviation accidents occurred during the approach, landing, and post-impact phases of flight. Hence, this study targets factors contributing to increased accident rates during the final stages of flight. It [...] Read more.
According to the Transportation Safety Board of Canada, between 2013 and 2023, 62% of aviation accidents occurred during the approach, landing, and post-impact phases of flight. Hence, this study targets factors contributing to increased accident rates during the final stages of flight. It will review how pilot experience influences decision-making and identifies mitigation strategies, focusing on go-arounds to prevent accidents during these critical phases. Surveys and roundtable discussions were conducted to identify factors influencing pilot performance during approach, landing, and go-around manoeuvres. By using a mixed-methods approach that combined thematic and statistical analyses, key safety factors were identified, including situational awareness, decision-making, and operational complexity. The study also examined the relationship between experience and decision-making, highlighting areas for targeted interventions to improve safety. The research emphasises the importance of integrating decision-making considerations into training programmes and connecting these to human factors. Through identifying areas for improvement, this study offers a safety-driven framework to address decision-making challenges during approach, landing, and go-around phases, with the objective of reducing accident and incident rates in general aviation. Full article
(This article belongs to the Special Issue Research on Aviation Safety)
Show Figures

Figure 1

26 pages, 2933 KiB  
Article
Comparative Analysis of Object Detection Models for Edge Devices in UAV Swarms
by Dimitrios Meimetis, Ioannis Daramouskas, Niki Patrinopoulou, Vaios Lappas and Vassilis Kostopoulos
Machines 2025, 13(8), 684; https://doi.org/10.3390/machines13080684 - 4 Aug 2025
Viewed by 181
Abstract
This study presented a comprehensive investigation into the performance of object detection models tailored for edge devices, particularly in the context of Unmanned Aerial Vehicle swarms. Object detection plays a pivotal role in enhancing autonomous navigation, situational awareness, and target tracking capabilities within [...] Read more.
This study presented a comprehensive investigation into the performance of object detection models tailored for edge devices, particularly in the context of Unmanned Aerial Vehicle swarms. Object detection plays a pivotal role in enhancing autonomous navigation, situational awareness, and target tracking capabilities within UAV swarms, where computing resources are constrained by the onboard low-cost computers. Initially, a thorough review of the existing literature was conducted to identify state-of-the-art object detection models suitable for deployment on edge devices. These models are evaluated based on their speed, accuracy, and efficiency, with a focus on real-time inference capabilities crucial for Unmanned Aerial Vehicle applications. Following the literature review, selected models undergo empirical validation through custom training using the Vision Meets Drone dataset, a widely recognized dataset for Unmanned Aerial Vehicle-based object detection tasks. Performance metrics such as mean average precision, inference speed, and resource utilization were measured and compared across different models. Lastly, the study extended its analysis beyond traditional object detection to explore the efficacy of instance segmentation and proposed an optimization to an object tracking technique within the context of unmanned Aerial Vehicles. Instance segmentation offers finer-grained object delineation, enabling more precise target or landmark identification and tracking, albeit at higher resource usage and higher inference time. Full article
(This article belongs to the Section Automation and Control Systems)
Show Figures

Figure 1

26 pages, 2843 KiB  
Article
A CDC–ANFIS-Based Model for Assessing Ship Collision Risk in Autonomous Navigation
by Hee-Jin Lee and Ho Namgung
J. Mar. Sci. Eng. 2025, 13(8), 1492; https://doi.org/10.3390/jmse13081492 - 1 Aug 2025
Viewed by 178
Abstract
To improve collision risk prediction in high-traffic coastal waters and support real-time decision-making in maritime navigation, this study proposes a regional collision risk prediction system integrating the Computed Distance at Collision (CDC) method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Unlike Distance at [...] Read more.
To improve collision risk prediction in high-traffic coastal waters and support real-time decision-making in maritime navigation, this study proposes a regional collision risk prediction system integrating the Computed Distance at Collision (CDC) method with an Adaptive Neuro-Fuzzy Inference System (ANFIS). Unlike Distance at Closest Point of Approach (DCPA), which depends on the position of Global Positioning System (GPS) antennas, Computed Distance at Collision (CDC) directly reflects the actual hull shape and potential collision point. This enables a more realistic assessment of collision risk by accounting for the hull geometry and boundary conditions specific to different ship types. The system was designed and validated using ship motion simulations involving bulk and container ships across varying speeds and crossing angles. The CDC method was used to define collision, almost-collision, and near-collision situations based on geometric and hydrodynamic criteria. Subsequently, the FIS–CDC model was constructed using the ANFIS by learning patterns in collision time and distance under each condition. A total of four input variables—ship speed, crossing angle, remaining time, and remaining distance—were used to infer the collision risk index (CRI), allowing for a more nuanced and vessel-specific assessment than traditional CPA-based indicators. Simulation results show that the time to collision decreases with higher speeds and increases with wider crossing angles. The bulk carrier exhibited a wider collision-prone angle range and a greater sensitivity to speed changes than the container ship, highlighting differences in maneuverability and risk response. The proposed system demonstrated real-time applicability and accurate risk differentiation across scenarios. This research contributes to enhancing situational awareness and proactive risk mitigation in Maritime Autonomous Surface Ship (MASS) and Vessel Traffic System (VTS) environments. Future work will focus on real-time CDC optimization and extending the model to accommodate diverse ship types and encounter geometries. Full article
Show Figures

Figure 1

24 pages, 3559 KiB  
Article
Advancing Online Road Safety Education: A Gamified Approach for Secondary School Students in Belgium
by Imran Nawaz, Ariane Cuenen, Geert Wets, Roeland Paul and Davy Janssens
Appl. Sci. 2025, 15(15), 8557; https://doi.org/10.3390/app15158557 - 1 Aug 2025
Viewed by 214
Abstract
Road traffic accidents are a leading cause of injury and death among adolescents, making road safety education crucial. This study assesses the performance of and users’ opinions on the Route 2 School (R2S) traffic safety education program, designed for secondary school students (13–17 [...] Read more.
Road traffic accidents are a leading cause of injury and death among adolescents, making road safety education crucial. This study assesses the performance of and users’ opinions on the Route 2 School (R2S) traffic safety education program, designed for secondary school students (13–17 years) in Belgium. The program incorporates gamified e-learning modules containing, among others, podcasts, interactive 360° visuals, and virtual reality (VR), to enhance traffic knowledge, situation awareness, risk detection, and risk management. This study was conducted across several cities and municipalities within Belgium. More than 600 students from school years 3 to 6 completed the platform and of these more than 200 students filled in a comprehensive questionnaire providing detailed feedback on platform usability, preferences, and behavioral risk assessments. The results revealed shortcomings in traffic knowledge and skills, particularly among older students. Gender-based analysis indicated no significant performance differences overall, though females performed better in risk management and males in risk detection. Furthermore, students from cities outperformed those from municipalities. Feedback on the R2S platform indicated high usability and engagement, with VR-based simulations receiving the most positive reception. In addition, it was highlighted that secondary school students are high-risk groups for distraction and red-light violations as cyclists and pedestrians. This study demonstrates the importance of gamified, technology-enhanced road safety education while underscoring the need for module-specific improvements and regional customization. The findings support the broader application of e-learning methodologies for sustainable, behavior-oriented traffic safety education targeting adolescents. Full article
(This article belongs to the Special Issue Technology Enhanced and Mobile Learning: Innovations and Applications)
Show Figures

Figure 1

29 pages, 482 KiB  
Review
AI in Maritime Security: Applications, Challenges, Future Directions, and Key Data Sources
by Kashif Talpur, Raza Hasan, Ismet Gocer, Shakeel Ahmad and Zakirul Bhuiyan
Information 2025, 16(8), 658; https://doi.org/10.3390/info16080658 - 31 Jul 2025
Viewed by 313
Abstract
The growth and sustainability of today’s global economy heavily relies on smooth maritime operations. The increasing security concerns to marine environments pose complex security challenges, such as smuggling, illegal fishing, human trafficking, and environmental threats, for traditional surveillance methods due to their limitations. [...] Read more.
The growth and sustainability of today’s global economy heavily relies on smooth maritime operations. The increasing security concerns to marine environments pose complex security challenges, such as smuggling, illegal fishing, human trafficking, and environmental threats, for traditional surveillance methods due to their limitations. Artificial intelligence (AI), particularly deep learning, has offered strong capabilities for automating object detection, anomaly identification, and situational awareness in maritime environments. In this paper, we have reviewed the state-of-the-art deep learning models mainly proposed in recent literature (2020–2025), including convolutional neural networks, recurrent neural networks, Transformers, and multimodal fusion architectures. We have highlighted their success in processing diverse data sources such as satellite imagery, AIS, SAR, radar, and sensor inputs from UxVs. Additionally, multimodal data fusion techniques enhance robustness by integrating complementary data, yielding more detection accuracy. There still exist challenges in detecting small or occluded objects, handling cluttered scenes, and interpreting unusual vessel behaviours, especially under adverse sea conditions. Additionally, explainability and real-time deployment of AI models in operational settings are open research areas. Overall, the review of existing maritime literature suggests that deep learning is rapidly transforming maritime domain awareness and response, with significant potential to improve global maritime security and operational efficiency. We have also provided key datasets for deep learning models in the maritime security domain. Full article
(This article belongs to the Special Issue Advances in Machine Learning and Intelligent Information Systems)
Show Figures

Figure 1

37 pages, 406 KiB  
Review
Self-Medication as a Global Health Concern: Overview of Practices and Associated Factors—A Narrative Review
by Vedrana Aljinović-Vučić
Healthcare 2025, 13(15), 1872; https://doi.org/10.3390/healthcare13151872 - 31 Jul 2025
Viewed by 339
Abstract
Self-medication is a subject of global importance. If practiced responsibly, self-medication represents a part of self-care or positive care of an individual or a community in promoting their own health. However, today’s practices of self-medication are often inappropriate and irresponsible, and as such [...] Read more.
Self-medication is a subject of global importance. If practiced responsibly, self-medication represents a part of self-care or positive care of an individual or a community in promoting their own health. However, today’s practices of self-medication are often inappropriate and irresponsible, and as such appear all over the world. Inappropriate self-medication can be connected with possible serious health risks and consequences. Therefore, it represents a global health issue. It can even generate additional health problems, which will eventually become a burden to healthcare systems and can induce significant costs, which also raises socioeconomic concerns. Hence, self-medication attracts the attention of researchers and practitioners globally in efforts to clarify the current status and define feasible measures that should be implemented to address this issue. This narrative review aims to give an overview of the situation in the field of self-medication globally, including current practices and attitudes, as well as implications for actions needed to improve this problem. A PubMed/MEDLINE search was conducted for articles published in the period from 1995 up to March 2025 using keywords “self-medication” or “selfmedication” alone or in combinations with terms related to specific subthemes related to self-medication, such as COVID-19, antimicrobials, healthcare professionals, and storing habits of medicines at home. Studies were included if self-medication was their main focus. Publications that only mentioned self-medication in different contexts, but not as their main focus, were excluded. Considering the outcomes of research on self-medication in various contexts, increasing awareness of responsible self-medication through education and informing, together with surveillance of particular medicines and populations, could lead to more appropriate and beneficial self-medication in the future. Full article
18 pages, 8744 KiB  
Article
A User-Centered Teleoperation GUI for Automated Vehicles: Identifying and Evaluating Information Requirements for Remote Driving and Assistance
by Maria-Magdalena Wolf, Henrik Schmidt, Michael Christl, Jana Fank and Frank Diermeyer
Multimodal Technol. Interact. 2025, 9(8), 78; https://doi.org/10.3390/mti9080078 - 31 Jul 2025
Viewed by 207
Abstract
Teleoperation emerged as a promising fallback for situations beyond the capabilities of automated vehicles. Nevertheless, teleoperation still faces challenges, such as reduced situational awareness. Since situational awareness is primarily built through the remote operator’s visual perception, the graphical user interface (GUI) design is [...] Read more.
Teleoperation emerged as a promising fallback for situations beyond the capabilities of automated vehicles. Nevertheless, teleoperation still faces challenges, such as reduced situational awareness. Since situational awareness is primarily built through the remote operator’s visual perception, the graphical user interface (GUI) design is critical. In addition to video feed, supplemental informational elements are crucial—not only for the predominantly studied remote driving, but also for emerging desk-based remote assistance concepts. This work develops a GUI for different teleoperation concepts by identifying key informational elements during the teleoperation process through expert interviews (N = 9). Following this, a static and dynamic GUI prototype was developed and evaluated in a click dummy study (N = 36). Thereby, the dynamic GUI adapts the number of displayed elements according to the teleoperation phase. Results show that both GUIs achieve good system usability scale (SUS) ratings, with the dynamic GUI significantly outperforming the static version in both usability and task completion time. However, the results might be attributable to a learning effect due to the lack of randomization. The user experience questionnaire (UEQ) score shows potential for improvement. To enhance the user experience, the GUI should be evaluated in a follow-up study that includes interaction with a real vehicle. Full article
Show Figures

Figure 1

16 pages, 343 KiB  
Article
The Relationship Between Changes in Physical Activity and Physical and Mental Health in Female Breast Cancer Survivors Undergoing Long-Term Activity Restrictions in Japan
by Naomi Tamai, Yasutaka Kimura, Ryuta Yoshizawa and Midori Kamizato
Nurs. Rep. 2025, 15(8), 279; https://doi.org/10.3390/nursrep15080279 - 30 Jul 2025
Viewed by 276
Abstract
Purpose: Exercise is recommended for survivors of breast cancer to alleviate adverse reactions and reduce the psychological burden. In recent years, however, environmental factors (e.g., pandemics and climate change) have made it difficult to exercise outdoors. Therefore, this study focused on the [...] Read more.
Purpose: Exercise is recommended for survivors of breast cancer to alleviate adverse reactions and reduce the psychological burden. In recent years, however, environmental factors (e.g., pandemics and climate change) have made it difficult to exercise outdoors. Therefore, this study focused on the COVID-19 pandemic in Japan and evaluated the relationship between changes in physical activity (PA) and mental and physical health in breast cancer survivors. Methods: A questionnaire survey was conducted among 345 outpatient female breast cancer survivors aged between 29 and 69 years. The questionnaire was based on the International Physical Activity Questionnaire, the Patient Health Questionnaire-9, the European Organization for Research and Treatment of Cancer Core Quality of Life Questionnaire, and the Fear of COVID-19 Scale and included patient characteristics, changes in PA during pandemic restrictions, and needs for exercise support. The analysis categorized PA changes into two groups according to activity levels. The relationship between changes in PA and physical and mental health was evaluated using logistic regression analysis. Results: Patients with decreased PA accounted for 65.5% of the study population. Regardless of their activity level, these patients were aware of an increased susceptibility to COVID-19, showed a fear of the disease and a tendency for depression, and reported low life satisfaction and declined physical function. Of the patients who stopped exercising, 82.9% reported a decline in PA. Compared with those who had never exercised, those who stopped exercising saw their risk of depression increase by 15.6%. There was a high demand for personalized exercise support from healthcare professionals. Conclusions: Regardless of their activity level, decreasing PA during the pandemic decreased mental health and physical function in breast cancer survivors. There was a higher risk of depression among patients who stopped exercising. Because it is possible that similar situations may occur in the future, interventions by healthcare professionals must be considered in order to continue exercise. Full article
Show Figures

Figure 1

14 pages, 243 KiB  
Article
Building Safe Emergency Medical Teams with Emergency Crisis Resource Management (E-CRM): An Interprofessional Simulation-Based Study
by Juan Manuel Cánovas-Pallarés, Giulio Fenzi, Pablo Fernández-Molina, Lucía López-Ferrándiz, Salvador Espinosa-Ramírez and Vanessa Arizo-Luque
Healthcare 2025, 13(15), 1858; https://doi.org/10.3390/healthcare13151858 - 30 Jul 2025
Viewed by 301
Abstract
Background/Objectives: Effective teamwork is crucial for minimizing human error in healthcare settings. Medical teams, typically composed of physicians and nurses, supported by auxiliary professionals, achieve better outcomes when they possess strong collaborative competencies. High-quality teamwork is associated with fewer adverse events and [...] Read more.
Background/Objectives: Effective teamwork is crucial for minimizing human error in healthcare settings. Medical teams, typically composed of physicians and nurses, supported by auxiliary professionals, achieve better outcomes when they possess strong collaborative competencies. High-quality teamwork is associated with fewer adverse events and complications and lower mortality rates. Based on this background, the objective of this study is to analyze the perception of non-technical skills and immediate learning outcomes in interprofessional simulation settings based on E-CRM items. Methods: A cross-sectional observational study was conducted involving participants from the official postgraduate Medicine and Nursing programs at the Catholic University of Murcia (UCAM) during the 2024–2025 academic year. Four interprofessional E-CRM simulation sessions were planned, involving randomly assigned groups with proportional representation of medical and nursing students. Teams worked consistently throughout the training and participated in clinical scenarios observed via video transmission by their peers. Post-scenario debriefings followed INACSL guidelines and employed the PEARLS method. Results: Findings indicate that 48.3% of participants had no difficulty identifying the team leader, while 51.7% reported minor difficulty. Role assignment posed moderate-to-high difficulty for 24.1% of respondents. Communication, situation awareness, and early help-seeking were generally managed with ease, though mobilizing resources remained a challenge for 27.5% of participants. Conclusions: This study supports the value of interprofessional education in developing essential competencies for handling urgent, emergency, and high-complexity clinical situations. Strengthening interdisciplinary collaboration contributes to safer, more effective patient care. Full article
22 pages, 61181 KiB  
Article
Stepwise Building Damage Estimation Through Time-Scaled Multi-Sensor Integration: A Case Study of the 2024 Noto Peninsula Earthquake
by Satomi Kimijima, Chun Ping, Shono Fujita, Makoto Hanashima, Shingo Toride and Hitoshi Taguchi
Remote Sens. 2025, 17(15), 2638; https://doi.org/10.3390/rs17152638 - 30 Jul 2025
Viewed by 337
Abstract
Rapid and comprehensive assessment of building damage caused by earthquakes is essential for effective emergency response and rescue efforts in the immediate aftermath. Advanced technologies, including real-time simulations, remote sensing, and multi-sensor systems, can effectively enhance situational awareness and structural damage evaluations. However, [...] Read more.
Rapid and comprehensive assessment of building damage caused by earthquakes is essential for effective emergency response and rescue efforts in the immediate aftermath. Advanced technologies, including real-time simulations, remote sensing, and multi-sensor systems, can effectively enhance situational awareness and structural damage evaluations. However, most existing methods rely on isolated time snapshots, and few studies have systematically explored the continuous, time-scaled integration and update of building damage estimates from multiple data sources. This study proposes a stepwise framework that continuously updates time-scaled, single-damage estimation outputs using the best available multi-sensor data for estimating earthquake-induced building damage. We demonstrated the framework using the 2024 Noto Peninsula Earthquake as a case study and incorporated official damage reports from the Ishikawa Prefectural Government, real-time earthquake building damage estimation (REBDE) data, and satellite-based damage estimation data (ALOS-2-building damage estimation (BDE)). By integrating the REBDE and ALOS-2-BDE datasets, we created a composite damage estimation product (integrated-BDE). These datasets were statistically validated against official damage records. Our framework showed significant improvements in accuracy, as demonstrated by the mean absolute percentage error, when the datasets were integrated and updated over time: 177.2% for REBDE, 58.1% for ALOS-2-BDE, and 25.0% for integrated-BDE. Finally, for stepwise damage estimation, we proposed a methodological framework that incorporates social media content to further confirm the accuracy of damage assessments. Potential supplementary datasets, including data from Internet of Things-enabled home appliances, real-time traffic data, very-high-resolution optical imagery, and structural health monitoring systems, can also be integrated to improve accuracy. The proposed framework is expected to improve the timeliness and accuracy of building damage assessments, foster shared understanding of disaster impacts across stakeholders, and support more effective emergency response planning, resource allocation, and decision-making in the early stages of disaster management in the future, particularly when comprehensive official damage reports are unavailable. Full article
Show Figures

Figure 1

16 pages, 3042 KiB  
Article
A Dual-Circularly Polarized Antenna Array for Space Surveillance: From Design to Experimental Validation
by Chiara Scarselli, Guido Nenna and Agostino Monorchio
Appl. Sci. 2025, 15(15), 8439; https://doi.org/10.3390/app15158439 - 30 Jul 2025
Viewed by 337
Abstract
This paper presents the design, simulation, and experimental validation of a dual-Circularly Polarized (CP) array antenna to be used as single element for a bistatic radar system, aimed at detecting and tracking objects in Low Earth Orbit (LEO). The antenna operates at 412 [...] Read more.
This paper presents the design, simulation, and experimental validation of a dual-Circularly Polarized (CP) array antenna to be used as single element for a bistatic radar system, aimed at detecting and tracking objects in Low Earth Orbit (LEO). The antenna operates at 412 MHz in reception mode and consists of an array of 19 slotted-patch radiating elements with a cavity-based metallic superstrate, designed to support dual circular polarization. These elements are arranged in a hexagonal configuration, enabling the array structure to achieve a maximum realized gain of 17 dBi and a Side Lobe Level (SLL) below −17 dB while maintaining high polarization purity. Two identical analog feeding networks enable the precise control of phase and amplitude, allowing the independent reception of Right-Hand and Left-Hand Circularly Polarized (RHCP and LHCP) signals. Full-wave simulations and experimental measurements confirm the high performance and robustness of the system, demonstrating its suitability for integration into large-scale Space Situational Awareness (SSA) sensor networks. Full article
(This article belongs to the Special Issue Antennas for Next-Generation Electromagnetic Applications)
Show Figures

Figure 1

32 pages, 6323 KiB  
Article
Design, Implementation and Evaluation of an Immersive Teleoperation Interface for Human-Centered Autonomous Driving
by Irene Bouzón, Jimena Pascual, Cayetana Costales, Aser Crespo, Covadonga Cima and David Melendi
Sensors 2025, 25(15), 4679; https://doi.org/10.3390/s25154679 - 29 Jul 2025
Viewed by 359
Abstract
As autonomous driving technologies advance, the need for human-in-the-loop systems becomes increasingly critical to ensure safety, adaptability, and public confidence. This paper presents the design and evaluation of a context-aware immersive teleoperation interface that integrates real-time simulation, virtual reality, and multimodal feedback to [...] Read more.
As autonomous driving technologies advance, the need for human-in-the-loop systems becomes increasingly critical to ensure safety, adaptability, and public confidence. This paper presents the design and evaluation of a context-aware immersive teleoperation interface that integrates real-time simulation, virtual reality, and multimodal feedback to support remote interventions in emergency scenarios. Built on a modular ROS2 architecture, the system allows seamless transition between simulated and physical platforms, enabling safe and reproducible testing. The experimental results show a high task success rate and user satisfaction, highlighting the importance of intuitive controls, gesture recognition accuracy, and low-latency feedback. Our findings contribute to the understanding of human-robot interaction (HRI) in immersive teleoperation contexts and provide insights into the role of multisensory feedback and control modalities in building trust and situational awareness for remote operators. Ultimately, this approach is intended to support the broader acceptability of autonomous driving technologies by enhancing human supervision, control, and confidence. Full article
(This article belongs to the Special Issue Human-Centred Smart Manufacturing - Industry 5.0)
Show Figures

Figure 1

17 pages, 384 KiB  
Article
Reading Between the Lines: Toward a Methodology for Tracing Manichaean Echoes in the Epistulae of Augustine of Hippo
by Marc-Thilo Glowacki and Anthony Dupont
Religions 2025, 16(8), 981; https://doi.org/10.3390/rel16080981 - 29 Jul 2025
Viewed by 269
Abstract
Augustine of Hippo (354–430), one of the most influential theologians of Late Antiquity, spent nearly a decade in the Manichaean sect before becoming a central figure in the shaping of Western “orthodox” Christianity. While his major works such as the Confessiones and De [...] Read more.
Augustine of Hippo (354–430), one of the most influential theologians of Late Antiquity, spent nearly a decade in the Manichaean sect before becoming a central figure in the shaping of Western “orthodox” Christianity. While his major works such as the Confessiones and De civitate Dei have been extensively studied for their treatment of Manichaeism, the vast collection of his ca. 300 preserved letters (Epistulae) remains an understudied source for understanding this aspect of his intellectual and theological development. This article addresses that gap by proposing a methodology to identify both anti- and crypto-Manichaean themes in his letters. Drawing on phenomenological openness, hermeneutical perspective, and close reading, the study also incorporates genuine Manichaean sources and anti-Manichaean polemics to contextualise Augustine’s rhetorical strategies. The Epistulae, unpolished and situated in specific communicative contexts, offer a unique view of Augustine’s doctrinal positioning after his conversion. Traces of his Manichaean past re-emerge in vocabulary, argumentation, and theological emphasis. This is exemplified in Epistula 137 to Volusianus (411–412), which, without naming the sect, covertly critiques key Manichaean doctrines such as Docetism and materialism. These critiques align with extant Manichaean sources and may reflect Augustine’s awareness of latent Manichaean influence in Christian communities. By bringing the Epistulae into the broader discussion of Augustine’s anti-Manichaean engagement, this study highlights their value as a window into his theological evolution and pastoral strategy in a religiously contested environment. Full article
28 pages, 7048 KiB  
Article
Enhanced Conjunction Assessment in LEO: A Hybrid Monte Carlo and Spline-Based Method Using TLE Data
by Shafeeq Koheal Tealib, Ahmed Magdy Abdelaziz, Igor E. Molotov, Xu Yang, Jian Sun and Jing Liu
Aerospace 2025, 12(8), 674; https://doi.org/10.3390/aerospace12080674 - 28 Jul 2025
Viewed by 227
Abstract
The growing density of space objects in low Earth orbit (LEO), driven by the deployment of large satellite constellations, has elevated the risk of orbital collisions and the need for high-precision conjunction analysis. Traditional methods based on Two-Line Element (TLE) data suffer from [...] Read more.
The growing density of space objects in low Earth orbit (LEO), driven by the deployment of large satellite constellations, has elevated the risk of orbital collisions and the need for high-precision conjunction analysis. Traditional methods based on Two-Line Element (TLE) data suffer from limited accuracy and insufficient uncertainty modeling. This study proposes a hybrid collision assessment framework that combines Monte Carlo simulation, spline-based refinement of the time of closest approach (TCA), and a multi-stage deterministic refinement process. The methodology begins with probabilistic sampling of TLE uncertainties, followed by a coarse search for TCA using the SGP4 propagator. A cubic spline interpolation then enhances temporal resolution, and a hierarchical multi-stage refinement computes the final TCA and minimum distance with sub-second and sub-kilometer accuracy. The framework was validated using real-world TLE data from over 2600 debris objects and active satellites. Results demonstrated a reduction in average TCA error to 0.081 s and distance estimation error to 0.688 km. The approach is computationally efficient, with average processing times below one minute per conjunction event using standard hardware. Its compatibility with operational space situational awareness (SSA) systems and scalability for high-volume screening make it suitable for integration into real-time space traffic management workflows. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

Back to TopTop