On the Existence of Solutions and Ulam-Type Stability for a Nonlinear ψ-Hilfer Fractional-Order Delay Integro-Differential Equation
Abstract
1. Introduction
2. Background
- (C1)
- The sequence converges to a fixed point of T;
- (C2)
- is the unique fixed point of T in
- (C3)
- If , then .
3. Uniqueness of Solutions
- (Hp-1) Let , , , , and be nonnegative continuous functions and , , such that
- (Hp-2) Let , , and the functions , , , , and satisfy
4. Ulam-Type Stability
5. Application
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
-Hilfer FrODE | -Hilfer fractional-order differential equation |
-Hilfer FrODEs | -Hilfer fractional-order differential equations |
-Hilfer FrOVI-DE | -Hilfer fractional-order Volterra integro-differential equation |
-Hilfer FrOVI-DEs | -Hilfer fractional-order Volterra integro-differential equations |
-Hilfer-FrDO | -Hilfer fractional derivative operator |
UH stability | Ulam–Hyers stability |
UHR stability | Ulam–Hyers–Rassias stability |
semi-UHR stability | semi-Ulam–Hyers–Rassias stability |
BCMP | Banach contraction mapping principle |
References
- Balachandran, K. An Introduction to Fractional Differential Equations. In Industrial and A4pplied Mathematics; Springer: Singapore, 2023. [Google Scholar]
- Diethelm, K. The analysis of fractional differential equations. An application-oriented exposition using differential operators of Caputo type. In Lecture Notes in Mathematics, 2004; Springer: Berlin, Germany, 2010. [Google Scholar]
- Podlubny, I. Fractional differential equations. An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. In Mathematics in Science and Engineering, 198; Academic Press, Inc.: San Diego, CA, USA, 1999. [Google Scholar]
- Herrmann, R. Fractional calculus. In An Introduction for Physicists, 3rd ed.; World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, USA, 2018. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations. In North-Holland Mathematics Studies, 204; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Miller, K.S.; Ross, B. An introduction to the fractional calculus and fractional differential equations. In A Wiley-Interscience Publication; John Wiley & Sons, Inc.: New York, NY, USA, 1993. [Google Scholar]
- Oldham, K.B.; Spanier, J. The fractional calculus. Theory and applications of differentiation and integration to arbitrary order. With an annotated chronological bibliography by Bertram Ross. In Mathematics in Science and Engineering; Academic Press: New York, NY, USA; London, UK, 1974; Volume 111. [Google Scholar]
- Zhou, Y. Basic Theory of Fractional Differential Equations, 3rd ed.; World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, USA, 2024. [Google Scholar]
- Benchohra, M.; Lazreg, J.E. Existence and Ulam stability for nonlinear implicit fractional differential equations with Hadamard derivative. Stud. Univ. Babeş-Bolyai Math. 2017, 62, 27–38. [Google Scholar] [CrossRef]
- Samko, s.G.; Kilbas, A.A.; Marichev, O.I. Fractional integrals and derivatives. In Theory and applications; Gordon and Breach Science Publishers: Yverdon, Switzerland, 1993. [Google Scholar]
- Sousa, J.V.d.; de Oliveira, E.C. On the ψ-Hilfer fractional derivative. Commun. Nonlinear Sci. Numer. Simul. 2018, 60, 72–91. [Google Scholar] [CrossRef]
- Wang, J.R.; Lv, L.L.; Zhou, Y. New concepts and results in stability of fractional differential equations. Commun. Nonlinear Sci. Numer. Simul. 2012, 17, 2530–2538. [Google Scholar] [CrossRef]
- Abbas, S.; Benchohra, M.; Lagreg, J.E.; Alsaedi, A.; Zhou, Y. Existence and Ulam stability for fractional differential equations of Hilfer-Hadamard type. Adv. Differ. Equ. 2017, 1–14. [Google Scholar] [CrossRef]
- Abbas, S.; Benchohra, M.; Petruşel, A. Coupled Hilfer and Hadamard fractional differential systems in generalized Banach spaces. Fixed Point Theory 2022, 23, 21–34. [Google Scholar] [CrossRef]
- Abbas, S.; Benchohra, M.; Petruşel, A. Ulam stability for Hilfer type fractional differential inclusions via the weakly Picard operators theory. Fract. Calc. Appl. Anal. 2017, 20, 384–398. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Assolami, A.; Alsaedi, A.; Ahmad, B. Existence results and Ulam-Hyers stability for a fully coupled system of nonlinear sequential Hilfer fractional differential equations and integro-multistrip-multipoint boundary conditions. Qual. Theory Dyn. Syst. 2022, 21, 33. [Google Scholar] [CrossRef]
- Luo, D.; Shah, K.; Luo, Z. On the novel Ulam-Hyers stability for a class of nonlinear Hilfer fractional differential equation with time-varying delays. Mediterr. J. Math. 2019, 16, 15. [Google Scholar] [CrossRef]
- Sousa, J.V.d.; de Oliveira, E.C. On the Ulam-Hyers-Rassias stability for nonlinear fractional differential equations using the ψ-Hilfer operator. J. Fixed Point Theory Appl. 2018, 20, 21. [Google Scholar] [CrossRef]
- Vivek, D.; Kanagarajan, K.; Elsayed, E.M. Some existence and stability results for Hilfer-fractional implicit differential equations with nonlocal conditions. Mediterr. J. Math. 2018, 15, 21. [Google Scholar] [CrossRef]
- de Oliveira, E.C.; Sousa, J.V.d. Ulam-Hyers-Rassias stability for a class of fractional integro-differential equations. Results Math. 2018, 73, 16. [Google Scholar] [CrossRef]
- Tunç, O.; Tunç, C. On Ulam stabilities of delay Hammerstein integral equation. Symmetry 2023, 15, 1736. [Google Scholar] [CrossRef]
- Sousa, J.V.d.; de Oliveira, E.C. Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation. Appl. Math. Lett. 2018, 81, 50–56. [Google Scholar] [CrossRef]
- Abbas, S.; Albarakati, W.; Benchohra, M.; Petruşel, A. Existence and Ulam stability results for Hadamard partial fractional integral inclusions via Picard operators. Stud. Univ. Babeş-Bolyai Math. 2016, 61, 409–420. [Google Scholar]
- Brzdęk, J.; Karapınar, E.; Petruşel, A. A fixed point theorem and the Ulam stability in generalized dq-metric spaces. J. Math. Anal. Appl. 2018, 467, 501–520. [Google Scholar] [CrossRef]
- Moroşanu, G.; Petruxsxel, A. On a delay integro-differential equation in Banach space. Discrete Contin. Dyn. Syst. Ser. S 2023, 16, 1596–1609. [Google Scholar]
- Petruşel, A.; Rus, I.A. Ulam stability of zero point equations. In Ulam Type Stability; Springer: Cham, Switzerland, 2019; pp. 345–364. [Google Scholar]
- Zhang, L.; Ahmad, B.; Wang, G.; Agarwal, R.P. Nonlinear fractional integro-differential equations on unbounded domains in a Banach space. J. Comput. Appl. Math. 2013, 249, 51–56. [Google Scholar] [CrossRef]
- Zhou, J.L.; Zhang, S.; He, Y. Existence and stability of solution for a nonlinear fractional differential equation. J. Math. Anal. Appl. 2021, 498, 13. [Google Scholar] [CrossRef]
- Zhou, J.L.; Zhang, S.; He, Y. Existence and stability of solution for nonlinear differential equations with Hilfer fractional derivative. Appl. Math. Lett. 2021, 121, 7. [Google Scholar] [CrossRef]
- Graef, J.R.; Tunç, O.; Tunç, C. Ulam-Hyers-Rassias stability of Hilfer Volterra integro-differential equations of fractional order containing multiple variable delays. Fractal Fract. 2025, 9, 304. [Google Scholar] [CrossRef]
- Benzarouala, C.; Tunç, C. Hyers–Ulam–Rassias stability of fractional delay differential equations with Caputo derivative. Math. Methods Appl. Sci. 2024, 47, 13499–13509. [Google Scholar] [CrossRef]
- Huang, J.; Li, Y. Hyers-Ulam stability of delay differential equations of first order. Math. Nachr. 2016, 289, 60–66. [Google Scholar] [CrossRef]
- Jung, S.M. A fixed point approach to the stability of a Volterra integral equation. Fixed Point Theory Appl. 2007, 2007, 57064. [Google Scholar] [CrossRef]
- Bhat, I.A.; Mishra, L.N.; Mishra, V.N.; Tunç, C.; Tunç, O. Precision and efficiency of an interpolation approach to weakly singular integral equations. Int. J. Numer. Methods Heat Fluid Flow 2024, 34, 1479–1499. [Google Scholar] [CrossRef]
- Tunç, O.; Tunç, C. Solution estimates to Caputo proportional fractional derivative delay integro-differential equations. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat. RACSAM 2023, 117, 13. [Google Scholar] [CrossRef]
- Tunç, O.; Tunç, C.; Petruşel, G.; Yao, J.-C. On the Ulam stabilities of nonlinear integral equations and integro-differential equations. Math. Methods Appl. Sci. 2024, 47, 4014–4028. [Google Scholar] [CrossRef]
- Diaz, J.B.; Margolis, B. A fixed point theorem of the alternative, for contractions on a generalized complete metric space. Bull. Amer. Math. Soc. 1968, 74, 305–309. [Google Scholar] [CrossRef]
- Cadariu, L.; Gavruţa, L.; Gavruţa, P. Weighted space method for the stability of some nonlinear equations. Appl. Anal. Discrete Math. 2012, 6, 126–139. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tunç, C.; Alshammari, F.S.; Akyıldız, F.T. On the Existence of Solutions and Ulam-Type Stability for a Nonlinear ψ-Hilfer Fractional-Order Delay Integro-Differential Equation. Fractal Fract. 2025, 9, 409. https://doi.org/10.3390/fractalfract9070409
Tunç C, Alshammari FS, Akyıldız FT. On the Existence of Solutions and Ulam-Type Stability for a Nonlinear ψ-Hilfer Fractional-Order Delay Integro-Differential Equation. Fractal and Fractional. 2025; 9(7):409. https://doi.org/10.3390/fractalfract9070409
Chicago/Turabian StyleTunç, Cemil, Fehaid Salem Alshammari, and Fahir Talay Akyıldız. 2025. "On the Existence of Solutions and Ulam-Type Stability for a Nonlinear ψ-Hilfer Fractional-Order Delay Integro-Differential Equation" Fractal and Fractional 9, no. 7: 409. https://doi.org/10.3390/fractalfract9070409
APA StyleTunç, C., Alshammari, F. S., & Akyıldız, F. T. (2025). On the Existence of Solutions and Ulam-Type Stability for a Nonlinear ψ-Hilfer Fractional-Order Delay Integro-Differential Equation. Fractal and Fractional, 9(7), 409. https://doi.org/10.3390/fractalfract9070409