Impact of NPK, Plant Residue, Soil Type, and Temperature on the Half-Life of Atrazine Herbicide
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Statistical Analysis
3. Results
3.1. Factors Affecting Atrazine Persistence in Soil: Influence of Temperature, Fertilization, and Soil Type
3.2. Atrazine Degradation in Gerif Soil at 28 °C
3.3. Atrazine Degradation in Algeraif Soil at 28 °C
3.4. Atrazine Degradation in Algeraif Soil at 40 °C
3.5. Effect of NPK and Plant Residue on Atrazine Degradation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abdulrahman, N.M.; Hamasalim, H.J.; Mohammed, H.N.; Arkwazee, H.A. Effects of pesticide residues in animal by-products relating to public health. J. Appl. Vet. Sci. 2023, 8, 95–103. [Google Scholar] [CrossRef]
- Singh, M.; Kumar, A. Pesticide Pressure on Insect and Human Population: A Review. Arch. Curr. Res. Int. 2024, 24, 188–202. [Google Scholar] [CrossRef]
- Zhang, J.L.; Qiao, C.L. Novel approaches for remediation of pesticide pollutants. Int. J. Environ. Pollut. 2002, 18, 423–433. [Google Scholar] [CrossRef]
- Boudh, S.; Singh, J.S. Pesticide contamination: Environmental problems and remediation strategies. In Emerging and Eco-Friendly Approaches for Waste Management; Springer: Singapore, 2018; pp. 245–269. [Google Scholar] [CrossRef]
- Pathak, V.M.; Verma, V.K.; Rawat, B.S.; Kaur, B.; Babu, N.; Sharma, A.; Dewali, S.; Yadav, M.; Kumari, R.; Singh, S.; et al. Current status of pesticide effects on environment, human health and its eco-friendly management as bioremediation: A comprehensive review. Front. Microbiol. 2022, 13, 962619. [Google Scholar] [CrossRef]
- Leskovac, A.; Petrović, S. Pesticide use and degradation strategies: Food safety, challenges and perspectives. Foods 2023, 12, 2709. [Google Scholar] [CrossRef]
- Schoefs, O.; Perrier, M.; Samson, R. Estimation of contaminant depletion in unsaturated soils using a reduced-order biodegradation model and carbon dioxide measurement. Appl. Microbiol. Biotechnol. 2004, 64, 256–261. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Meng, F. Efficiency, mechanism, influencing factors, and integrated technology of biodegradation for aromatic compounds by microalgae: A review. Environ. Pollut. 2023, 335, 122248. [Google Scholar] [CrossRef]
- Chowdhury, A.; Pradhan, S.; Saha, M.; Sanyal, N. Impact of pesticides on soil microbiological parameters and possible bioremediation strategies. Indian. J. Microbiol. 2008, 48, 114–127. [Google Scholar] [CrossRef]
- Elsaid, O.G.; Abdelbagi, A.O.; Elsheikh, E.A.E. Effects of fertilizers (activators) in enhancing microbial degradation of endosulfan in soil. Res. J. Environ. Toxicol. 2009, 3, 76–85. [Google Scholar] [CrossRef]
- Shahgholi, H.; Ahangar, A.G. Factors controlling degradation of pesticides in the soil environment: A review. Agric. Sci. Dev. 2014, 3, 273–278. [Google Scholar]
- Bosu, S.; Rajamohan, N.; Al Salti, S.; Rajasimman, M.; Das, P. Biodegradation of chlorpyrifos pollution from contaminated environment—A review on operating variables and mechanism. Environ. Res. 2024, 248, 118212. [Google Scholar] [CrossRef] [PubMed]
- Ray, S.S.; Parihar, K.; Goyal, N.; Mahapatra, D.M. Synergistic insights into pesticide persistence and microbial dynamics for bioremediation. Environ. Res. 2024, 257, 119290. [Google Scholar] [CrossRef]
- Sharma, C.; Sharma, P.; Kumar, A.; Walia, Y.; Kumar, R.; Umar, A.; Ibrahim, A.A.; Akhtar, M.S.; Alkhanjaf, A.A.M.; Baskoutas, S. A review on ecology implications and pesticide degradation using nitrogen fixing bacteria under biotic and abiotic stress conditions. Chem. Ecol. 2023, 39, 753–774. [Google Scholar] [CrossRef]
- Kanissery, R.G.; Sims, G.K. Biostimulation for the enhanced degradation of herbicides in soil. Appl. Environ. Soil. Sci. 2011, 2011, 843450. [Google Scholar] [CrossRef]
- Sun, W.; Shahrajabian, M.H. The application of arbuscular mycorrhizal fungi as microbial biostimulant, sustainable approaches in modern agriculture. Plants 2023, 12, 3101. [Google Scholar] [CrossRef]
- Elkhlifi, Z.; Iftikhar, J.; Sarraf, M.; Ali, B.; Saleem, M.H.; Ibranshahib, I.; Bispo, M.D.; Meili, L.; Ercisli, S.; Torun Kayabasi, E.; et al. Potential role of biochar on capturing soil nutrients, carbon sequestration and managing environmental challenges: A review. Sustainability 2023, 15, 2527. [Google Scholar] [CrossRef]
- Shahid, M.; Khan, M.S.; Singh, U.B. Pesticide-tolerant microbial consortia: Potential candidates for remediation/clean-up of pesticide-contaminated agricultural soil. Environ. Res. 2023, 236, 116724. [Google Scholar] [CrossRef]
- Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 15th ed.; Association of Official Analytical Chemists (AOAC): Washington, DC, USA, 2000. [Google Scholar]
- Müller, K.; Magesan, G.N.; Bolan, N.S. A critical review of the influence of effluent irrigation on the fate of pesticides in soil Agric. Ecosys. Environ. 2007, 120, 93–116. [Google Scholar] [CrossRef]
- Singh, S.B.; Kulshrestha, G. Degradation of fluchloralin in soil under predominating anaerobic conditions. J. Environ. Sci. Health Part. B 1995, 30, 307–319. [Google Scholar] [CrossRef]
- Pan, W. Review on the Effects of Temperature on Toxicity of Insecticides. J. Hebei Agric. Sci. 2010, 14, 12–18. Available online: https://en.cnki.com.cn/Article_en/CJFDTOTAL-HBKO201008005.htm (accessed on 3 June 2023).
- Dong, X.; Sun, H. Effect of temperature and moisture on degradation of herbicide atrazine in agricultural soil. Int. J. Environ. Agric. Res. 2016, 2, 150–157. [Google Scholar]
- Cessna, A.J.; Knight, J.D.; Ngombe, D.; Wolf, T.M. Effect of temperature on the dissipation of seven herbicides in a biobed matrix. Can. J. Soil. Sci. 2017, 97, 717–731. [Google Scholar] [CrossRef]
- Lehmann, R.G.; Miller, J.R.; Fontaine, D.D.; Laskowski, D.A.; Hunter, J.H.; Cordes, R.C. Degradation of a sulfonamide herbicide as a function of soil sorption. Weed Res. 1992, 32, 197–205. [Google Scholar] [CrossRef]
- Reedich, L.M.; Millican, M.D.; Koch, P.L. Temperature impacts on soil microbial communities and potential implications for the biodegradation of turfgrass pesticides. J. Environ. Qual. 2017, 46, 490–497. [Google Scholar] [CrossRef]
- Ukhurebor, K.E.; Aigbe, U.O.; Onyancha, R.B.; Adetunji, C.O. Climate change and pesticides: Their consequence on microorganisms. Microb. Rejuvenation Pollut. Environ. 2021, 3, 83–113. [Google Scholar] [CrossRef]
- Banu, M.M.; Reehana, N.; Imran, M.M. Microbial Degradation of Pesticides in Agricultural Environments: A Comprehensive Review of Mechanisms, Factors and Biodiversity. Mol. Sci. Appl. 2024, 4, 65–101. [Google Scholar] [CrossRef]
- Osman, A.G. Degradation of the fungicide azoxystrobin by soil microorganisms. UK J. Agric. Sci. 2006, 14, 124–134. [Google Scholar]
- Mohamed, A.T.; Elhussein, A.A.; Elsiddig, M.A.; Osman, A.G. Degradation of Oxyfluorfen herbicide by soil microorganisms biodegradation of herbicides. Biotechnology 2011, 10, 274–279. [Google Scholar] [CrossRef]
- Lee, Y.K.; Chang, H.H.; Jang, Y.S.; Hyung, S.W.; Chung, H.Y. Partial reduction of dinitroaniline herbicide pendimethalin by Bacillus sp. MS202. Korean J. Environ. Agric. 2004, 23, 197–202. [Google Scholar] [CrossRef]
- Xuan, T.H.; Gergon, E.B. Strategies for the management of rice pathogenic fungi. In Fungi; CRC Press: Boca Raton, FL, USA, 2018; pp. 396–431. [Google Scholar] [CrossRef]
- Yen, J.H.; Sheu, W.S.; Wang, Y.S. Dissipation of the herbicide oxyfluorfen in subtropical soils and its potential to contaminate groundwater. Ecotoxicol. Environ. Saf. 2003, 54, 151–156. [Google Scholar] [CrossRef] [PubMed]
- Bonnar, D.J. The Fate and Risk of Oxyfluorfen Under Simulated California Rice Field Conditions; University of California: Davis, CA, USA, 2024. [Google Scholar]
- Duah-Yentumi, S.; Kuwatsuka, S. Effect of organic matter and chemical fertilizers on the degradation of benthiocarb and MCPA herbicides in the soil. Soil. Sci. Plant Nutr. 1980, 26, 541–549. [Google Scholar] [CrossRef]
- Khatoon, H.; Solanki, P.; Narayan, M.; Tewari, L.; Rai, J.P.N.; Khatoon, H.C. Role of microbes in organic carbon decomposition and maintenance of soil ecosystem. Int. J. Chem. Stud. 2017, 5, 1648–1656. [Google Scholar]
- Biswas, T.; Kole, S.C. Soil organic matter and microbial role in plant productivity and soil fertility. In Advances in Soil Microbiology: Recent Trends and Future Prospects, Volume 2: Soil-Microbe-Plant Interaction; Springer: Singapore, 2018; pp. 219–238. [Google Scholar] [CrossRef]
- Barabasz, W.; Albinska, D.; Jaskowska, M.; Lipiec, J. Biological effects of mineral nitrogen fertilization on soil microorganisms. Pol. J. Environ. Stud. 2002, 11, 193–198. [Google Scholar]
- Koskinen, W.; Banks, P. Soil movement and persistence of triazine herbicides. In The Triazine Herbicides: 50 Years Revolutionizing Agriculture; LeBaron, H., McFarland, J., Burnside, O., Eds.; Elsevier: San Diego, CA, USA, 2008; pp. 355–385. [Google Scholar] [CrossRef]
- Geisseler, D.; Scow, K.M. Long-term effects of mineral fertilizers on soil microorganisms—A review. Soil Biol. Biochem. 2014, 75, 54–63. [Google Scholar] [CrossRef]
- Dincă, L.C.; Grenni, P.; Onet, C.; Onet, A. Fertilization and soil microbial community: A review. Appl. Sci. 2022, 12, 1198. [Google Scholar] [CrossRef]
- Liu, W.; Zheng, W.; Ma, Y.; Liu, K.K. Sorption and degradation of imidacloprid in soil and water. J. Environ. Sci. Health Part. B 2006, 41, 623–634. [Google Scholar] [CrossRef] [PubMed]
- Mudhoo, A.; Garg, V.K. Sorption, transport and transformation of atrazine in soils, minerals and composts: A review. Pedosphere 2011, 21, 11–25. [Google Scholar] [CrossRef]
- Das, A.C.; Debnath, A.; Mukherjee, D. Effect of the herbicides oxadiazon and oxyfluorfen on phosphates solubilizing microorganisms and their persistence in rice fields. Chemosphere 2003, 53, 217–221. [Google Scholar] [CrossRef]
- Pal, R.; Chakrabarti, K.; Chakraborty, A.; Chowdhury, A. Pencycuron application to soils: Degradation and effect on microbiological parameters. Chemosphere 2005, 60, 1513–1522. [Google Scholar] [CrossRef]
- Chen, R.; Blagodatskaya, E.; Senbayram, M.; Blagodatsky, S.; Myachina, O.; Dittert, K.; Kuzyakov, Y. Decomposition of biogas residues in soil and their effects on microbial growth kinetics and enzyme activities. Biomass Bioenergy 2012, 45, 221–229. [Google Scholar] [CrossRef]
- Silva-Sánchez, A.; Soares, M.; Rousk, J. Testing the dependence of microbial growth and carbon use efficiency on nitrogen availability, pH, and organic matter quality. Soil. Biol. Biochem. 2019, 134, 25–35. [Google Scholar] [CrossRef]
- Barceló, D.; Hennion, M.C. Trace Determination of Pesticides and Their Degradation Products in Water; Elsevier Academic Press: San Diego, CA, USA, 2003; p. 539. [Google Scholar]
- Rasool, S.; Rasool, T.; Gani, K.M. A review of interactions of pesticides within various interfaces of intrinsic and organic residue amended soil environment. Chem. Eng. J. Adv. 2022, 11, 100301. [Google Scholar] [CrossRef]
- El-Aswad, A.F.; Fouad, M.R.; Aly, M.I. Experimental and modeling study of the fate and behavior of thiobencarb in clay and sandy clay loam soils. Int. J. Environ. Sci. Technol. 2024, 21, 4405–4418. [Google Scholar] [CrossRef]
- Shirkot, C.K.; Gupta, K.G. Accelerated tetramethylthiuram disulfide (TMTD) degradation in soil by incubation with TMT-utilizing bacteria. Bull. Environ. Contam. Toxicol. 1985, 35, 354–361. [Google Scholar] [CrossRef]
- Sherif, A.M.; Elhussein, A.A.; Osman, A.G. Biodegradation of fungicide thiram (TMTD) in soil under laboratory conditions. Am. J. Biotechnol. Mol. Sci. 2011, 1, 57–68. [Google Scholar] [CrossRef]
- Reddy, K.; Jose, S.; Fayaz, T.; Renuka, N.; Ratha, S.K.; Kumari, S.; Bux, F. Microbe-Assisted Bioremediation of Pesticides from Contaminated Habitats. In Bioremediation for Sustainable Environmental Cleanup; CRC Press: Boca Raton, FL, USA, 2024; p. 109. [Google Scholar] [CrossRef]
- Sandin-España, P.; Loureiro, I.; Escorial, C. Herbicides: Theory and Applications; Soloneski, S., Larramendy, M.L., Eds.; InTechOpen: London, UK, 2011; p. 610. [Google Scholar]
- Arora, S.; Arora, S.; Sahni, D.; Sehgal, M.; Srivastava, D.S.; Singh, A. Pesticides use and its effect on soil bacteria and fungal populations, microbial biomass carbon and enzymatic activity. Curr. Sci. 2019, 116, 643–649. [Google Scholar] [CrossRef]
Atrazine Concentration mg g−1 Soil | Gerif Soil Incubated at 28 °C | Algeraif Soil Incubated at 28 °C | Algeraif Soil Incubated at 40 °C | Algeraif Soil Incubated at 28 °C and Fertilized with NPK | Algeraif Soil Incubated at 28 °C with Plant Residues | p-Value |
---|---|---|---|---|---|---|
0.678 | 70 a | 90 a | 36 b | 25 c | 22 c | 0.003 |
1.69 | 84 a | 60 b | 30 c | 21 d | 20 d | <0.001 |
3.39 | 69 a | 45 b | 28 c | 20 d | 15 d | <0.001 |
5.80 | 125 a | 39 b | 25 c | 19 c | 14 c | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elgaber, A.K.A.; Yasin, E.H.E.; Mustafa, M.; Zubairu, A.M.; Czimber, K.; Osman, A.G.; Elsheikh, E.A.E. Impact of NPK, Plant Residue, Soil Type, and Temperature on the Half-Life of Atrazine Herbicide. Nitrogen 2025, 6, 79. https://doi.org/10.3390/nitrogen6030079
Elgaber AKA, Yasin EHE, Mustafa M, Zubairu AM, Czimber K, Osman AG, Elsheikh EAE. Impact of NPK, Plant Residue, Soil Type, and Temperature on the Half-Life of Atrazine Herbicide. Nitrogen. 2025; 6(3):79. https://doi.org/10.3390/nitrogen6030079
Chicago/Turabian StyleElgaber, Alshfa Kh. A., Emad H. E. Yasin, Mohammed Mustafa, Abdulrahman Maina Zubairu, Kornel Czimber, Awad G. Osman, and Elsiddig A. E. Elsheikh. 2025. "Impact of NPK, Plant Residue, Soil Type, and Temperature on the Half-Life of Atrazine Herbicide" Nitrogen 6, no. 3: 79. https://doi.org/10.3390/nitrogen6030079
APA StyleElgaber, A. K. A., Yasin, E. H. E., Mustafa, M., Zubairu, A. M., Czimber, K., Osman, A. G., & Elsheikh, E. A. E. (2025). Impact of NPK, Plant Residue, Soil Type, and Temperature on the Half-Life of Atrazine Herbicide. Nitrogen, 6(3), 79. https://doi.org/10.3390/nitrogen6030079