Abstract
Brain–gut axis disorders, such as functional dyspepsia and irritable bowel syndrome (traditionally known as functional gastrointestinal disorders), have a prevalence of more than 10% in most countries and affect females more than males. In these disorders, visceral pain and motor alterations affecting the gastrointestinal tract are the key symptoms, together with psychoaffective alterations (depression and anxiety). Two main etiologies are generally recognized for their development: they may be caused by a local inflammatory or infectious problem in the gastrointestinal tract that sensitizes the visceral afferents and lead to central hypersensitization; alternatively, they may be associated with some kind of prolonged psychological stress in vulnerable people or vulnerable periods of life (i.e., due to early life stress). In recent years, studies have focused on the effects of coffee, its components (melanoidins) and its by-products (e.g., coffee spent grounds and coffee silver skin derivatives) on the functions of the brain–gut axis, showing that these products may cause subtle alterations in gastrointestinal motility, visceral sensitivity and behavioral parameters, in a sex-dependent manner. For example, using male rats, we showed that melanoidins and coffee spent grounds slightly accelerate gastrointestinal transit in vivo. In contrast, the regular consumption of instant cascara (IC) did not alter GI transit or behavior in either male or female rats in vivo, but increased both the responses to mechanical intracolonic stimulation and the non-muscarinic responses to electrical field stimulation of the colonic muscle in vitro, specifically in females. These effects need to be taken into account when new functional foods based on coffee and its by-products are to be developed for the general population. Considering the high prevalence of the brain–gut axis disorders and its higher impact on women, with significant symptoms affecting visceral sensitivity and bowel habits, the effects of coffee components and by-products need to be more deeply evaluated in both relevant animal models of brain–gut axis disorders and in clinical trials.
Funding
R.A.’s research on the effects of coffee components and by-products on the brain–gut axis is funded by project PID2019-111510RB-I00, supported by MICIN/AEI/10.13039/501100011033.
Institutional Review Board Statement
Not applicable.
Informed Consent Statement
Not applicable.
Data Availability Statement
Not applicable.
Conflicts of Interest
The author declares no conflicts of interest.
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).